Compact Lossy Inductance Simulators With Electronic Control

M. Srivastava* and K. Bhardwaj**

Abstract: In this paper two R-L network simulator configurations employing a single VDDIBA, one resistance and one grounded capacitance are presented. The first configuration is a grounded series resistor-inductor (R-L) network simulator and the second configuration is intended for grounded parallel resistor-inductor (R-L) circuit simulation. Both the proposed circuits enjoy several beneficial features such as: 1) compact structure employing only one VDDIBA and two passive elements, 2) electronic tuning of inductive part of realized series/parallel R-L impedances, 3) independent control of inductive and resistive parts of realized parallel R-L impedance, 4) no requirement of any component matching, and 5) un-deviated performance in non-ideal environment. By choosing appropriate values of active/passive elements, a series R-L circuit for simulating resistance of 7.742 kΩ and inductance of value 7.742 mH has been developed. Similarly a parallel R-L simulation circuit to simulate a resistance of value 1 kΩ and inductance of value 77.4 µH is implemented. To study the influence of parasitics on developed lossy inductances, the behavior of these configurations has been studied keeping terminal parasitics of VDDIBAs under consideration. To check the performance and usefulness of the proposed configurations some second-order filtering circuits have been designed. To confirm the theoretical analysis, PSPICE Simulation results have been included.

Keywords: Active RL Networks, Compact Circuit, Electronic Control, VDDIBA.

1 Introduction

An inductor is a very useful passive element which finds very frequent applications in circuits and electrical engineering. The working of conventional spiral inductors is not matched with the ideal behavior. The conventional spiral inductors also suffer from large weight and size, generation of undesired harmonics, electromagnetic radiations and strong parasitic effects. Therefore, in the last two decades, interest has been comprehensively directed towards the realization of synthetic inductors employing different active elements for simulating the behavior of passive conventional inductors. Several grounded inductance realizations employing different active components have been described in open literature [1-8]. In addition to the simulation of lossless inductors, the simulation of lossy inductors is also found very useful. The grounded lossy inductance simulators have a wide range of applications covering series/parallel resonance circuits, filters and sinusoidal oscillators. Several grounded R-L (series/parallel) network simulation circuits employing numerous active elements such as OP-AMPS, current conveyors, current feedback amplifiers, Four terminal floating nullers, operational trans-resistance amplifiers, differential voltage current conveyor, current-feedback operational-amplifiers, dual X-current conveyors and voltage differential current conveyors have been introduced in literature[9-30]. On careful investigation of previously reported series/parallel R-L simulation circuits, it is observed that all these reported circuits have one or more of below given disadvantageous features:

(i) Employment of excessive number of active building blocks(ABBs) (more than one);
(ii) Employment of excessive number of passive components (more than two);
(iii) Employment of floating capacitance(s);
(iv) Lack of electronic control of realized equivalent resistances and inductances;
(v) Non-availability of independent tuning of realized equivalent resistances and inductances and;
(vi) Requirement(s) for matched active/passive components.

Therefore, the main aim of this article is to present new grounded lossy inductor simulators (series R-L, parallel R-L) with following useful features:
(1) Employment of single active Element (VDDIBA);
(2) Use of Two Passive Elements;
(3) Use of single Grounded Capacitance;
(4) Availability of Electronic Tuning of Realized Equivalent Inductance;
(5) Availability of Non-Interactive Tuning of Realized Inductance;
(6) No Requirement of matched passive or active elements;
(7) Excellent working under non-ideal constraints with no deviation;
(8) Low Parasitic Effects.

The comparison of proposed grounded series R-L network simulator shown in Fig. 2 with previously proposed series R-L simulators has been given in Table 1. Similarly proposed grounded parallel R-L simulator (shown in Fig. 3) has been compared with previously reported parallel R-L simulators in Table 2.

