Abstract: The purpose of this paper is to design a supplementary controller for traditional PID controller in order to damp the frequency oscillations in a micro-grid. Q-learning, which is used for supervise a classical PID controller in this paper, is a model free and a simple solution method of reinforcement learning (RL). RL is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). The proposed control mechanism is consisting of two main parts. The first part is a classical PID controller which is fixed tuned using Salp swarm algorithm. The second part is a Q-learning based control strategy which is consistent and updates its characteristics according to the changes in the system continuously. Eventually, a hybrid micro-grid is considered to evaluate the performance of the suggested control method compared to classical PID and fractional order fuzzy PID (FOFPID) controllers. The considered hybrid system is consisting of renewable energy resources such as solar-thermal power station (STPS) and wind turbine generation (WTG), along with several energy storage devices such as batteries, flywheel and ultra-capacitor with physical constraints and time delays. Simulations are carried out in various realistic scenarios considering system parameter variations along with changing in operating conditions. Results indicate that the proposed control strategy has an excellent dynamic response compared to the traditional PID and FOFPID controllers for damping the frequency oscillations in different operating conditions.

Keywords: Mini/Micro-Grid, Q-Learning, Adaptive Controller, Frequency Oscillation Enhancement.

1 Introduction

NOWADAYS the demand for electric energy is increasing continuously. However, due to environmental considerations and internationally restrictive laws, the electrical power generation expansion planning has become a more complex problem [1]. On the other hand, the deteriorated infrastructure of traditional transmission and distribution systems do not have the potential for transmitting an unrestricted amount of power across the brittle network [2]. Consequently, renewable energy resources such as wind turbine and the solar power are more considered, and in the near future will provide a large percentage of the power needed by human societies. As well as, these resources are consistent with the environment and can be located near the load, which means that there is no need to transmit power across the network [3, 4]. As a result, the past traditional power systems become a set of mini/micro-grids that can feed all the system loads together or independent. However, the stochastic variable output of the wind turbine and solar power, make the safe and reliable operation of this mini/micro-grids a challenge, especially when they are operating in an island mode (off-grid) [5]. This challenge which depends on the weather conditions at any time may disturb the balance of generation and demand power of the system. In the meantime, energy storage devices such as batteries, flywheel and super-capacitor, with a proper and timely charging and discharging, can improve these imbalances [6, 7].
Generally speaking, hybrid mini/micro-grids include energy generation sources such as wind turbines, solar power and diesel generators, along with energy storage devices like batteries, flywheel and ultra-capacitor, which can supply their demands in on-grid and off-grid modes [3, 8]. When generation is more than the demand, storage devices store the extra energy and vice versa, when demand exceeds generation, they provide the deficit of the power. Thereupon, the hybrid mini/micro-grid power balance, which guarantees the stability of frequency, is achieved when there is a robust and adaptive control mechanism that can coordinate storage equipment and energy resources [1].

Up to the present time, numerous studies have been done on the controller design to enhance the frequency fluctuations of hybrid mini/micro-grids. The traditional proportional-integral (PI) controller was widely been under consideration of many researchers to control the frequency of hybrid micro-grids [9-11]. In Refs. [9, 10], particle swarm optimization (PSO) algorithm is used to the optimal design of PI controller for the frequency of a hybrid micro-grid include energy storage systems. Authors in Ref. [10] represent the application of dispersed generation (DG) resources to achieve the power balance conditions. The results of numerous investigations on the frequency control of microgrids over the past three decades have been reviewed in [12]. This literature includes sixteen optimization methods and programming tools such as HOMER (hybrid optimization model for electric renewables), HOGA (hybrid optimization using genetic algorithm), etc. Additionally, design, optimization and evaluation of photovoltaic, solar-wind, combined systems have been evaluated in a comprehensive review. Given that, the increase in the number of renewable energy resources and their uncertainties in mini/micro-grids is unavoidable, the use of traditional control methods does not have the ability to damp the frequency oscillations [13]. Therefore, the need for adaptive, robust and efficient control mechanisms are more feeling day by day [1], [14-16]. Here in [1, 14, 15] new frequency control methods based on the optimization algorithms and fuzzy logic for a micro-grid integrated with renewable and storage systems along with electric vehicles, are considered. Khalghani et al. in [16] have represented a controller to control the frequency of a micro-grid based on the emotional learning procedure of the human brain. According to the results, it’s evident that although these controllers have a better dynamic response than traditional controllers, they also have a relatively complex structure. Therefore, their design is difficult and it is impossible to obtain their optimal structure for more complex systems. Consequently, a training-based intelligent control strategy is required to control the frequency of the hybrid mini/micro-grid, so that it can adapt itself to the system’s variable conditions and always perform the optimal control policy [17, 18].

