Digitally Excited Reconfigurable Linear Antenna Array Using Swarm Optimization Algorithms

D. Jamunaa*, G. K. Mahanti#, and F. N. Hasoon**

Abstract: This paper describes the synthesis of digitally excited pencil/flat top dual beams simultaneously in a linear antenna array constructed of isotropic elements. The objective is to generate a pencil/flat top beam pair using the excitations generated by the evolutionary algorithms. Both the beams share common variable discrete amplitude excitations and differ in variable discrete phase excitations. This synthesis is treated as a multi-objective optimization problem and is handled by Quantum Particle Swarm Optimization algorithm duly controlling the fitness functions. These functions include many of the radiation pattern parameters like side lobe level, half power beam width and beam width at the side lobe level in both the beams along with the ripple in the flat top band of flat top beam. In addition to it, the dynamic range ratio of the amplitudes excitations is set below a certain level to diminish the mutual coupling effects in the array. Two sets of experiments are conducted and the effectiveness of this algorithm is proved by comparing it with various versions of swarm optimization algorithms.

Keywords: Reconfigurable Antenna Array, QPSO Algorithm, Digital Attenuator, Digital Phase Shifter, Swarm Optimization.

1 Introduction

Many times, antenna arrays employed in communications are required to generate different radiation patterns. In connection with this, generations of different patterns [1-10] by one antenna array is more appreciated as it greatly reduces the constraints involved in circuit design, size and cost, etc. In addition to this, it will be a great boon, if the array element excitations involved in the radiation patterns are the same, while differing only in phase excitations. Researchers have succeeded to a great extent in the past in generating these patterns using reconfigurable arrays, thus simplifying the associated design and construction of the feed networks. In spite of that, radiation pattern parameters get affected due to mutual coupling between the elements. Thus, it has been always a challenging task for the researchers to reach the expected goal in generations of these patterns.

Literature review depicts several ways in which the above tasks have been dealt in the past. Bucci et al. synthesized the reconfigurable array antennas generating various beams with same amplitudes and different phases using the projection method [1]. Baskar et al. utilized the generalized generation gap model Genetic Algorithm [2] for the synthesis of reconfigurable array antennas showing better performance of radiation patterns obtained using discrete phase shifters over continuous realization and subsequent quantization. Gies, et al. utilized Particle Swarm Optimization (PSO) algorithm successfully for the generation of multiple beam patterns [3]. Morabito, et al. presented a different successful approach to the optimal mask-constrained power pattern synthesis [4], which dynamically reconfigured the radiation pattern by controlling the excitation phases only. Li et al. successfully utilized a multiobjective evolutionary algorithm which uses a decomposition approach [5] to
change the problems of approximation into different single objective optimization problems. An iterative method using phase only control is successfully used in [6].

Further insight into the articles in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.

In this paper, Quantum Particle Swarm Optimization (QPSO) algorithm [14-16], one of the variants [14-23] of PSO is utilized for the generation of a flat top beam and a pencil beam radiation pattern simultaneously with common discrete amplitude excitations and different discrete phase excitations of the elements. The reason for using QPSO is that it has proved its superiority in many of the optimization problems in the recent decade.

The parameters that will be controlled are the Side Lobe Level (SLL), half power beam width (HPBW), and beam width at SLL of the pencil beam radiation pattern and the SLL, HPBW, and ripple in the flat top beam of the radiation patterns. Moreover, experiments are also being done utilizing Dynamic Range Ratio (DRR) in order to suppress the mutual coupling effects. This is done by adding a term based on DRR in the fitness function.

In order to evaluate the validity of QPSO algorithm, the simulated results that are obtained using this algorithm are compared with the results obtained from various well-known variants of PSO algorithm, namely Comprehensive learning PSO (CLPSO) [17], Linearly Decreasing Inertia Weight PSO (LPSO) [18], Unified PSO (UPSO) [19-20] and Random inertia weight PSO (RPSO) [18] algorithms. Further details of the variants of PSO are available in the corresponding references mentioned in parentheses above.

This paper is different from the other papers in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.