Table 1: Comparison of proposed series R-L simulator with previously reported series R-L simulation circuits.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Fig. No.</th>
<th>No. of Active Element</th>
<th>No. of Resistors</th>
<th>No. of Capacitors</th>
<th>Electronic Control of L_{eq} and R_{eq}</th>
<th>Non-Interactive Control of L_{eq}</th>
<th>Need for Element Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10]</td>
<td>Fig. 2(a)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[11]</td>
<td>Fig. 1</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[12]</td>
<td>Fig. 2</td>
<td>2</td>
<td>2(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[13]</td>
<td>Figs. 1(a)-(b)</td>
<td>2</td>
<td>2(F)+2(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[14]</td>
<td>Fig. 1</td>
<td>1</td>
<td>3(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[15]</td>
<td>Fig. 1(a)</td>
<td>1</td>
<td>4(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Fig. 1(c)</td>
<td>1</td>
<td>3(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[16]</td>
<td>Fig. 1</td>
<td>1</td>
<td>2(F)+2(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[17]</td>
<td>Fig. 1</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>2(G)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[18]</td>
<td>Fig. 2(b)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[19]</td>
<td>Fig. 2(a)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[20]</td>
<td>Fig. 2(b)</td>
<td>1</td>
<td>2(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[21]</td>
<td>Figs. 2-5</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[22]</td>
<td>Fig. 2(b)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[23]</td>
<td>Fig. 2(b)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[24]</td>
<td>Fig. 2(b)</td>
<td>1</td>
<td>2(F)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[25]</td>
<td>Fig. 2(f)</td>
<td>1</td>
<td>2(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[26]</td>
<td>Fig. 2(c)</td>
<td>1</td>
<td>1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[27]</td>
<td>Fig. 3</td>
<td>1</td>
<td>2(F)</td>
<td>2(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[28]</td>
<td>Fig. 13</td>
<td>1</td>
<td>1(G)+1(F)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[29]</td>
<td>Fig. 3</td>
<td>1</td>
<td>4(F)+1(G)</td>
<td>3(F)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Proposed: Fig. 2(a) 1(F) 1(G) Yes Yes No

G*: Grounded, F*: Floating

2 Voltage Differencing Differential Input Buffered Amplifier (VDDIBA)

VDDIBA is a popular circuit idea proposed in [33]. It is a very useful ABB with electronic controllability feature. The symbolic block representation of VDDIBA is given in Fig. 1. VDDIBA has five input/output ports namely V_{-}, V_{+}, W, V, and Z. The voltage difference of terminals V_{+} and V_{-} is transferred to Z terminal in the form of current. The voltage difference between the V and Z terminals is transferred at terminal W through a differential buffer of unity gain. The voltage-current relationships between different ports of VDDIBA have been given by Eqs. (1)-(3) in static (steady-state situation). The implementation of VDDIBA circuit concept using operational transconductance amplifiers (OTAs) and current feedback operational amplifier (CFOA) is demonstrated in Fig. 2. The CMOS realization of OTAs used in Fig. 2 has been shown in Fig. 3.

$$I_{Z} = \beta_{Z} g_m (V_{V_{+}} - V_{V_{-}})$$ \hspace{1cm} (1)

$$V_{W} = V_{Z} - V_{V}$$ \hspace{1cm} (2)

$$I_{V_{+}} = I_{V_{-}} = I_{W} = 0$$ \hspace{1cm} (3)