Reinforcement learning (RL) is a computational method that can be used to obtain such a goal-oriented and adaptive control mechanism [18]. In recent years, RL has obtained a special position in controlling power systems and has been successfully applied to small signal stability [18-20], voltage stability [21], transient stability and power market issues [22]. Authors in [23] represent an RL-fuzzy-PID frequency controller for a micro-grid. The structure of the suggested controller is relatively complex and its impact on the dynamic performance of the original fuzzy-PID controller is low. Must be noticed, an important point in using RL is the time it takes to learn the optimal control policy [24]. In Ref. [23], there are twenty-seven actions for each state of the system, which means it needs a much more time to learn the optimal control policy in the nonlinear complex power systems. Maybe, that’s why the proposed strategy does not have much effect on the performance of the fuzzy-PID controller, according to the simulations results.

In this paper, an innovative control structure based on the RL integrated with a classical PID controller is proposed to enhance the frequency fluctuations of a mini/micro-grid with a high penetration of renewable energy resources. The suggested controller consists of two distinct parts. The first part is a traditional PID controller whose parameters are optimized using the new optimizer called Salp swarm algorithm (SSA) [25]. This section of the controller is fixed and will be tuned once. The second part is a consistent control mechanism that is robust against changes in the parameters and system operating points, based on the learning of intelligent agents in the context of multi-agent systems. The suggested strategy learns the optimal control policy (which is the recognition of the correct state of the system and applying the best control signal) with a trial and error method. Eventually, in addition to applying the optimal control signal to the system under different conditions, it also updates its knowledge about the system. Another key point of the proposed controller is that operates independently from the system dynamics and the type and location of the disturbance. In other words, when a disruptive event occurs, the frequency of the micro-grid begins to oscillate. The intelligent agent understands the frequency oscillation after a while (based on the sampling time in simulation) and damps the deviations immediately. In order to clarify the effectiveness of the proposed control mechanism, first, a micro-grid including renewable energy resources such as wind turbines and solar-thermal system along with diesel generator, integrated with energy storages, like batteries, flywheel and ultra-capacitor, are simulated in MATLAB environment considering system uncertainties and nonlinearities. After that, in different realistic scenarios, the dynamic response of the proposed controller is compared to traditional PID and FOFPID controllers, which are optimized using SSA. In the final analysis, the superb performance of the proposed control strategy in damping frequency
oscillations is clearly verifiable compared to PID and FOFPID control methods.

2 Hybrid Microgrid Integrated with Renewable and Energy Storage Systems

In this section, the transfer function model of the different parts of the proposed hybrid micro-grid is derived [1].

2.1 Solar Thermal Power Station

The STPS is modelled with a second-order transfer function.

\[
\Delta P_{\text{STPS}} = \frac{K_s K_T}{(1 + s T_s)(1 + s T_T)} \quad (1)
\]

where \(T_T\) and \(T_s\) are time constants, \(K_T\) and \(K_s\) are DC gains.

2.2 Wind Turbine Generator

Equation (2) shows the transfer function of the WTG.

\[
\Delta P_{\text{WTG}} = \frac{K_{\text{WTG}}}{(1 + s T_{\text{WTG}})} \quad (2)
\]

where \(T_{\text{WTG}}\) is time constant, \(K_{\text{WTG}}\) is gain of WTG and \(P_{\text{Wind}}\) is the power of wind.

2.3 Aqua-Electrolyzer

Aqua-electrolyzer is used to provide the requested hydrogen for fuel-cell based on a portion \((1-K_a)\) of renewable power. As a result, fuel-cell can improve the uncertainties of renewable power.

\[
\frac{\Delta P_{\text{AE}}}{\Delta P_{\text{WTG}} + \Delta P_{\text{STPS}}} = \frac{K_{\text{AE}}}{(1 + s T_{\text{AE}})} (1 - K_a) \quad (3)
\]

In Eq. (3), \(T_{\text{AE}}\) is time constants and \(K_{\text{AE}}\) is DC gain of aqua-electrolyzer.

