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Abstract: In this study a method has been introduced to map the features extracted from 

the recorded electromyogram signals from the forearm and the force generated by the 

fingers. In order to simultaneously record of sEMG signals and the force produced by 

fingers, 9 requested movements of fingers conducted by 10 healthy people. Estimation was 

done for 6 degrees of freedom (DoF) and generalized regression neural network (GRNN) 

was selected for system training. The optimal parameters, including the length of the time 

windows, the parameters of the neural network, and the characteristics of the sEMG signal 

were calculated to improve the performance of the estimate. The performance was obtained 

based on R2 criterion. The Total value of R2 for 6 DoF was 92.8±5.2% that obtained by 

greedy looking system parameters in all the subjects. The result shows that proposed 

method can be significant in simultaneous myoelectric control. 

 

 

Keywords: Surface Electromyogram Signals (sEMG), Generalized Neural Network 

(GRNN), R2 Criterion. 

 

 

1 Introduction1 

NE way to control an artificial prosthesis is using 

the surface electromyography signals in the 

remaining muscles of the amputee’s hand. Indeed useful 

information about the subject's intended movements and 

informative features from the electromyogram signal is 

given to the system as an input data and the desired 

output is taken from the system [1]. Information on the 

motor system at the level of the spinal cord or the higher 

nerves can be extracted by appropriate methods of 

signal processing [1, 2]. There are many methods in 

machine learning that use them to make the connection 

between their movements and neural activity [3-6]. 

Recent techniques can classify multiple functions, with 

an accuracy higher than 95% [7]. However, the use of 

myoelectric prostheses based on pattern recognition is 

still not customary. Synchronism and proportional 

control for multi-functional prostheses with different 
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degrees of freedom is one of the newest issues in 

myoelectric control. 

   To solve this problem, Jiang and colleagues [3] 

recently have offered a method to estimate the relative 

time and muscle power in different degrees of freedom 

using the convenient features of electromyogram signal. 

The most important result of this study was that the 

clinical operation of the method is limited because it 

requires the simultaneous recording of force and signal 

for training the network. Overall previous studies in the 

field of myoelectric control, have used the one-way 

hand contraction method in different ways [8-10]. None 

of them has cited the simultaneous and relative 

estimates of force to control the degree of freedom. For 

example, Sebelius and colleagues [8] have used neural 

network training using electromyogram signals recorded 

from the residual amputee’s muscles to estimate the 

angle between the joints and ankles. However, this 

method unlike our study, does not provide the 

proportional and simultaneous control with several 

degrees of freedom for hand prosthesis. The most 

relevant study was done by Atzori and colleagues [11]. 

Although the purpose of aforementioned study was to 

estimate the force generated by hand fingers using 

nonlinear regression, but there were not simultaneous 

control of different degrees of freedom and another 

disadvantage of reported method was that performance 
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report has been done only for individual movement 

patterns. The aim of this study is simultaneous estimate 

of multiple different pattern of creating force in the 

tandem and with different degrees of freedom. 

 

2 Materials and Methods 

2.1 Experimental Protocols 

   The dataset that used in this study is the second 

version of Ninapro project [11]. The goal of this project 

is to develop scientific methods able to increase the skill 

level in EMG controlled prostheses. In the process of 

data recording, people performed a lot of hand motions 

and in each trial, each motion was repeated six times. At 

the same time, myoelectric signals were recorded and 

for each patient 12 record electrodes were placed on the 

skin. Eight uniformly spaced electrodes are placed just 

beneath the elbow at a fixed distance from the radio-

humeral joint to record the high rate of the near muscles 

of the forearm activity. Electrodes 9 and 10, 

respectively, were placed at the main point of the 

bending muscles, flexor and extensor muscles. 

Electrodes 11 and 12 respectively, were placed over the 

biceps and triceps brachii muscles. These muscles were 

selected according to their importance in the hand and 

forearm control and the availability of them in most 

amputation cases. 

   During the acquisitions, persons were seated at a desk 

and their hands were comfortably on the desktop. A 

laptop in front of the persons was playing movements 

and was provided visual stimuli while at the same time 

recorders were recording data (Fig. 1). A total of 40 

intact subjects participated in the data acquisition, 

consisting of 28 males and 12 females, 34 right-handed 

and 6 left-handed. The finger force patterns registered 

during the experiment can be observed in Table1. 

 

2.2 Pre-Processing 

   First, Surface electromyographic signals were filtered 

by 8th order Butterworth band pass filter with a high 

cutoff frequency of 400 Hz and a low cutoff frequency 

of 10 Hz. Then all channels were standardized to have a 

zero mean and unit standard deviation. After 

standardization of the data, the data were classified into 

two groups: training and testing. For each person, test 

data, were the chain tandem of repetitions of each 

movement, whereas the other iterations were used for 

training. Also, data relating to force were synchronized 

with EMG signals and then were filtered with a low-

pass filter at cutoff frequency of 4 Hz. 

