2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

A. Jabbari (C.A.)

Abstract: A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi-Cartesian coordinate by using sub-domain method and hyperbolic functions. The developed method is applied on the performance computation of two prototypes surface mounted permanent magnet motors and two prototypes surface inset permanent magnet motors. A radial and a parallel magnetization orientation is considered for each type of motor. The results of these models are validated through FEM method.

Keywords: Analytical Modeling, Surface Mounted PM Machine, Surface Inset PM Machine, Sub-Domain Method, FEM.

1 Introduction

Brushless permanent magnet machines are interested in industrial applications due to their high efficiency, power density and robustness. An accurate prediction of airgap magnetic field distribution is necessary in order to calculate electromagnetic torque, back electromotive force and self or mutual inductance more precise. A variety of techniques including analytical and numerical methods has been conducted to evaluate the magnetic field distribution in electrical machines. Numerical methods like finite element method (FEM) give accurate results and are time-consuming especially in first step of design stage [1]-[2]. Analytical methods including conformal mapping [3]-[6], Magnetic Equivalent Circuit (MEC) [7]-[9], sub-domain model [10]-[26] and slot relative permeance calculation [27]-[28] are reported to model electrical machines and are useful in first step of performance evaluation and design optimization stage. The sub-domain model is more accurate than the other analytical models [7]. This method is developed based on solution of Laplace and Poisson equations in different regions by applying boundary conditions for electrical machines [10]-[26].

The focus of this paper is to develop an analytical model based on resolution of Laplace and Poisson equations in brushless surface mounted and surface inset permanent magnet machines by using the sub-domain method considering slotting effects, magnetization orientation and winding layout. It is shown that the developed model can effectively estimate magnetic field, electromagnetic torque, back electromotive force and self/mutual inductance. This model is applied on the performance calculation of four prototype brushless machines. It’s shown that the results of analytical model are in close agreement with the results of FEM.

2 Problem Definition

The geometrical representation of the investigated brushless machines are shown in Fig. 1. The machines parameters including the rotor inner radius, \(R_1 \), rotor yoke radius, \(R_2 \), the rotor surface radius, \(R_s \), the stator surface radius, \(R_a \), the stator slot inner radius, \(R_s \), the stator slot outer radius, \(R_o \) and the stator yoke radius, \(R_y \). Two different magnetization orientation including radial
and parallel magnetization for each topology are shown in Fig. 2.

The following assumptions are made in theoretical analysis:
- Permeability of rotor and stator cores are infinite;
- End effects are neglected;

The machine model is divided into four sub-domains. The stator which has two sub-domains including Q_1 slot regions (domain j) and Q_1 slot opening regions (domain i) and the airgap sub-domain (region II) are shown in Fig. 3. The rotor has one sub-domain including Q_2 permanent magnet regions (domain I) as shown in Fig. 4.

The angular position of the i-th stator slot, i-th stator
Fig. 3 The stator sub-domains including \(j \) and \(i \) regions.

Fig. 4 The rotor sub-domains including \(i \) region.

slot opening, \(i \)-th permanent magnet are defined as (1), (2), and (3), respectively. A representation of \(\alpha, \beta, \) and \(\gamma \) is shown in Fig. 3.

\[
\begin{align*}
\theta_j &= -\frac{\alpha}{2} + \frac{2i\pi}{Q_j} \quad \text{with} \quad 1 \leq i \leq Q_j \\
\theta_i &= -\frac{\beta}{2} + \frac{2i\pi}{Q_i} \quad \text{with} \quad 1 \leq i \leq Q_i \\
\theta_i &= -\frac{\gamma}{2} + \frac{2i\pi}{Q_i} \quad \text{with} \quad 1 \leq i \leq Q_2
\end{align*}
\]

3 Magnetic Vector Potential Calculation

General solution of Laplace or Poisson equation in each sub-domain is developed in this section. The Laplace equation can be described in polar form as

\[
\frac{\partial^2 \mathbf{A}}{\partial r^2} + \frac{1}{r} \frac{\partial \mathbf{A}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \mathbf{A}}{\partial \theta^2} = 0 \quad \text{for} \quad \left\{ \begin{array}{l}
R_1 \leq r \leq R_2 \\
\theta_1 \leq \theta \leq \theta_2
\end{array} \right.
\]

Replacing \(r \) by \(R_1 e^{\mu \varphi} \), one obtains

\[
\frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{\partial^2 \mathbf{A}}{\partial \theta^2} = 0 \quad \text{for} \quad \left\{ \begin{array}{l}
\ln \left(\frac{R_1}{R_2} \right) \leq t \leq 0 \\
\theta_1 \leq \theta \leq \theta_2
\end{array} \right.
\]

The above equation has a quasi-Cartesian form instead of polar form. Therefore, it is possible to derive an analytical expression for magnetic vector potential based on hyperbolic functions.

