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1.Introduction

As environmental issues become more prominent, energy
generated by wind has gradually increased year by year.
Application fields of wind energy have been gradually ex-
tended to the industrial areas from agricultural irrigation,
navigation and grinding. However, due to the randomness
of wind power, WECS (wind energy conversion systems)
may implement either VSWT (variable speed wind tur-
bines) or VSVPWT (variable speed variable pitch speed
wind turbines) [1-6]. When the wind speed is below the
rated value, wind energy conversion efficiency is used for
improving the wind energy conversion efficiency. The
commonly control strategy for capturing most wind en-
ergy is maximum power point tracking (MPPT) [7], and
corresponding control methods include PI [8] control,
LPV [9] control, neural network control [10,11], etc.
However, the above control methods for energy conver-
sion systems have an undesirable effects, as the existence
of many nonlinear and uncertain facts caused by the
wind.As the PID control of the WECS based on the fuzzy
logic ruler hasgood adaptive capacity, the effect applied
to the VSWT WECS is ideal [12]. Giuseppe and Pietro
[13] developed a method for predicting working state of

wind turbines with neural network control. Sargolzaei and
Kianifar [14] presented a control strategy for improving
the power quality with neural network control. Yurdusev
et al. [15] developed a method for tracking optimal tip
speed ratio with the neural network. Compensation con-
trol of neural network is proposed to suppress interference
of wind power systems [16]. RBF neural network is ap-
plied in the variable-pitch control system [17]. When the
wind speed is above the rated value, LPV compensator
for VSWT WECS is designed to regulate the high fre-
quency output of wind generator torque and blade angle
pitch, combining neural network control with PID control,
a new type of PID neural network intelligent controller
for VSVPWT WECS is designed for dynamic compensate
steady-state output. The training algorithms used are gra-
dient descent algorithm with momentum factor, which
presents the on-line version of auto-tuning algorithm for
PID control parameter. A hardware platform for multi-
variable compensation control of the VSVPWT WECSis
built up based on Dspace. The results confirm the superi-
ority of the proposed control (multi-variable in this paper)
scheme to the conventional ones(traditional multi-vari-
able).Fathabadi [18] proposed a novel fast and highly ac-
curate universal maximum power point (MPP) tracker for
hybrid fuel cell/photovoltaic/wind power generation sys-
tems. The tracker called “universal tracker” because it
used a unified algorithm and controller to concurrently
track the MPPs of the photovoltaic (PV), fuel cell (FC)
and wind energy conversion subsystems of a hybrid
FC/PV/wind power system. Soufi et al. [19] proposed a
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particle swarm optimization based sliding mode control
of squirrel cage induction generator of a variable speed
wind energy conversion system. The proposed method
had good transient performance and fast convergence.
Hong et al. [20] presented a artificial neural network for
optimal control for variable-speed wind generation sys-
tems.
The rest of this paper is organized as follows. Section 1
discusses the constant power control problem and the
modeling of the WECS from the multi-variable control
point of view. Section 2 depicts an overview of the pro-
posed control structure, presents a new LPV dynamic
compensation control method for the variable-speed vari-
able-pitch WECS. Section 3 presents a new PID neural
network control structure, explain the training algorithm
of the multi-variable controller. Section 4 presents the ex-
perimental results with the proposed control method based
on a 8000 watt wind turbine. Section 5 concludes this
work and represents one of the main contributions in this
paper.

2. LPV Modeling of Variable WECS

The aerodynamic model of a wind wheel is computed
from Eq. (1) [7, 15]. 
where is C=0.5πρR3, Г(t), ρ and R are the torque of the
rotor,the air density and wind wheel radius respectively.

Г(t) = Cv(t)2 CГ(λ, β) (1)

The parameter CГ (λ, β) is the torque coefficient thatde-
pends on the blade pitch angle β and the tip-speed ratio  λ
determined from Eq. (2):

CГ (λ, β) = Cp (λ, β)/λ (2)

where Cp (λ, β) is the power coefficient, and the tip-speed
ratio is λ=Ωl R/ѵ. Hereafter, the augmented system will
be analyzed (see Figure 1 for a block diagram of the
VSVPWT WECS), wind energy captured by the rotor of
a wind wheel is computed from Eq. (3),

Pwt (t)=C/R ѵ(t)3 Cp(λ, β) (3)

The nonlinear wind turbine is linearized around the
steady-state operating point so as to obtain linear model
of VSVPWT WECS [22]. Defining the error ∆x=x- , and
the normalized errors . As the uncertainty of
wind, we take the wind speed as stochastic processes of
non-statistics, so it includes two part:

ѵ=ѵ+∆ѵ (4)

where, ѵ is low-frequency wind speed, ∆ѵ is high-fre-
quency wind speed:

(5)

where, ξ is Gaussian white noise, Tw is filter time con-
stant, and , Lt is turbulence length of the wind
speed. Linear parameter-varying (LPV) model for VSWT
WECS can be expressed as [6, 18]:

(6)

where, state vector x, input vector ,
. Where, , , ,

is normalized wind wheel torque, is normalized
generator torque, is normalized wind speed. Parame-
ters , B(Θ) and A(Θ) can be ex-
pressed as:

(7)

(8)

In Eq. (8), γ depends on the operating points of the
WECS. it defines as , and

. 