 

2.3 Data Processing and Feature Extraction  

   Due to the good classification performance of hand 

movements using EMG signals and time features 

extracted from them, these features have found wide 

application in the force modeling and regression and 

kinematic information. This study has used the varied 

features for estimate. The time features include the 

mean absolute value (an estimate of the mean absolute 

value of the signal), zero crossing (the rate at which the 

signal changes from positive to negative or 

back) [13, 14], slope sign change (the number of times 

the slope of the waveform changes sign) and wave 

length (the cumulative length of the waveform over the 

time segment). In addition to time domain features, 

transform domain features also are used individually. 

The features used in this field are included the discrete 

wavelet transform (DWT) using the seventh order of 

daubechies wavelet at different levels of analysis, and 

autoregressive coefficients (AR). All feature extraction 

methods were applied to signal in the specified time 

windows. Because of the high dependence that some of 

the features have with each other, and have no 

significant improvement in system performance, all 

possible combinations of features are not used. 

 

2.4 The Model Structure  

   Artificial neural networks are the valuable and popular 

tools for modeling the nonlinear systems that have the 

capability of dealing with complex problems of 

structural instability and estimate each arbitrary 

function. In this study a generalized artificial neural 

network has been used to find the relationship between 

myoelectric signals and the force produced by fingers. 

generalized artificial neural networks (GRNN) are a 

modified version of the radial basis neural network. Due 

to the features such as a sharp decrease in the time of 

calculation and in some cases, more accuracy than 

neural networks, some studies have used these types of 

networks [16, 17]. These networks such as back 

propagation networks do not require to repetitive 

learning process and define an arbitrary function 

between input and output then models the new inputs 

into the corresponding outputs. These types of networks 

that obey learning methods based on kernel, are include 

four layers: The input layer, the template layer, the 

picker layer and the output layer. In the learning stage, 

linear functions and arbitrary radial basis functions are 

used as template layer and output layer functions. 

   Each unit of the template layer is connected to S and 

D neurons in the output layer. S neuron calculates the 

total output weighting of pattern layer, whereas D 

neuron calculates the output without weighting of 

pattern layer. Finally, the output layer divides the output 

of S summation neurons on the output of D summation 

neurons. The predicted values of the model using X 

input vector are in the form of (1) and (2) [17]. 
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Table 1 The force patterns that created by fingers. 

Number of the force Description of the movement 

1 Small finger flexion 

2 Bent ring finger 

3 Bending the middle finger 

4 Bend the index finger 

5 Getting away thumb 

6 Bending the thumb 

7 Bend the index finger and little finger 

8 Bending ring finger and middle finger 

9 Bend the index finger and thumb 
 

Fig. 1 Structure of system impedance monitoring method [15]. 

 

In the formulas yi is the weight between the ith neuron 

and S summation neurons in pattern layer, n is the total 

number of training data, D is Gaussian function, m is 

the number of features or input vectors, xk and xik are 

respectively the kth views of train and test inputs, and σ 

is splashed parameter that is obtained by a greedy 

search. 

 

2.5 The Model Performance Metrics and Statistical 

Analysis 

   To report estimation performance of neural network, 

the R2 criterion was used. This criteria introduced by 

d'Avella [18] for the first time and is defined as (3) [19]: 
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where N is the number of points, fi(t) is the ith force in 

degrees of freedom,  if t is the estimated ith force in 

degrees of freedom by GRNN,  if t is the time average 

of fi(t), and D is the number of degrees of freedom. 

Another criterion of system performance is RMSE that 

despite its low performance, has been reported by 

various groups. But R2 criteria in different studies have 

been proposed to be a good gauge for the estimation of 

performance, because it represents the estimated output 

changes as a percentage of the original output. In order 

to find the best distribution parameter, network was 

trained 10 times for each mode of combining training 

and test data. And then the optimal dispersion parameter 

is selected to testing stage based on largest R2 in train 

stage. This process has done for each person and for the 

6 combinations of test and train data. Finally overall 

performance was reported as mean and standard 

deviation of obtained R2 values for each person. In order 

to introduce the best features and the best window 

length, the ANOVA (analysis of variance) test, and 

followed by that, the posthoc Tukey-Kramer test, was 

used to evaluate the effects of various parameters on the 

system performance. 

 

3 Result 

   In order to view the system performance by the 

proposed method, an example of force estimation for 

three recording channels of the subject is shown in 

Fig.2. This figure shows the EMG signals of 9 

consecutive movement patterns (one repeat each move) 

for 8 different channels. Also, the force generated in the 

3 output channels and its comparison with the estimated 

force by the algorithm is shown. 