3.1 Magnetic vector potential in the stator slot sub-domain (Region \(j \))

The Poisson equation in the stator slot sub-domain is given by

\[
\frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{\partial^2 \mathbf{A}}{\partial \theta^2} = -\mu_0 J \quad \text{for} \quad \left\{ \begin{array}{l}
t_1 \leq t \leq t_2 \\
\theta_1 \leq \theta \leq \theta_1 + \alpha
\end{array} \right.
\]

where \(t_1 = \ln \left(\frac{R_1}{R_2} \right) \), \(t_2 = 0 \) and \(J \) is slot current density.

Neumann boundary conditions at the bottom and at each side of the slot are obtained as

\[
\left. \frac{\partial \mathbf{A}}{\partial \theta} \right|_{\theta = \theta_1} = 0 \quad \text{and} \quad \left. \frac{\partial \mathbf{A}}{\partial t} \right|_{t = t_1, t_2} = 0
\]

The general solution of (6) using the separation of variables method is given by

\[
A_j(t, \theta) = a_j^k - \frac{1}{2} \mu_0 J_i \left(e^{-\frac{\alpha}{2} t} + \frac{1}{2} e^{-\frac{2i\pi}{Q_i} t} \right)
\]

\[
+ \sum_{h=1}^{\infty} \left\{ a_j^{k_h} \frac{\cosh \left(\frac{h\pi}{\alpha} (t-t_1) \right)}{\sinh \left(\frac{h\pi}{\alpha} (t_2-t_1) \right)} \times \cos \left(\frac{h\pi}{\alpha} (\theta - \theta_1) \right) \right\}
\]

where \(h \) is a positive integer and the coefficients \(a_j^{k_h} \) and \(a_j^{k_h} \) are determined based on the continuity and interface conditions.

The continuity of the magnetic vector potential between the sub-domain \(j \) and the region \(i \) leads to
\[\frac{\partial A_i}{\partial t} \bigg|_{\theta_{i-\gamma}} = f(\theta) = \begin{cases} \frac{\partial A_i}{\partial t} \bigg|_{\theta_{i-\gamma}} & \text{for } \theta_i \leq \theta \leq \theta_i + \beta \\ 0 & \text{elsewhere} \end{cases} \] (10)

Interface condition (10) gives

\[\mu_0 J, \sinh(t_i) = \frac{1}{\alpha} \int_{\beta}^{\theta_i} f(\theta) d\theta \] (11)

\[a^{i'} = \frac{2}{a} \int_{\beta}^{\theta_i} f(\theta) \cos \left(\frac{h\pi}{\alpha} (\theta - \theta_i) \right) d\theta \] (12)

3.2 Magnetic vector potential in the stator slot opening sub-domain (Region I)

The Laplace equation in the stator second inner slot opening sub-domain is given by

\[\frac{\partial^2 A}{\partial \theta^2} + \frac{\partial^2 A}{\partial t^2} = 0 \quad \text{for} \quad t_i \leq t \leq t_e, \quad \theta \leq \theta \leq \theta_i + \beta \] (13)

where \(t_i = \ln \left(\frac{R_1}{R_2} \right) \) and \(t_e = 0 \).

Neumann boundary conditions at the bottom and at each side of the slot are obtained as

\[\frac{\partial A}{\partial \theta} \bigg|_{\theta=\theta} = 0 \quad \text{and} \quad \frac{\partial A}{\partial \theta} \bigg|_{\theta=\theta+\beta} = 0 \] (14)

The general solution of (13) using the separation of variables method is given by

\[A_i(t, \theta) = a_i + b_i t + \sum_{n=1}^\infty \left(\sinh \left(\frac{h\pi}{\beta} (t - t_i) \right) \right) a_i^n + \left(\sinh \left(\frac{h\pi}{\beta} (t - t_i) \right) \right) b_i^n \] (15)

where \(m \) is a positive integer and the coefficients, \(a_i^n, b_i^n, c_i^n \) and \(d_i^n \) are determined based on the continuity and interface conditions.