2.4 Fuel Cell

Fuel cell can be described using a first order transfer function, which is shown by Eq. (4).

\[
\frac{\Delta P_{\text{FC}}}{\Delta P_{\text{AE}}} = \frac{K_{\text{FC}}}{(1 + s T_{\text{FC}})} \quad (4)
\]

where \(T_{\text{FC}}\) and \(K_{\text{FC}}\) are time constant and DC gain of FC, respectively.

2.5 DEG

DEG has a first-order transfer function with a DC gain and a time constant along with generation rate constraint (GRC) integrated with governor dead band (GDB).

\[
\frac{\Delta P_{\text{DEG}}}{\Delta f} = -\frac{0.2}{\pi} \frac{s + 0.8}{(1 + s T_g)} \frac{K_{\text{DEG}}}{(1 + s T_{\text{DEG}})} \quad (5)
\]

where \(T_g\) is governor time constant.

2.6 UC, BESS, and FESS

Ultra-capacitor (UC), batteries energy storage system (BESS), and flywheel energy storage system (FESS) have a similar first-order transfer function with a DC gain and a time constant along with generation rate constraint (GRC). Consequently, the mathematical model of this parts can be expressed by Eqs. (6)-(8).

\[
\begin{align*}
\frac{\Delta P_{\text{UC}}}{\Delta f} &= \frac{K_{\text{UC}}}{(1 + s T_{\text{UC}})} \quad (6) \\
\frac{\Delta P_{\text{BESS}}}{\Delta f} &= -\frac{K_{\text{BESS}}}{(1 + s T_{\text{BESS}})} \quad (7) \\
\frac{\Delta P_{\text{FESS}}}{\Delta f} &= -\frac{K_{\text{FESS}}}{(1 + s T_{\text{FESS}})} \quad (8)
\end{align*}
\]

As an illustration, the block diagram of the considered hybrid micro grid along with renewable and storage energy devices and system physical nonlinearities is shown in Fig. 1.

3 The Proposed RL-PID Controller

3.1 Reinforcement Learning

Reinforcement learning is an algorithmic method based on trial and error, in which one or more agents learn an optimal control policy by interact with their environment (system under control) [26]. In other words, the environment is divided into several discrete states, in each state, there are a definite number of actions to be implemented. The intelligent agent learns to determine the optimal action that has to be applied to the system in each state [18]. In general, there are several methods for solving RL problems like adaptive heuristic critic (AHC), Q-learning, average reward (AR), and etc. [27]. In this paper, Q-learning is used to solve the proposed RL based frequency controller.

3.2 Q-Learning

The main advantages of Q-learning based controllers are a simple structure, independent of the model of the system under control, robustness against changes in the operating point and system uncertainties and adaptive behaviour [18, 28]. Q-learning based reinforcement learning assumes the environment (system under control) is divided into a finite number of states is shown with set \(S\). Agent forms a matrix called \(Q\), which has a value (initially ‘0’) for each set of action-state pairs and indicates the goodness of particular action in the corresponding state. In each time step, agent
calculates its state s_t, and based on a defined strategy selects action a among available actions of state s_t. Immediately after applying the action, the agent takes a reward r from the environment and calculates its next state s_{t+1}. Then it updates the corresponding element of the Q matrix. The goal of the agent in Q-learning method is to learn a strategy which maps the states to actions to maximize discounted long-term reward [29]. The discounted long-term reward of the system is given by Eq. (9).

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$ (9)

where r is the reward, γ is a number at the range 0 to 1 and is called discount factor. Q matrix is defined as:

$$Q^*(s, a) = E_x \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$$ (10)

where π, s, a, and r are the control policy, current state, selected action, and the received reward, respectively. In each time step, Eq. (10) should be updated using optimal Bellman equation, which is given by Eq. (11).

$$\Delta Q = \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$ (11)

where $\alpha \in (0, 1)$ and is called attenuation factor. The flowchart of the proposed Q-learning method is summarized in Fig. 2. It is evident from Fig. 2 that after completing the learning phase (offline simulation), the system will be switched to online simulation.

3.3 RL-PID

Fig. 3 shows the block diagram of the RL-PID controller. As can be seen, the RL-PID controller consists of two parts. The first part is a traditional PID controller that its coefficients are optimized using SSA [25] in this paper. It must be noticed that this section is fixed and is adjusted only once. The second part, which is a compatible controller, has two stages. In the preprocessing section, the system state after the previous action is determined by using the received signal discretization. In the other part, the RL control mechanism, in a supervisory manner, corrects the output of the PID controller utilizing information obtained in preprocessing stage. This part is variable and updated at any time step. As its name implies, reinforcement learning, this controller after applying an action to the system, receives the impact of it in a reward/penalty form and gives it a score in the corresponding state. Certainly, in each state of the system, an action with a higher score, is best suited to be implemented to the system.