 

3.1 Features Selection 

   System performance in fingers force estimation has 

been calculated using a combination of different 

features (Fig. 3). Time features (TD), the coefficient of 

discrete wavelet transform (DWT) and combines 

features of time domain and discrete wavelet transform 

(TD-DWT) were calculated using MATLAB software. 

The results show that these features have similar and 

good performances. Also, they have shown remarkable 

improvement in compared with the AR, ZC, and SSC 

properties. By applying single-variable ANOVA test on 

different groups with different lengths and overlaps, the 

effect of window length change (F = 3.31, P < 0.05) was 

significant. Also, the results of posthoc test show that 

the difference between TD and TD-DWT and DWT is 

not statistically significant; however, the highest values 

of the performance is reached by TD-DWT feature that 

is reported as 92.8± 2.5%. Also TD-DWT feature with 

mean RMSE of 0.0573±0.0131is the best feature. 

 

3.2 Window Length  

   The effect of time window on force estimation  
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(a) (b) 

Fig. 2 An example of model performance in force estimation. 

a) A sample of the signals recorded from 8 channels on the 

forearm and b): The graph in red color shows the real force 

recorded from the fingers and the graph with black color show 

the force estimated by the model for 3 degrees of freedom. 

Fig. 3 R2 value (Mean ± SD) has been reported for 10 subjects 

on the test data. TD-DWT feature has the best performance 

(92.8±2.5%). Three symbols (o, +, ×) represent the features that 

despite of the difference in performance, are in the same group in 

the posthoc test. 

 

  
Fig. 4 R2 value (Mean ± SD) has been reported for 10 subjects 

on test data, The performance of a window with a length of 300 

and an overlap of 75 ms is (92.8% ± 2.5). 

Fig. 5 Force estimation Performance has been reported for all 

subjects with different combinations of training and testing data. 

Person 8 and 7, respectively, with R2 value (mean ± SD) equal to 

95.87±0.56 % and 88.25±2.23% have the highest and lowest 

performance. 

 

performance in system were investigated by keeping all 

other parameters fixed (Fig.4). The effects of window 

length (F = 3/31, P < 0/05) have been reported 

significant by applying single variable ANOVA test on 

different groups with different lengths and different 

overlaps. Also, by applying a posthoc test, the window 

with a length of 150 and an overlap of 75 ms has the 

highest value of R2. Although changing this time 

window with some other selection modes is not 

statistically significant, but due to the ease of computing 

among the group, window with a length of 150 ms is 

selected. 

   Using the optimal parameters previously defined, the 

performance of the system in force estimates calculated 

for 10 subjects and mean ± standard deviation for 

different subjects is shown in Figs. 5 and 6. Average R2 

value has been reported for all subjects (92.8±2.5%). 

Also the overall RMSE for 10 subject is 0.0570±0.012. 

 

4 Discussion 

   The method used in this paper has the same 

performance as those reported in studies [20, 22, 23] 

with the difference that the force estimation 

performance has been reported for 1 DoF, whereas in 

this paper performance has been calculated for the 

simultaneous estimation of 6 DoFs. Generally, the most 

relevant work carried out by this study can be found in 

the Atzori’s work [22]. In the aforementioned study, 

estimation performance is calculated using nonlinear 

regression techniques for each movement separately. 

But in this study, the model is calculated for the chain of 

successive movements. However, we found similar 

results in both of the studies that reflects the strength of  
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Fig. 6 Force estimation performance has been reported for all 

subjects with different combinations of training and testing 

data. Person 8 and 7, respectively, with RMSE value 

(mean ± SD) equal to 0.0348±0.0045% and 0.0776± 0.0163% 

have the lowest and highest performance. 

 

the presented method in this article. On the other hand, 

Atzori’s work [22] does not consider simultaneous 

control of 6 DoFs, whereas in this method different 

degrees of freedom are estimated simultaneously. A 

similar study is done by Nielsen and colleagues [23] for 

simultaneous estimate forces in several degrees of 

freedom for mirror movements of both hands. 

 

5 Conclusion 

   In this study we calculated estimation for 6 degrees of 

freedom (DoF) and used the generalized regression 

neural network (GRNN) for system training. Several 

parameters, including the length of the time windows, 

the parameters of the neural network, and the 

characteristics of the sEMG signal were important and 

effective. Hence by applying an ANOVA test and 

posthoc test on different groups, the highest value of R2 

was related to a window with length of 150 ms and 

overlap of 75 ms. It is significant that the maximum 

value of force estimation performance that reported in 

previous studies was 90±0.02 whereas system 

performance in our study is 92.8±0.2 %. 
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