The continuity of the magnetic vector potential between the sub-domain \(I \) and the regions \(I \) and \(II \) leads to

\[A_i(t, \theta) = \text{AII}(t, \theta) \quad \text{for} \quad \theta_i \leq \theta \leq \theta_i + \beta \] (16)

\[A_i(t, \theta) = \text{Aj}(t, \theta) \quad \text{for} \quad \theta_i \leq \theta \leq \theta_i + \beta \] (17)

Interface condition (16) gives

\[a_i^n = \frac{1}{\beta} \int_{\beta}^{\theta_i} \text{AII}(t, \theta) d\theta \] (18)

\[b_i^n = \frac{2}{\beta} \int_{\beta}^{\theta_i} \text{AII}(t, \theta) \cos \left(\frac{h\pi}{\beta} (\theta - \theta_i) \right) d\theta \] (19)

Interface condition (17) gives

\[a_i^n + \ln \left(\frac{R_2}{R_1} \right) b_i^n = \frac{1}{\beta} \int_{\beta}^{\theta_i} \text{Aj}(t, \theta) d\theta \] (20)

\[a_i^n + \frac{2}{\beta} \int_{\beta}^{\theta_i} \text{Aj}(t, \theta) \cos \left(\frac{h\pi}{\beta} (\theta - \theta_i) \right) d\theta \] (21)

3.3 Magnetic vector potential in the air-gap sub-domain (Region II)

The Laplace equation in the internal airgap sub-domain is given by

\[\frac{\partial^2 A}{\partial t^2} + \frac{\partial^2 A}{\partial \theta^2} = 0 \quad \text{for} \quad t_i \leq t \leq t_e, \quad 0 \leq \theta \leq 2\pi \] (22)

where \(t_i = \ln \left(\frac{R_1}{R_2} \right) \) and \(t_e = 0 \).

The general solution of (22) considering periodicity boundary conditions is obtained as

\[A_{II}(t, \theta) = \sum_{n=1}^{\infty} \left(\frac{1}{n \sinh(n(t - t_i))} a^n_i \right) \cos(n\theta) + \right. \]

\[= \sum_{n=1}^{\infty} \left(\frac{1}{n \sinh(n(t - t_i))} c^n_i \right) \sin(n\theta) \] (23)

where \(n \) is a positive integer.

The coefficients \(a^n_i, b^n_i, c^n_i \) and \(d^n_i \) are determined considering the continuity of magnetic vector potential between the internal airgap sub-domain \(II \) and the region \(I \) using a Fourier series expansion of interface condition (24) and (25) over the airgap interval.

The continuity of the magnetic vector potential between the internal airgap sub-domain \(II \) and the regions \(I \) and \(I \) leads to

\[\frac{\partial A_{II}}{\partial t} \bigg|_{\theta_{i-\gamma}} = g(\theta) = \begin{cases} \frac{\partial A_i}{\partial t} \bigg|_{\theta_{i-\gamma}} & \text{for } \theta_i \leq \theta \leq \theta_i + \beta \\ 0 & \text{elsewhere} \end{cases} \] (24)

\[\frac{\partial A_{II}}{\partial t} \bigg|_{\theta_{i-\gamma}} = h(\theta) = \begin{cases} \frac{\partial A_i}{\partial t} \bigg|_{\theta_{i-\gamma}} & \text{for } \theta_i \leq \theta \leq \theta_i + \gamma \\ 0 & \text{elsewhere} \end{cases} \] (25)

Interface condition (24) gives
\[
\begin{align*}
\alpha_r^n &= \frac{2}{2\pi} \int_0^{\frac{\pi}{n}} g(\theta) \cdot \cos(n\theta) \, d\theta \\
\epsilon_r^n &= \frac{2}{2\pi} \int_0^{\frac{\pi}{n}} g(\theta) \cdot \sin(n\theta) \, d\theta
\end{align*}
\]
(26)
(27)