4 A Short Overview of SSA

Salp is a tubular and floating sea creature that moves by pumping the water through its gelatinous body [25]. Similar to the other particle-based optimization methods, the position of the particles defined in an n-dimensional space, where n is the number of optimization variables. The target which the Salp particles have to move towards it (the optimal problem) is a hypothetical source of food that is indicated by F. The particles leader updates its position using Eq. (12).
Q-learning Based Supervisory PID Controller for Damping … A. Younesi and H. Shayeghi

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 1, March 2019

130

Define set of states \(\{S\} \), actions \(\{A\} \), and reward

Set values of \(\alpha, \gamma, \) and \(\epsilon \)

Set all \(Q(s,a) = 0 \)

Episode criteria reached?

Yes

Switch to online simulation

No

Calculate current state

Is the goal been achieved?

Yes

Update the episoid criteria

No

Select an action using \(\epsilon \)-greedy method

(0.01 < \(\epsilon \) < 0.03)

Apply the selected action to the environment, then get the reward and calculate the next state

Update the \(Q \) matrix for the current state using: \(Q = Q + \Delta Q \) (12)

Put the next state at the current state

*\(\epsilon \)-greedy method is expressed in [24].

Fig. 2 Steps of the Q-learning solution method for RL.

Salp swarm algorithm

Preprocessing

RL

Fig. 3 Descriptive model of the proposed adaptive RL-PID controller.

\[
X^j = \begin{cases}
F_j + c_1((ub_j - lb_j)c_2 + lb_j) & c_3 \geq 0 \\
F_j - c_1((ub_j - lb_j)c_2 + lb_j) & c_3 < 0
\end{cases}
\] (12)

where \(X^j \) refers to the position of the leader, \(F_j \) is the position of the food, \(ub_j \) and \(lb_j \) are upper and lower band of particle positions in \(j^{th} \) dimension, respectively. Parameters \(c_1 - c_3 \) are random numbers. Generally speaking, in optimization techniques, the optimization process can be divided into two phases: exploration and exploitation. In the first phase, the algorithm combines random answers using random methods to find the best range of the existing answers. But in the second phase, the progressive changes in random responses are carried out with a lower percentage of randomness compared to the first phase [30].

The parameter \(c_1 \) is very important because it balances the exploration and exploitation phases, and calculated
by Eq. (13).
\[c_1 = 2e^{-c_1 L^i} \]
(13)

where \(i \) is the current iteration and \(L \) is the maximum number of iterations. The parameters \(c_2 \) and \(c_3 \) are random numbers generated using normal distribution in the range 0 to 1. Using Newton’s displacement law, the position of the follower Salps is expressed by Eq. (14).
\[X_i^j = \frac{1}{2}(X_i^j + X_i^{j-1}) \]
(15)

where \(i \geq 2 \), \(X_i^j \) is the position of particle \(i \) in dimension \(j \), \(t \) is time, \(v_0 \) is the initial speed, \(a = v_{\text{final}} / v_0 \) and \(v = (x - x_0) / t \). Since the concept of time is expressed in terms of iteration in the optimization process, and the interval of iterations is equal to 1. Also, taking into account the initial velocity of 0 for all particles, Eq. (14) can be simplified in the form Eq. (15).

More details about the SSA can be found in Ref. [25]. Fig. 4 shows the simplified SSA flowchart of SSA.

5 Optimization Results

In order to obtain the best dynamic performance of the PID and FOFPID controllers, their control coefficients optimized using the SSA. For the purpose of optimizing these controllers, an objective function defined based on the integral of time multiplied by absolute error (ITAE) criterion. In accordance with Eq. (16), in the simulation time interval and under micro-grid disturbances along the uncertain output of renewable resources, the area under the frequency deviation curve is considered as the controllers’ optimal criterion.

\[J = \int_0^{120} t \cdot |\Delta f| \, dt \]
(16)

The optimization of the classical PID controller which has three control parameters, namely \(K_p \), \(K_i \), and \(K_d \) can be formulated as the constrained optimization problem of Eq. (17).

\[\begin{align*}
\text{minimize} & \quad J \\
\text{subject to:} & \quad 0 < K_p, K_i, K_d < 5
\end{align*} \]
(17)