The use of VDDIBA in various analog signal processing circuits has been discussed in [34-37]. Grounded lossless inductor simulator employing positive type VDDIBA has been discussed in [34] which employ two
Table 2 Comparison of proposed parallel R-L simulator with previously reported parallel R-L simulation circuit.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Fig. No.</th>
<th>No. of Active Element</th>
<th>No. of Resistors</th>
<th>No. of capacitors</th>
<th>Electronic Control of (L_{eq}) and (R_{eq})</th>
<th>Non-Interactive Control of (L_{eq})</th>
<th>Need for Element Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]</td>
<td>Fig. 1(a)</td>
<td>1</td>
<td>2(F)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[12]</td>
<td>Fig. 2(a)</td>
<td>1</td>
<td>1(F)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[15]</td>
<td>Fig. 1(b)</td>
<td>1</td>
<td>3(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[16]</td>
<td>Fig. 1</td>
<td>1</td>
<td>2(F)+2(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[18]</td>
<td>Fig. 2(a)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[19]</td>
<td>Figs. 2(a)-b</td>
<td>2</td>
<td>4(F)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[20]</td>
<td>Figs. 3(a)-b</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[21]</td>
<td>Figs. 3(a)-b</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[22]</td>
<td>Fig. 2</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(G)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[23]</td>
<td>Fig. 1</td>
<td>1</td>
<td>2(F)+2(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[24]</td>
<td>Fig. 1</td>
<td>1</td>
<td>2(F)+2(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[25]</td>
<td>Fig. 2(c)</td>
<td>1</td>
<td>1(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[26]</td>
<td>Fig. 2(c)</td>
<td>1</td>
<td>2(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[27]</td>
<td>Fig. 2(d)</td>
<td>1</td>
<td>3(G)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[28]</td>
<td>Fig. 2(e)</td>
<td>1</td>
<td>2(F)+1(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[29]</td>
<td>Fig. 4(a)</td>
<td>1</td>
<td>2(G)</td>
<td>1(F)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>[30]</td>
<td>Fig. 4</td>
<td>2</td>
<td>1(F)+3(G)</td>
<td>3(F)+2(G)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[31]</td>
<td>Fig. 2(a)</td>
<td>1</td>
<td>2(F)</td>
<td>1(G)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[32]</td>
<td>Fig. 1</td>
<td>1</td>
<td>2(F)</td>
<td>1(G)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[33]</td>
<td>Fig. 2</td>
<td>1</td>
<td>2(F)</td>
<td>1(G)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[34]</td>
<td>Fig. 3</td>
<td>3</td>
<td>3(F)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[35]</td>
<td>Fig. 3</td>
<td>1</td>
<td>3(F)</td>
<td>1(F)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Proposed Configurations

The proposed grounded series R-L and grounded parallel R-L impedance simulation circuits are given in Figs. 4 and 5, respectively. By simple mathematical analysis the expressions of input impedances of configurations shown in Figs. 4 and 5 have been evaluated and given in Table 3.

It can be seen from Table 3, that configurations are shown in Fig. 4 and Fig. 5 are realizing grounded series positive types VDDIBAs one grounded capacitance and one floating resistance. Therefore implementation of RLC filters, series/parallel RLC resonance circuits and other useful applications in which grounded series/parallel RL networks are required employing circuit proposed in [34] will require large number of VDDIBAs and resistances as compared to implementation by VDDIBA based lossy inductors proposed in this paper.

3 Proposed Configurations

The proposed grounded series R-L and grounded parallel R-L impedance simulation circuits are given in Figs. 4 and 5, respectively. By simple mathematical analysis the expressions of input impedances of configurations shown in Figs. 4 and 5 have been evaluated and given in Table 3.

It can be seen from Table 3, that configurations are shown in Fig. 4 and Fig. 5 are realizing grounded series.
Table 3 Input Impedances of proposed series/parallel RL simulators.

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Input Impedance</th>
<th>Type of Impedance Realized</th>
<th>Equivalent Inductance (L_{eq})</th>
<th>Equivalent Resistance (R_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4</td>
<td>$\frac{2R_g C}{s_m} + \frac{1}{s_m}$</td>
<td>+L_{eq} series with +R_{eq}</td>
<td>$\frac{2R_g C}{s_m}$</td>
<td>$\frac{2}{s_m}$</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>$\frac{1}{2s_m R + 1}$</td>
<td>+L_{eq} parallel with +R_{eq}</td>
<td>$\frac{2C R}{s_m}$</td>
<td>R_c</td>
</tr>
</tbody>
</table>

Table 4 Input Impedances of proposed series/parallel RL simulators under non-ideal conditions.