Interface condition (25) gives
\[
\begin{align*}
b_r^n &= \frac{2}{2\pi} \int_0^{\frac{\pi}{n}} h(\theta) \cdot \cos(n\theta) \, d\theta \\
d_r^n &= \frac{2}{2\pi} \int_0^{\frac{\pi}{n}} h(\theta) \cdot \sin(n\theta) \, d\theta
\end{align*}
\]
(28)
(29)

3.4 Magnetic vector potential in the rotor permanent magnet sub-domain (Region I)

The Poisson equation in the rotor permanent magnet sub-domain is given by
\[
\frac{\partial^2 A_r}{\partial t^2} + \frac{\partial^2 A_r}{\partial \theta^2} = -\frac{\mu_0}{r} \left(M_\theta - \frac{\partial M_r}{\partial \theta} \right)
\]
for \(t_1 \leq t \leq t_k \), \(0 \leq \theta \leq 2\pi \)
(30)

where \(t_k = \ln \left(\frac{R_i}{R_r} \right) \) and \(t_0 = 0 \). \(M_\theta \) and \(M_r \) are tangential and radial components of magnetization.

Radial Magnetization

The radial and tangential components of radial magnetization for surface mounted design in Fig. 2 (a) can express as
\[
M_m = \frac{B_r}{\mu_0} \sin \left(\frac{n\pi\alpha_r}{2} \right)
\]
(31)
\[
M_m = 0
\]
(32)

where \(\alpha_r \) is magnet pole width to magnet pitch ratio.
The radial and tangential components of radial magnetization for inset design in Fig. 2 (c) can express as
\[
M_m = \frac{4(-1)^k B_r}{\mu_0 n \pi} \sin \left(\frac{n\pi\alpha_r}{2\alpha_r} \right)
\]
(33)
\[
M_m = 0
\]
(34)

Where \(\alpha_r \) is rotor slot width to slot pitch.

Parallel Magnetization

The radial and tangential components of parallel magnetization for surface mounted design in Fig. 2 (b) can express as
\[
M_m = \frac{B_r}{\mu_0} \alpha_r \left[A_{\alpha_r}(\alpha_r) + A_{\alpha_r}(\alpha_r) \right]
\]
(35)
\[
M_m = \frac{B_r}{\mu_0} \alpha_r \left[A_{\alpha_r}(\alpha_r) - A_{\alpha_r}(\alpha_r) \right]
\]
(36)

where
\[
A_{\alpha_r}(\alpha_r) = \sin \left(\frac{np + \alpha_r}{2p} \right)
\]
(37)

\[
A_{\alpha_r}(\alpha_r) = \begin{cases}
\sin \left(\frac{(np + 1)\pi\alpha_r}{2p} \right) & \text{for } np \neq 1 \\
\sin \left(\frac{(np - 1)\pi\alpha_r}{2p} \right) & \text{for } np = 1
\end{cases}
\]
(38)

The radial and tangential components of parallel magnetization for inset design in Fig. 2 (d) can express as
\[
M_m = \frac{(-1)^k B_r}{\mu_0} \alpha_r \left[A_{\alpha_r}(\alpha_r, \alpha_r) - A_{\alpha_r}(\alpha_r, \alpha_r) \right]
\]
(39)
\[
M_m = \frac{(-1)^k B_r}{\mu_0} \alpha_r \left[A_{\alpha_r}(\alpha_r, \alpha_r) - A_{\alpha_r}(\alpha_r, \alpha_r) \right]
\]
(40)

where
\[
A_{\alpha_r}(\alpha_r, \alpha_r) = \begin{cases}
\sin \left(\frac{(np + \alpha_r)\pi\alpha_r}{2p\alpha_r} \right) & \text{for } np \neq \alpha_r \\
\sin \left(\frac{(np - \alpha_r)\pi\alpha_r}{2p\alpha_r} \right) & \text{for } np = \alpha_r
\end{cases}
\]
(42)

A. Surface Mounted Permanent Magnet Machine

For surface mounted design, Neumann boundary conditions at the bottom the permanent magnet are obtained as
\[
\frac{\partial A_r}{\partial \theta} \bigg|_{\theta = 0} = 0
\]
(44)