Likewise, the FOFPID controller has six control parameters which \(K_p, K_{pd}, K_{d}, K_{pd} \) are the gain coefficients, and \(\mu \) and \(\lambda \) are the fraction degrees of derivative and integrator components, respectively. Other details about the FOFPID controller, including the structure, the input and output membership functions, and the fuzzy rules are mentioned in [1]. In this paper, the excessive explanations have been ignored to avoid increasing the volume of the paper. Given this point, the problem of optimizing the FOFPID controller for controlling the frequency of the micro-grid is formulated by Eq. (18).

\[\begin{align*}
\text{minimize} & \quad J \\
\text{subject to:} & \quad -5 < K_p, K_{pd}, K_{p}, K_{pd} < 5 \\
& \quad 0.5 < \mu, \lambda < 1
\end{align*} \]
(18)

The optimization problems of Eqs. (17) and (18) are
solved separately by SSA with 50 initial populations and 50 iterations. The optimization results and the convergence process of the objective function are shown in Table 1 and Fig. 5, respectively.

5.1 Ingredients of the RL Controller, State, Action and Reward/Penalty Function

Important to realize, the proposed RL controller is portable and can be added as a supervisory controller to any other kinds of controllers to improve their dynamic performance. In this paper, the PID controller is chosen, because along with its acceptable performance, has a simple structure and is widely used in the industry. Formerly, it was stated that the Q-learning method is used to solve the reinforcement learning in this paper. Another key point is that the Q-learning based controller's performance depends largely on how the states, actions, and reward/penalty functions are defined, which are described in more detail below.

5.1.1 States

Given that point, that the frequency oscillation enhancement is the primary objective of this paper, the ΔF signal is sampled and used as the feedback signal from the system under control to determine the system state. For this aim, the time interval from -0.02 to $+0.02$ divided into 50 equal segments and Eq. (19) is utilized at each time step to determine the state of the system. The zero-centered state is called normal state, and the intelligent agent does not do anything in the normal state. In fact, this equation, in addition to determining the value of system frequency, it makes it clear whether the frequency oscillations are going to the instability or moving towards the establishment [18].

$$s_t = \xi(\Delta f, \frac{d\Delta f}{dt})$$ \hspace{1cm} (19)

where s_t is the state of the micro-grid at time t and is a function of Δf and its derivative.

5.1.2 Actions

Although, there are no particular laws for defining of actions for RL based controllers, and this makes it a complex matter [20]. But it may be determined by inspiring from the output limits of the usual controllers that used for the same purpose [24]. Must be noticed, various actions can be defined for different states of the system and they can even be increased. These efforts have two positive and negative aspects. On the positive side, it can improve the dynamic performance of the controller by increasing the degree of freedom (the controller has more choices to perform). On the negative side, it increases the learning time extremely and makes it challenging (or even impossible) to find the optimal control policy. With this in mind, in this paper, the same actions are suggested for all states and expressed by Eq. (20).

$$A_{all \ states} = \{-0.02, 0, +0.02\}$$ \hspace{1cm} (20)

where A is the action set for all states of the system.

5.1.3 Reward/Penalty Function

The reward/penalty function is important because it assesses the degree of satisfaction from the action taken...
in the previous state in line with the overall goal. In the event that the system state is s_t, the agent utilizes its experience to perform the best action (a) among the actions defined for state s_t. Without delay, the agent receives a reward/penalty from the system under control concerning the performed action. On the basis of this reward/penalty, the agent assigns a score for a pair of (s_t, a) and updates the corresponding element of Q matrix. If the score is positive, the probability of performing the action a at the state s_t increases for the next times. Otherwise, if the score is negative (penalty), the agent selects the action a with a lower probability in the state s_t in next times. With this intention that the primary objective of this paper is frequency control, therefore Δf signal is selected for determination of reward/penalty for corresponding (s_t, a) pairs. In essence, if an action causes the system to go out of the normal state, it will be fined. In return, if an action causes the system to go to the normal state, will receive the highest reward. In summary, the reward/penalty function is described by Eq. (21), in this paper.

$$r_t = \begin{cases} +1 & \text{If } s_{t, i} \text{ is normal state} \\ -1 & \text{If } s_t \text{ is normal state and } s_{t, i} \text{ is not normal state} \\ \frac{1}{(1 + \sum_{k} \Delta f(k))} & \text{Otherwise} \end{cases}$$

where t is the time step.