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Input Impedance (Z_{eq})</th>
<th>Type</th>
<th>Equivalent Inductance (L_{eq})</th>
<th>Equivalent Resistance (R_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4</td>
<td>$\frac{R_g C (1+\beta)}{s_m} + \frac{1}{s_m} \left(1 + \frac{1}{\beta'}\right)$</td>
<td>+L_{eq} series with +R_{eq}</td>
<td>$\frac{R_g C (1+\beta)}{s_m \beta'}$</td>
<td>$\frac{1}{s_m \beta'}$</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>$\frac{1}{s_m \beta'} \left(\beta^{-1} + \frac{1}{\beta'}\right) - \frac{1}{R_c}$</td>
<td>+L_{eq} parallel with +R_{eq}</td>
<td>$\frac{R_g C (1+\beta)}{s_m \beta'}$</td>
<td>R_c</td>
</tr>
</tbody>
</table>

R-L and parallel R-L networks. Both the configuration employs single VDDIBA along with single resistance and single capacitance. The placement of grounded capacitor in both circuit configurations makes them suitable for monolithic integration. The series R-L network simulator enjoys the electronic control of both inductive as well as the resistive parts by g_m along with the independent control of the inductive part by resistance R_0. Similarly, the parallel R-L simulator has the facility under different non-ideal circumstances, analysis under non-ideal transfer ratios and analysis under parasitics have been carried out.

4 Non-Ideal Analysis

The voltage-current relationships among between terminals of VDDIBA under non-ideal voltage/transconductance transfer ratios conditions can be defined as:

\[I_Z = \beta_2 V_m (V_{i+} - V_{i-}) \] \hspace{1cm} (4)

\[V_m = \beta V_Z - \beta_2 V_V \] \hspace{1cm} (5)

\[I_{i+} = I_{i-} = I_V = 0 \] \hspace{1cm} (6)

where β' and β_2 are the voltage transfer errors and β_1 is transconductance error with a value slightly less than unity. On studying presented VDDIBA based series/parallel R-L simulation circuits under non-ideal conditions, the realized input impedances and their types can be found as given in Table 4.

On comparing the expressions of Table 3 with Table 4, it can be illustrated that the working of proposed simulators with non-ideal constraints remains the same as the ideal behavior. The values of R_{eq} and L_{eq} deviate from ideal values but as the values of β' and β_2 are very near to unity, the deviations in values of R_{eq} and L_{eq} are very minute. Hence, even taking non-ideal constraints under consideration, the performance of developed simulators has a closed match with ideal performance.

5 Effects of VDDIBA Terminal Parasitics

In this section, the behavior of proposed series/parallel grounded R-L impedance simulators is evaluated under the presence of parasitic impedances of VDDIBA terminals. At high frequencies, the port parasitics of VDDIBAs become effective and influence the working of VD-DIBA based applications. In CMOS VDDIBA [34] at high frequencies, a finite grounded parasitic resistance R_Z along with finite grounded parasitic capacitances C_Z appears at Z ports.

The presented grounded series R-L circuit simulator shown in Fig. 4 is re-evaluated considering the port parasitics of VD-DIBA. The expression of the input impedance is found;

\[Z_m = \frac{V_m}{I_m} = \frac{2R_c (1 + sC_{eq} R_c)}{g_m R_c + 2(1 + sR_c C_Z) (1 + sC_{eq} R_c)} \] \hspace{1cm} (7)

The equivalent circuit configuration developed from (7) has been illustrated in Fig. 6, where

\[L_{eq} = \frac{2R_c C_{eq}}{g_m} \] \hspace{1cm} (8)

\[R_{eq} = \frac{2}{g_m} \] \hspace{1cm} (9)

Similarly the input impedance of presented parallel R-L simulation circuit given in Fig. 5 under the influence of VD-DIBA port parasitics can be found as;

\[Z_m = \frac{V_m}{I_m} = \frac{R_c (1 + sR_c C_{eq} + sR_c C_Z)}{1 + g_m R_c R_0 + sR_c (C_{eq} + C_Z)} \] \hspace{1cm} (10)

The circuit realized from (10) is given in Fig. 7, where
So, considering the frequency dependent transconductance, the proposed series R-L configuration behaves like a series $R_{eq}-L_{eq}-M_{eq}$ circuit where M_{eq} is the lossy term.