The general solution of (31) using the separation of variables method is given by
\[A_i(t, \theta) = \sum_{n=1}^{\infty} \left(a_i^n \cosh(n(t-t_i)) \cos(n\theta) + X_n(t) \cos(n\frac{\pi x}{2a_r}) \right) \cos(n\theta) \]
\[+ \sum_{n=1}^{\infty} \left(c_i^n \sin(n(t-t_i)) \sin(n\frac{\pi x}{2a_r}) \right) \sin(n\theta) \]
(45)

\[X_n(t) = \left(1 + \frac{1}{n} e^{\pi(n+1)j} \right) f_n(t) - \frac{\cosh(n(t-t_i))}{\cosh(n(t-t_i))} \left(1 + \frac{1}{n} e^{\pi(n+1)j} \right) f_n(t) \]
(46)

\[f_n(t) = \begin{cases}
\frac{\mu_0 \mu_n M_{cm} + M_{dm}}{1 - np^2} R e^{-\gamma t} & \text{if } np \neq 1 \\
-\mu_0 M_{cm} + M_{dm} & \frac{1}{2} R e^{-\gamma t} \ln(R e^{-\gamma t}) & \text{if } np = 1
\end{cases} \]
(47)

where \(n \) is a positive integer and the coefficients \(a_i^n \) and \(c_i^n \) are determined based on the continuity and interface conditions.

The continuity of the magnetic vector potential between the sub-domain I and the regions II leads to

\[A_i(t, \theta) = A_{ii}(t_i \theta) \]
(48)

Interface condition (36) gives

\[a_i' = \frac{2}{\pi} \int_0^{2\pi} A_i(t_\theta) \cos(n\theta) d\theta \]
(49)

\[c_i' = \frac{2}{\pi} \int_0^{2\pi} A_i(t_\theta) \sin(n\theta) d\theta \]
(50)

\section*{B. Surface Inset Permanent Magnet Machine}

For surface inset design, Neumann boundary conditions at the bottom the permanent magnet are obtained as

\[\frac{\partial A_y}{\partial z} = 0 \]
(51)

\[\frac{\partial A_y}{\partial \theta} \bigg|_{\theta=\theta_i} = R e^{-\gamma t} (-1)^i B_1 \]
\[\frac{\partial A_y}{\partial \theta} \bigg|_{\theta=\theta_i+\pi} = R e^{-\gamma t} (-1)^i B_1 \]
(52)

The general solution of (31) using the separation of variables method is given by

\[A_i(t, \theta) = a_i^0 - R e^{-\gamma t} (-1)^i B_1 \left(\theta - \theta_i - \frac{\pi}{2} \right) \]

\[+ \sum_{n=1}^{\infty} \left(a_i^n \cosh(z(t-t_i)) \cosh(z(t-t_i)) \right) \]

\[+ X_i(t) \cos(\frac{\pi x}{2a_r}) \cos(z(\theta - \theta_i)) \]
(53)

\[X_i(t) = \left(\mu_0 \frac{\mu n M_{cm} + M_{dm}}{1 - np^2} R e^{-\gamma t} \right) \]
(54)

where \(z = \frac{h \pi}{\gamma} \), \(h \) is a positive integer and the coefficients \(a_i^n \) and \(a_i' \) are determined based on the continuity and interface conditions.

The continuity of the magnetic vector potential between the sub-domain I and the regions II leads to

\[A_i(t, \theta) = A_{ii}(t_i \theta) \]
(55)

Interface condition (36) gives

\[a_i' = R_i (-1)^i B_i \left(\theta - \theta_i - \frac{\pi}{2} \right) \frac{1}{2} R e^{-\gamma t} A_{ii}(t_i \theta) d\theta \]
(56)

\[a_i' = \frac{2}{\pi} R e^{-\gamma t} \]
(57)

\section*{4 Performance Calculation and Model Evaluation}

\subsection*{4.1 Performance Computation}

The electromagnetic torque is obtained using the Maxwell stress tensor and expressed as

\[T_e = \frac{L_s}{\mu_0} \int_0^{2\pi} B_i(t, \theta) B_i(t, \theta) d\theta \]
(58)

where \(L_s \) is the axial length of the motor and \(t_i \) is calculated by

\[t_i = \ln \left(\frac{R_1}{R_s} \right) \quad \text{and} \quad R_s = \left(\frac{R_1 + R_2}{2} \right) \]
(59)

For single layer winding, the phase flux vector is calculated by

\[\begin{bmatrix} \psi_a \\ \psi_b \\ \psi_c \end{bmatrix} = \begin{bmatrix} \varphi_1 & \varphi_2 & \varphi_3 & \ldots & \varphi_{\phi_1} \end{bmatrix} \]
(60)

where \(\phi_s \) is the number of conductors in the stator slot, \(C \) is a matrix connection between the stator slots and phase connections, and \(\varphi \) is the slot flux.