6 Results and Discussion

Finally, in order to assess the RL controller’s ability for mitigation of the frequency deviations, first, the dynamic equations of the micro-grid of Fig. 1 are simulated in MATLAB R2015b environment. Then the superiority of the proposed controller is proved in realistic scenarios compared to traditional and FOF PID controllers. It should be noted that the simulation time step and sampling time are considered equal to 1 and 50 milliseconds, respectively. Moreover, in computer simulations, physical constraints on energy storage (ES) devices and DEG, including dead band and generation rate constraints (GRC), are considered. For this reason, the dead band is considered equal to 20ms and located at the input of the devices and GRC is considered as 0.02, 0.005, 1.2, and 0.001 for FESS, BESS, UC, and DEG, respectively. In addition, variable wind speed and solar radiation have been created using Eqs. (22) and (23), respectively. More details are given in [11].

$$P_{\text{wind}} = \left(0.8 \sqrt{10} \times \phi \times \left(1 - \frac{1}{10^{s+1}} \right) + 10 \right) \times \frac{1}{10} \times \Gamma$$ (22)

where $\phi - U(-1, 1)$, and Γ is a function of Heaviside step function.

$$P_{\text{sol}} = \left(0.7 \sqrt{2} \times \phi \times \left(1 - \frac{1}{10^{s+1}} \right) + 10 \right) \times \frac{1}{20} \times \Gamma$$ (23)

where $\phi - U(-1, 1)$.

6.1 Scenario1: Performance of the Controllers in Nominal Conditions of the Hybrid Micro-grid

In this scenario, it is assumed that all the elements exist in the hybrid micro-grid are in their nominal conditions. The renewable resources do not have production from the beginning, and they start production at time 5s according to the pattern shown in Fig. 6. Moreover, the sudden load changes of 10 and 20 percent occur at seconds 5 and 65, respectively.

Under those circumstances, the dynamic frequency response of the proposed control strategy is shown in Fig. 7 compared to traditional and FOF PID controllers.

Fig. 6 The renewable resources production in scenario 1.
As shown in Fig. 7, it is obvious that in the first overshoot/undershoot after disturbance, the performance of the RL has a mild superiority over the other control methods. This is due to the delay in detecting the turmoil by the intelligent agent. From Fig. 7, after few sampling steps, \(\Delta f \) is going out of the normal range and the controller recognizes the disturbance, then the intelligent agent immediately begins to apply a supplementary control signal to improve the dynamics of the system. Fig. 8 shows the output signal of the RL controller during simulation time.

Considering Figs. 7 and 8, it is evident that the controller is inactive and when the frequency oscillations start, it will be activated. In the time interval of 0 to 5 seconds, which disturbance has not yet occurred, the RL controller is inactive (its output is zero). Once turbulence is triggered, it will be activated and performs the optimal control policy. The output power of various ES devices along with DEG is shown in Fig. 9.
6.2 Scenario 2: Performance of the Controllers in Presence of Changing in Hybrid Micro-grid Components

As can be seen from Fig. 9, the output power of UC is much more than the other ES devices. Thus, UC parameter changing can be considered as the worst test case for robustness of the controllers against system parameter changes. Therefore, in this scenario, 2 percent increase in the gain along with 2 percent decrease in the time constant of UC energy storage device are assumed. All the other conditions are as same as the conditions of scenario 1. Fig. 10 shows the frequency deviation of the hybrid micro-grid with three control methods.

Fig. 10 shows that the changes in the UC parameters have caused the frequency oscillations to be continued more in comparison with scenario 1 after disturbance. Under those circumstances, it is evident from Fig. 10 that the dynamic performance of the proposed control mechanism is superb compared to the PID control method. Further, the optimal control signal of the RL and the power absorbed/supplied by ES devices and DEG are shown in Figs. 11 and 12, respectively.

![Fig. 10](image1.png) The dynamic response of the proposed control strategies in Scenario 2.

![Fig. 11](image2.png) The output signal of the RL controller during simulation time in Scenario 2.