JT is mechanical time constant of transmission system and
define as follows:
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Fig. 1. Block diagram of the VSVPWT WECS
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Affine coefficient matrix in the LPV model depending on
the parameter vector Θ,which can be expressed as:

(9)

3. Designing of Multi-Variable Controller Based on the

NN PID

3.1 MultivariableControl Strategy

PID algorithm can be expressed as following:

(10)

u(k) is output of PID controller. To achieve better per-
formance, a nonlinear multi-variable controller for the
VSVPWT WECS have been proposed in [2]. Multi-vari-
able controller includes two layers, the first layer is gen-
erator torque controller, which is to regulate the output
torque; the second layer is blade pitch angle controller,
which is used to make the controller less complex and as
the rotor speed regulation objective is partly guaranteed
by the pitch controller. When the wind speed is above
rated value, classical multi-variable control structure of
the VSVPWT WECS is the following (Figure 2), two PID
controllers are used as equations (11) and (12), [6, 21]:

(11)

(12)

Where , which is the generator speed tracking
error, and , which is the generator output
power tracking error, kp1 and kp2 are the proportional co-
efficient, ki1 and ki2 are the integral coefficient, kd1 and
kd2 are the differential coefficient.
However, the classical method depends on the linear op-
erating point of the WECS, when the system is operating
far from the steady operating point, the rotor speed and
power unfortunately presents large variations. The con-
trollers (see Eq.(10)) are unable to obtain control rules
with the input variable sum-of-error , that is inte-
gral error, because the steady state value of integral n error
is unknown for VSVPWT WECS control systems. The
proposed method (see Figure 3 for PID NN multi-variable
control structure of the VSVPWT WECS), the PID neural

network can. This controller completes the online tuning
of proportion, integral and differential parameters, and the
network training algorithm by employing momentum fac-
tor will not be easy to fall into a local minimum value. 

3. 2. PID Neural Network Controller

In order to assist the torque controller to regulate the wind
turbine electric power output, while avoiding significant
loads and maintaining the rotor speed within acceptable
limits, a proportional pitch controller is added upon the
rotor speed tracking error:
As is shown in Figure 4,there are two same 2-3-1 structure
PID neural network controllerfor the multi-variable con-
troller. Here we just give the torque controller [24, 25]:
Two inputs of neural network are and , where, is

                  

 

 

 

 

 

Fig. 2. Classical multi-variable control structure of the
VSVPWT WECS

Fig. 3. PID NN multi-variable control structure of the
VSVPWT WECS
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the speed reference value of wind turbines. is the
actual rotational speed of wind turbines. The output of
the input layer is , j=1, 2. The state function
of neurons is . Hidden layer includes three
neurons, proportional element, integral element, differen-
tial element. The sum of input weight which in hidden
layer neurons is , i=1, 2, 3, is the input
weights of thei-th neurons which in the hidden layer. 
The state of proportional element is:

(13)

The state of integral element is:

(14)

The state of differential element is:

(15)

Output layerincludes one neuron. The sum of neurons
input weight is , is the input weights of
the l-th neurons which in the output layer, and l=1. The
output of the output layer is ). The state func-
tion of neurons is . The output functions of
input layer and hidden layer are f 1 and f 2, which are Tan-
sig function. The output function of output layer is f 3,

which is purelinand wavelet function. The initial weights
from input layer to hidden layer are , . The
initial weights from hidden layer to output layer arethe
output ratio of PID controller ,integration kI, differentia-
tion kD.kp is proportional coefficient, kI is integral coef-
ficient, kD is differential coefficient.The network training
target can be expressed as:

(16)

Where, yop is actual output of the neural network, ytp is
expected output of the neural network, m is sample size.
PID neural network weight is to train by the gradient de-
scent algorithm with momentum factor, the final training
steps can be express as equations (17) and (18):

(17)

where, δ ́(k)=2[ytp-yop], equation (17) is weight correction
from hidden layer to output layer. 

(18)

where, equation (18) is

weight correction from input layer to hidden layer. 