For the stator slots, \(\varphi \) is given by

\[\varphi = -\frac{L_s R_2}{k_s S} \int_0^{\phi_s} A_{ii}(t, \theta) e^{-\gamma t} d\theta d\theta \]
(61)
where k_f, is the stator fill factor and S is the area of the stator slot.
For double layer winding, the phase flux vector is calculated by
\[
\begin{bmatrix}
\psi_a \\
\psi_b \\
\psi_c
\end{bmatrix} = \begin{bmatrix}
\psi_{1a} \\
\psi_{1b} \\
\psi_{1c}
\end{bmatrix} + \begin{bmatrix}
\psi_{2a} \\
\psi_{2b} \\
\psi_{2c}
\end{bmatrix}
\] (62)
where
\[
\begin{bmatrix}
\psi_{1a} \\
\psi_{1b} \\
\psi_{1c}
\end{bmatrix} = \frac{N}{2} C_1 \begin{bmatrix}
\varphi_{11} & \varphi_{12} & \varphi_{13} & \cdots & \varphi_{1(n)}
\end{bmatrix}
\] (63)
and
\[
\begin{bmatrix}
\psi_{2a} \\
\psi_{2b} \\
\psi_{2c}
\end{bmatrix} = \frac{N}{2} C_2 \begin{bmatrix}
\varphi_{21} & \varphi_{22} & \varphi_{23} & \cdots & \varphi_{2(n)}
\end{bmatrix}
\] (64)
For the stator slots, φ is given by
\[
\varphi_a = \frac{2L R^2}{k_f S} \int_{\theta_1}^{\theta_2} A_m(t \theta) e^{-j \omega t} dt d\theta
\] (65)
\[
\varphi_b = -\frac{2L R^2}{k_f S} \int_{\theta_1}^{\theta_2} A_m(t \theta) e^{-j \omega t} dt d\theta
\] (66)
The back-EMF of phase A is given by
\[
E_a = \omega \frac{d\varphi_a}{d\theta}
\] (67)
where ω is the rotor angular speed and ψ_a is flux linkage per phase A.
The stator inductance (self-inductance) of phase A is given by
\[
L = \frac{\psi_a}{I_A}
\] (68)
where I_A is the peak current in phase A.
The mutual inductance of phase A and phase B, is given by
\[
M = \frac{N \varphi_{AB}}{I_B}
\] (69)
where N, is the number of phase turns, φ_{AB} is magnetic flux in phase A and I_B is the peak current in phase B.

4.2 Model Evaluation

In this section, the presented analytical model is used to study the magnetic flux density, electromagnetic torque, back- electromotive force, self-inductance and mutual inductance of four prototype motors. The results of analytical method are then verified by the results of finite element method. A 2D model of the studied brushless permanent magnet motor is shown in Fig. 1 and the motor parameters are given in Table 1. The matrix connection between the stator slots and phase connections of each layer for the investigated motors are given by

\[
C_1 = \begin{bmatrix}
0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1
\end{bmatrix}
\]
\[
C_2 = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Table 1 Parameters of the investigated motors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>R_1</td>
</tr>
<tr>
<td>R_2</td>
</tr>
<tr>
<td>R_3</td>
</tr>
<tr>
<td>R_4</td>
</tr>
<tr>
<td>R_5</td>
</tr>
<tr>
<td>R_6</td>
</tr>
<tr>
<td>R_7</td>
</tr>
<tr>
<td>θ_1</td>
</tr>
<tr>
<td>θ_2</td>
</tr>
<tr>
<td>θ_3</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>Q_1</td>
</tr>
<tr>
<td>B_r</td>
</tr>
<tr>
<td>L_a</td>
</tr>
</tbody>
</table>
2D finite element method is applied on performance calculation of the investigated motors. Magnetic field distribution in the motor is represented in Fig. 5. An open circuit comparison of analytical and numerical results of radial flux density and cogging torque of the investigated motors are shown in Fig. 6 and Fig. 7, respectively. An on load analytical and numerical comparison of, radial flux density, electromagnetic torque, back-electromagnetic force, self-inductance and mutual inductance in the investigated motor are shown in Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12, respectively. The investigated on load condition are given in Table 2.