![Fig. 12](image3.png) The power absorbed/supplied by ES devices and DEG in Scenario 2; Solid: RL, Dashed: FOF PID, and Dotted: PID.
6.3 Scenario 3: Performance of the Controllers with Large Variations in the Output Power of the Renewable Resources Along with the Pattern Load Changes

In this scenario, in order to demonstrate the excellent performance of the proposed controller compared to the classical PID and intelligent FOFPID controllers, a challenging condition is produced by sudden decreasing the output power of STPS and WTG by 13% and 15% in seconds 20 and 60, respectively. Fig. 13 shows the power generated by renewable resources in scenario 3. Additionally, to make a more realistic scenario a pattern load change accordance with Fig. 14 is considered. The performance of three control strategies is shown in Fig. 15.

The optimal control signal generated by the RL controller and the powers absorbed/supplied by ES devices and DEG are shown in Figs. 16 and 17, respectively.

![Fig. 13 The renewable resources production in scenario 3.](image)

![Fig. 14 The load variation pattern in scenario 3.](image)

![Fig. 15 The dynamic response of the proposed control strategies in Scenario 3.](image)
7 Discussion

As can be seen in some cases of simulations, the proposed RL control method has a mild superiority over the other PID and FOFPID controllers. For this reason, in order to demonstrate the superiority of the RL control structure compared to the other control methods, four appropriate numerical criteria are chosen and computed for all scenarios. Integral of squared error (ISE), ITAE, overshoot (OS) and undershoot (US) are the criteria which are computed according to Eqs. (24)-(27), respectively. Table 2 and Fig. 18 show the numerical time domain analysis of the dynamic performance of the proposed RL controller compared to PID and FOFPID in damping of hybrid micro-grid frequency deviations.

\[ISE = 1000 \times \int_0^{t_{\text{sim}}} (Af)^2 \, dt \] \hspace{1cm} (24)

\[ITAE = \int_0^{t_{\text{sim}}} t \cdot |Af| \, dt \] \hspace{1cm} (25)

\[OS = \max(|Af|) \times 100 \] \hspace{1cm} (26)

\[US = |\min(|Af|)| \times 100 \] \hspace{1cm} (27)

where \(t_{\text{sim}} \) is equal to 120 in all scenarios.

As can be seen in Table 2 and Fig. 18, the dynamic performance of the RL controller has a remarkable superiority over the PID and FOFPID control methods. In the final analysis, in order to emphasize the superiority of the proposed controller compared to PID and FOFPID controllers, the results shown in Table 2 are statistically analyzed. In this regard, it can be seen that the RL controller has improved the index ISE 60%, 62%, and 71% compared to PID and 57%, 60%, and 68% compared to FOFPID in scenarios 1, 2, and 3, respectively. In the view of ITAE index, frequency deviations have been improved approximately 50% compared to PID and 41% compared to FOFPID in all three scenarios. It must be noted that the US and OS were calculated in the worst case of each controller. As shown in Fig. 19, the OS index have been decreased approximately 2%-6% compared to PID and 2% compared to FOFPID controller. The reason for low impact of the RL control structure on the OS is previously described in scenario 1. Similarly, the RL controller has enhanced the US of the frequency deviations by 24%, 25%, and 5% compared to PID and 20%, 21%, and 3% compared to FOFPID in scenarios 1, 2, and 3, respectively. In conclusion, as shown above, the proposed consistent mechanism based on RL can
optimally control the frequency deviations of a hybrid micro-grid with high penetrations of renewable and storage energy devices. Another key point is that this simple and portable controller can be applied to the classical existent controllers to make them robust and adaptive with an excellent dynamic performance even better than the intelligent fuzzy logic based controllers.

Table 2 Time domain performance indices for RL controller compared to PID and FOFPID.

<table>
<thead>
<tr>
<th>Control Method</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE PID</td>
<td>14.959</td>
<td>15.038</td>
<td>17.271</td>
</tr>
<tr>
<td>ISE FOFPID</td>
<td>13.734</td>
<td>13.806</td>
<td>15.669</td>
</tr>
<tr>
<td>ISE RL</td>
<td>5.888</td>
<td>5.607</td>
<td>4.985</td>
</tr>
<tr>
<td>ITAE PID</td>
<td>9.96407</td>
<td>10.32941</td>
<td>31.8615</td>
</tr>
<tr>
<td>ITAE FOFPID</td>
<td>8.96978</td>
<td>9.06640</td>
<td>27.33848</td>
</tr>
<tr>
<td>ITAE RL</td>
<td>5.23144</td>
<td>5.36027</td>
<td>15.92594</td>
</tr>
<tr>
<td>OS PID</td>
<td>9.23</td>
<td>9.11</td>
<td>4.26</td>
</tr>
<tr>
<td>OS FOFPID</td>
<td>9.20</td>
<td>9.10</td>
<td>4.06</td>
</tr>
<tr>
<td>OS RL</td>
<td>9.00</td>
<td>8.95</td>
<td>4.00</td>
</tr>
<tr>
<td>US PID</td>
<td>5.00</td>
<td>5.24</td>
<td>7.08</td>
</tr>
<tr>
<td>US FOFPID</td>
<td>4.78</td>
<td>4.97</td>
<td>6.93</td>
</tr>
<tr>
<td>US RL</td>
<td>3.8</td>
<td>3.9</td>
<td>6.68</td>
</tr>
</tbody>
</table>