Similarly, the input impedance of proposed parallel R-L circuit simulator considering frequency dependent transconductance is evaluated as:

$$Z_{eq} = \frac{2sR_{eq}C_0(1+sr)}{2sR_{eq}C_0(1+sr)+g_{m0}}$$

The impedance Z_m realized by (20) is a passive element network consisting two grounded parallel branches. The first branch consists of a series inductance L_{eq} along with a frequency dependent negative conductance (FDNC) M_{eq}. On the other hand the second branch has a resistance R_{eq}, where

$$L_{eq} = \frac{2R_{eq}C_0}{g_{m0}}$$

$$M_{eq} = \frac{2R_{eq}C_0\tau}{g_{m0}}$$

$$R_{eq} = R_0$$

So from (21)-(23) it is clear that, considering frequency dependent transconductance, the proposed parallel R-L circuit behaves like a parallel $(R_{eq})-(L_{eq} \text{ series } M_{eq})$ circuit where M_{eq} is the lossy term.

7 Application Examples

The performances of the presented parallel/series R-L simulation circuits are demonstrated by some typical circuit applications. By using proposed series R-L simulation circuit a second order current mode low-pass filtering (LPF) circuit is developed which is shown in Fig. 8.

For demonstrating the working of proposed parallel R-L simulation configuration given in Fig. 5, a voltage-mode high-pass filter (HPF) is constructed and demonstrated in Fig. 9.

8 Simulation Results

To validate the mathematical analysis, Simulations were performed under PSPICE environment employing
Compact Lossy Inductance Simulators With Electronic Control
M. Srivastava and K. Bhardwaj

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 3, September 2019
348

CMOS VDDIBA which includes CMOS OTA and CFOA SPICE micro-model of AD844. The DC supply voltages were chosen as ±0.9 VDC with all the biasing current of VDDIBA equals to 32 μA. The main specifications of this VDDIBA are given in Table 5.

Series R-L simulator of Fig. 2 is simulated with \(R_0 = 1, 2 \) and 3kΩ and \(C_0 = 1 \) nF. The magnitude responses of the input impedance of configuration described in Fig. 4 have been illustrated in Fig. 10. From input impedance expression of Fig. 4 given in Table 3, it is observed that at low frequencies the inductive part of realized impedance \(L_{eq} \) is very small in comparison to the lossy term \(R_{eq} \). Therefore, the magnitude responses are almost constant for low frequencies and representing the \(R_{eq} \). As the frequency increases, the value of \(L_{eq} \) start increasing in comparison to constant lossy part \(R_{eq} \) and the circuit start behaving like a series lossy inductor. At very high frequencies, the value of \(L_{eq} \) becomes very high in comparison to \(R_{eq} \) and the configuration acts as a pure lossless inductor. This effect can be illustrated by plots shown in Fig. 8. The initial “horizontal part” of frequency response is due to the dominance of lossy term \(R_{eq} \). Similarly the PSPICE simulated responses of impedance of parallel R-L network described in Fig. 5 have been illustrated in Fig. 10, for component values \(R_0 = 1, 2 \) and 3 kΩ, and \(C_0 = 0.01 \) nF.

From input impedance expression of Fig. 4 given in Table 3, it can be seen that for the high value of \(C_0 \), the value of \(L_{eq} \) is high in comparison to lossy part \(R_{eq} \) and behavior of this series lossy inductor become inclined more towards a lossless inductor. For further high values of \(C_0 \), the value of \(R_{eq} \) will be very small in comparison to \(L_{eq} \) and the configuration will work as a pure lossless inductor. This effect can be illustrated by response plots shown in Fig. 12. The initial “horizontal part” of frequency response is due to the existence of the lossy term \(R_{eq} \). As the value of \(C_0 \) increases, the value of \(L_{eq} \) becomes high and flat part of response become comparatively narrower than inclined part. Which clearly indicate that on increasing \(C_0 \) the behavior of the proposed circuit starts inclining towards the behavior of a lossless inductor. Similarly the magnitude plots of impedance of parallel R-L network given in Fig. 5 on varying capacitance \(C_1 \) have been given in Fig. 13.