3. 3. LPV Gain Scheduling Control

Full state feedback controllers is expressed as equation
(19)[21]:

(19)

The closed-loop system can be expressed as:

(20)

where, .

where, .

Gain matrix of parameter state feedback controller given
by matrix inequality can be expressed as follows [23, 26]:

(21)

where, V and R(Θ) are symmetric positive definite ma-
trix.
The Control structure of the variable-speed WECS with
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Fig. 4. PID NN controller
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torque compensator is shown in Figure 5, As given in
equations (22) and (23), where is the output of the
torque controller, is the output of the blade pitch angle
controller. Both the two controllers and the LPV compen-
sator which outputs are ∆βr and ∆ГGr regulate the output
power. 

(22)

(23)

3. 4.SimulationResearch

The simulation model is set up so as to verify the control

 

 

 
 

Fig. 5. Control structure of variable-speed WECS with torque
compensator
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effect. There are two cases, the one is to test the blade
pitch angle controller effect of PID neural network (see
blade pitch angle controller output in Figure 6). It can be
seen from Figure 6(b) to Figure 6(d), when changes of
wind speed are immediate, system output has less distur-
bances with the PID neural network controller than the
PID controller.
The second is to test the torque controller effect of PID
neural network (see torque controller output in Figure 7).
As is shown in the Figures 7(b) and 7(c), wind power out-
put can track the maximum power coefficient, and distur-
bances with the PID neural network controller are less
than the PID controller, so this method can keep the stable
output of the VSVPWT WECS.

4. Experiment Results and Analysis

The Dspace experiment platform is shown in Figure 8, in-
cluding Matlab/Simulink model, RTW model, Compiler
model, RTI model, Control Desk model. Downloading the
model compiled to processor through the establishment
of Matlab/simulink model, the platform includes electric
motor and wind generator [23]. Corresponding parameters
of the VSVPWT WECS including: wind generator power
is 8000 watt, gear ratio is 6.25, transmission efficiency of
wind turbine is 0.95, time constant of filter is 10second,
air density is 1.25 kg/m3, rated wind speed is 12.5 m/s.
Wind generator speed output reference is 30 rad/s, wind
generator torque output reference is 200 N.M.
Dspace experiment platform is set up so as to verify the
control effect of the proposed Multi-variable controller.
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The wind speed shown in Figure 9(a) is above rated value
after 50 s, the Multi-variable controller based on hard-
ware-in-loop simulation output shown in the Figures 9(b)

and 9(g) have been selected here since they show some
key characteristic of wind turbine dynamic behavior.
Firstly, time evolution of the power coefficient, tip speed
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ratio presented in Figures 9(b) and 9(c) remains close to
the optimal value before 50-second , but standard devia-
tion becomes large after 50-second. Both the torque con-
troller and the blade pitch angle controller with the PID
neural network have better control effect, and LPV com-
pensation control has shown better control performances
as compared to the classical PID compensation control,
which can be obtained with a reasonable control effort.
Secondly on the Figures 9(d) and 9(g), the responses of
output power, blade pitch angle, generator speed, genera-
tor torque with the compensation control methods to the
step change in wind speed are shown. A sudden change
in wind speed, the output responses can obtain the optimal
values before 50-second and stably remain close to the
rated values after 50-second. The results comparison of
wind turbine with LPV compensation and classical PID
compensation reflect that the LPV compensation control
has more expected control performance. Therefore, it is
clear that classic approach to Multi-variable controller de-
sign are assumed to be constant. This is the reason why
the wind turbines cannot follow the optimal work per-
formance during the changes in wind speed. The proposed
method can handle better changes in wind speed resulting
in faster control of wind turbines, because this method can
not only improve the sensitivity of the system by the PID
neural network controller when the wind speed is below
the rated value, but also assure reducing the system vibra-
tion caused by fast dynamic resulted from the action of
the turbulent wind speed.

5. Conclusion

In this brief, a framework for a generalized predictive con-
trol method is presented. The Hammerstein-Wiener model

identification is used to establish the predictive model of
variable pitch WECS, the model can quickly and accu-
rately approaches the controlled object, so it provides a
good model foundation for predictive control. In the de-
sign of rolling optimization, the brief takes the CPSO al-
gorithm as the rolling optimization strategy. In view of
the rapidity, real-time and stability, the rolling optimiza-
tion can be realized, the control requirements of rapidity
and real-time are achieved. Finally, the method has been
demonstrated on a realistic nonlinear simulation of the
variable pitch WECS with two inputs and one output. The
simulation results show a more stable output of speed and
power for generator, it provides a good control scheme
for variable pitch WECS.
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