Fig. 18 Time domain performance indices for RL controller compared to PID and FOFPID: a) ISE, b) ITAE, c) OS and d) US.
8 Conclusions

The precise coordination of the mechanisms for controlling renewable resources and energy storages for suppressing the oscillation of frequency in the hybrid micro-grids is always considered as a challenge due to uncertainties in the wind and solar power. This challenge needs the advanced and intelligent control methods for damping the grid frequency deviations. For this reason, this paper, is suggested an RL based control mechanism for controlling the frequency of hybrid micro-grids. The suggested control strategy integrates the RL features with the traditional PID controller and provides a simple, model-free, adaptive, and robust control method against system parameter changes and operating conditions. In this paper, the RL controller is added to a traditional PID controller as a complementary controller. Because the PID controller has a satisfactory performance in addition to its simple structure and extensive use in the industry. Eventually, in order to evaluate the effectiveness of the proposed controller, a hybrid micro-grid with high penetration of renewable and energy storage devices and physical limits such GRC, GDB and time delay was modelled. Then several realistic scenarios and challenging conditions were considered to demonstrate the excellent dynamic performance of the proposed RL based controller compared to classical and FOF PID controllers that were optimized using SSA. Simulation results expressively demonstrate the superiority of the proposed control mechanism compared to PID and FOFPID control methods under different operating conditions and uncertainties of the system parameters. In the final analysis, suitable numerical time domain criteria such ISE, ITAE, OS, and US were calculated for the two control methods. Clearly, the results confirm the superiority of the proposed control method. As can be seen, the proposed controller has improved the ITAE and ISE more than 50% in different operating conditions. In addition, OS is enhanced 2%-6% in all scenarios. Also, US, the other considered performance index has been decreased more than 20% in all conditions. Thanks to its simple and portable structure, the RL controller can be applied as a supervisory controller to any other control system to improve its performance. For future works, our focus will be on the other solution methods of reinforcement learning and application of multi-agent learning in controlling micro-grids.

References

A. Younesi received B.Sc. and M.Sc. degrees both in Electrical Engineering from Faculty of Technical Engineering Department of the Mohaghegh Ardabili University, Ardabil, Iran in 2012 and 2015 respectively. Currently He is a Ph.D. student in Technical Engineering Department of the University of Mohaghegh Ardabili, Ardabil, Iran. His areas of interest are application of artificial intelligence in power system automation and control, application of reinforcement learning to power system control, fuzzy systems, and heuristic optimization in power system control. He is a student member of Iranian Association of Electrical and Electronic Engineers (IAEEE) and IEEE.
H. Shayeghi received the B.Sc. and M.Sc. degrees in Electrical and Control Engineering in 1996 and 1998, respectively. He received his Ph.D. degree in Electrical Engineering from Iran University of Science and Technology (IUST), Tehran, Iran in 2006. Currently, he is a full Professor in Technical Engineering Department of University of Mohaghegh Ardabili, Ardabil, Iran. His research interests are in the application of robust control, artificial intelligence and heuristic optimization methods to power system control design, operation and planning and power system restructuring. He has authored and co-authored of 5 books in Electrical Engineering area all in Farsi, one book and two book chapters in international publishers and more than 330 papers in international journals and conference proceedings. Also, he collaborates with several international journals as reviewer boards and works as editorial committee of three international journals. He has served on several other committees and panels in governmental, industrial, and technical conferences. He was selected as distinguished researcher of the University of Mohaghegh Ardabili several times. In 2007 and 2010 he was also elected as distinguished researcher in engineering field in Ardabil province of Iran. Furthermore, he has been included in the Thomson Reuters’ list of the top one percent of most-cited technical Engineering scientists in 2015 and 2016, respectively. Also, he is a member of Iranian Association of Electrical and Electronic Engineers (IAEEE) and Senior member of IEEE.