The open circuit and on load radial components of the flux density distribution in the middle of the air gap (at $r=12.9$ mm) are shown in Fig. 6 and Fig. 8, respectively. The effect of the surface mounted and surface inset topology on the radial component waveform of the flux density is clear. The effect of slot opening on the flux density waveform in these two topologies is very clear. However, in case of surface inset machine, the flux density waveforms distortions at the locations of the rotor slots diminished. The analytical results are in an excellent agreement with the results of finite element method. It can be seen that the presented 2D analytical model can compute the cogging torque with an excellent precision for surface mounted and surface inset machine.

Fig. 9 shows the electromagnetic torque waveforms in terms of rotor position for different magnetization orientation in the surface mounted and surface inset topologies. At each rotor position, the current values in the different slots updated to have a sinusoidal current waveform. It is obvious that the radial surface mounted machine and the parallel surface mounted machine produce an average torque of about 1.156 Nm and 1.137 Nm, respectively. In case of surface inset machines, an average electromagnetic torque of about 0.564 Nm and 0.617 Nm can be seen for radial and parallel design, respectively. The average torque decreases slightly at the locations of the stator slot-openings. We can also see the effect of magnetization orientation on the torque ripple. In case of these two topology, the effect of cogging torque, slot opening and magnetization orientation and PM arrangement on torque ripples is evident. Once again, it can be seen that the analytical results are in close agreement with the numerical results.

Fig. 5 Magnetic flux distribution in the investigated motors a) radial magnetized surface mounted motor, b) parallel magnetized surface mounted motor, c) radial magnetized surface inset motor and d) parallel magnetized surface inset motor.
rotor angular position for a rotating speed 1000 rpm are compared in Fig. 10. In case of surface mounted machines, the harmonic distortion of the back-EMF waveforms are less than that of surface inset machines.

![Fig. 6](image.png)

Fig. 6 Open circuit analytical and numerical comparison of radial flux density for the investigated motors a) surface mounted motors and b) surface inset motors.

![Fig. 7](image.png)

Fig. 7 Open circuit analytical and numerical comparison of cogging torque for the investigated motors a) surface mounted motors and b) surface inset motors.

![Fig. 8](image.png)

Fig. 8 On load analytical and numerical comparison of radial flux density for the investigated motors a) surface mounted motors and b) surface inset motors.

<table>
<thead>
<tr>
<th>Rated Power (W)</th>
<th>Rated Speed (RPM)</th>
<th>Line to Line Voltage (V)</th>
<th>Frequency (Hz)</th>
<th>Ambient temperature (°C)</th>
<th>Temperature rise (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1000</td>
<td>120</td>
<td>50</td>
<td>22</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 2 the investigated on load conditions.
Fig. 9 On load analytical and numerical comparison of electromagnetic torque for the investigated motors a) surface mounted motors and b) surface inset motors.

Fig. 10 On load analytical and numerical comparison of Back-EMF for the investigated motors a) surface mounted motors and b) surface inset motors.

Fig. 11 On load analytical and numerical comparison of self-inductance for the investigated motors a) surface mounted motors and b) surface inset motors.

Fig. 12 On load analytical and numerical comparison of mutual inductance for the investigated motors a) surface mounted motors and b) surface inset motors.
5 Conclusion

A general analytical model for performance prediction in brushless surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been developed in this paper. Fourier analysis method based on sub-domain method and hyperbolic functions is applied to derive analytical expressions for calculation of magnetic vector potential, magnetic flux density, electromagnetic torque, back-electromotive force and self/mutual inductance in these machines. This model is applied for performance computation of four prototype motors and the results of proposed model are verified thanks to FEM results.

Acknowledgment

This research is carried out based on a research project which has been financially supported by the office of vice chancellor for research of Arak University with contact number of 93/8469.

References

A. Jabbari is an assistant professor in Mechanical Engineering Department at Arak University, Arak, Iran. He obtained a BSc degree in Mechanical Engineering from Iran University of Science and Technology in 2002. He received his MSc and PhD degrees both in Mechanical engineering from Mazandran University in 2004 and 2009, respectively. His research interests include renewable energy, electric machines, mechatronic systems and metal forming.