To demonstrate the electronic controllability of developed series R-L simulator shown in Fig. 4, simulations were performed with different bias current values. With component values \(R_0 = 1 \) kΩ and \(C_0 = 1 \) nF, bias currents were selected as \(I_b = 32, 48 \), and 64 μA. The simulation plots are shown in Fig. 14 which clearly illustrates that on increasing the bias currents, \(g_m \) is increasing and the input impedance is decreasing.
9 Conclusion

This paper proposes a new grounded series/parallel Compact Lossy Inductance Simulators With Electronic Control. M. Srivastava and K. Bhardwaj

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 3, September 2019

Electronic tunability of parallel R-L simulator shown in Fig. 5 has been demonstrated in plots shown in Fig. 15 with component values \(R_1 = 1 \, \text{k}\Omega \) and \(C_1 = 0.01 \, \text{nF} \). The current mode LPF design example shown in Fig. 8 is simulated with passive component values selected as \(C_0 = 0.01 \, \text{nF} \), and \(C_1 = 0.02 \, \text{nF} \). The simulated filter response is shown in Fig. 16. For simulation of HPF shown in Fig. 9, following component values are chosen: \(C_1 = 0.02 \, \text{nF} \), and \(C_2 = 0.01 \, \text{nF} \). The frequency response of this HPF is given in Fig. 17. To verify the robustness, the Monte-Carlo simulations of developed filtering circuits shown in Figs. 8 and 9 have been performed on taking 100 samples and 5% variation in passive element values. The Monte-Carlo simulations results are demonstrated in Figs. 18 and 19 respectively.

Fig. 12 Frequency responses of impedance of series R-L simulator with different values of \(C_0 \).

Fig. 13 Frequency responses of impedance of parallel R-L simulator with diverse values of \(C_1 \).

Fig. 14 Frequency responses of impedance of series R-L simulator for different values of biasing currents.

Fig. 15 Frequency responses of parallel R-L simulation circuit for different values of biasing currents.

Fig. 16 The frequency response from current-mode low-pass filtering circuit given in Fig. 8.

Fig. 17 The frequency response of voltage-mode high-pass filtering circuit given in Fig. 9.

Fig. 18 Monte-Carlo simulation results of circuit shown in Fig. 8.

Fig. 19 Monte-Carlo simulation results of circuit shown in Fig. 9.
R-L Network simulators using VDDIBA. In literature, several grounded series/parallel R-L network simulation circuits employing various active elements have been reported. These reported circuits suffer from one or more of following disadvantages; Use of more than one active element [11, 19, 30], employment of more than one resistance [10-11, 13-32], requirement of floating capacitance [9-11, 15-16, 18-21, 23-26, 28-30, 32], unavailability of electronic tuning facility of both inductive as well as resistive part [9-32], lack of independent control of realized inductance[11, 18, 20, 25, 26, 30] and need of matched elements [9, 20-24, 26, 31, 32]. The series R-L and parallel R-L simulation circuits presented in this paper are very compact with minimum requirement of passive and active components (one VDDIBA, single capacitance and single resistance) and enjoy several advantageous characteristics like use of grounded capacitor, facility of electronic tuning, non-interactive tuning of equivalent inductance and no need of any element value matching. Under non-ideal conditions, the behavior of presented circuits was found un-deviated from their ideal behavior. The influence of port parasitics of VDDIBA and effect of frequency dependent transconductance was also studied. To check the workability of presented circuits, some application examples are given. PSPICE simulations with 0.18 μm TSMC CMOS model were included to confirm the theoretical results.

References

M. Srivastava obtained Ph.D. in analog integrated circuits and signal processing from Jamia Millia Islamia, New Delhi, India, in 2015. Presently he is working as a Assistant Professor with Department of Electronics and Communication Engineering, National Institute of Technology, Jamshedpur, India. His research interest is in the areas of analog circuits. Dr. Srivastava has authored or co-authored 42 research papers in SCI/Scopus indexed International Journals and Conferences. He acted as reviewer of various SCI Indexed international journals and worked as a member of Technical Program Committee/ Reviewer/ Session Chair in several international conferences in India and abroad.

K. Bhardwaj was born in Hathras India in 1998. In 2016 he competed Diploma in Electronics Engineering from Government Polytechnic College, Hathras. Currently he is a B. Tech. student and research scholar with Dr. A. P. J. Abdul Kalam University, Lucknow, India. Kapil’s research interest includes analog circuits and analog signal processing. He has authored several papers in reputed conference proceedings.

© 2019 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).