In this paper, Quantum Particle Swarm Optimization (QPSO) algorithm [14-16], one of the variants [14-23] of PSO is utilized for the generation of a flat top beam and a pencil beam radiation pattern simultaneously with common discrete amplitude excitations and different discrete phase excitations of the elements. The reason for using QPSO is that it has proved its superiority in many of the optimization problems in the recent decade.

The parameters that will be controlled are the Side Lobe Level (SLL), half power beam width (HPBW), and beam width at SLL of the pencil beam radiation pattern and the SLL, HPBW, and ripple in the flat top beam of the radiation patterns. Moreover, experiments are also being done utilizing Dynamic Range Ratio (DRR) in order to suppress the mutual coupling effects. This is done by adding a term based on DRR in the fitness function.

In order to evaluate the validity of QPSO algorithm, the simulated results that are obtained using this algorithm are compared with the results obtained from various well-known variants of PSO algorithm, namely Comprehensive learning PSO (CLPSO) [17], Linearly Decreasing Inertia Weight PSO (LPSO) [18], Unified PSO (UPSO) [19-20] and Random inertia weight PSO (RPSO) [18] algorithms. Further details of the variants of PSO are available in the corresponding references mentioned in parentheses above.

This paper is different from the other papers in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.

In this paper, Quantum Particle Swarm Optimization (QPSO) algorithm [14-16], one of the variants [14-23] of PSO is utilized for the generation of a flat top beam and a pencil beam radiation pattern simultaneously with common discrete amplitude excitations and different discrete phase excitations of the elements. The reason for using QPSO is that it has proved its superiority in many of the optimization problems in the recent decade.

The parameters that will be controlled are the Side Lobe Level (SLL), half power beam width (HPBW), and beam width at SLL of the pencil beam radiation pattern and the SLL, HPBW, and ripple in the flat top beam of the radiation patterns. Moreover, experiments are also being done utilizing Dynamic Range Ratio (DRR) in order to suppress the mutual coupling effects. This is done by adding a term based on DRR in the fitness function.

In order to evaluate the validity of QPSO algorithm, the simulated results that are obtained using this algorithm are compared with the results obtained from various well-known variants of PSO algorithm, namely Comprehensive learning PSO (CLPSO) [17], Linearly Decreasing Inertia Weight PSO (LPSO) [18], Unified PSO (UPSO) [19-20] and Random inertia weight PSO (RPSO) [18] algorithms. Further details of the variants of PSO are available in the corresponding references mentioned in parentheses above.

This paper is different from the other papers in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.

In this paper, Quantum Particle Swarm Optimization (QPSO) algorithm [14-16], one of the variants [14-23] of PSO is utilized for the generation of a flat top beam and a pencil beam radiation pattern simultaneously with common discrete amplitude excitations and different discrete phase excitations of the elements. The reason for using QPSO is that it has proved its superiority in many of the optimization problems in the recent decade.

The parameters that will be controlled are the Side Lobe Level (SLL), half power beam width (HPBW), and beam width at SLL of the pencil beam radiation pattern and the SLL, HPBW, and ripple in the flat top beam of the radiation patterns. Moreover, experiments are also being done utilizing Dynamic Range Ratio (DRR) in order to suppress the mutual coupling effects. This is done by adding a term based on DRR in the fitness function.

In order to evaluate the validity of QPSO algorithm, the simulated results that are obtained using this algorithm are compared with the results obtained from various well-known variants of PSO algorithm, namely Comprehensive learning PSO (CLPSO) [17], Linearly Decreasing Inertia Weight PSO (LPSO) [18], Unified PSO (UPSO) [19-20] and Random inertia weight PSO (RPSO) [18] algorithms. Further details of the variants of PSO are available in the corresponding references mentioned in parentheses above.

This paper is different from the other papers in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.

In this paper, Quantum Particle Swarm Optimization (QPSO) algorithm [14-16], one of the variants [14-23] of PSO is utilized for the generation of a flat top beam and a pencil beam radiation pattern simultaneously with common discrete amplitude excitations and different discrete phase excitations of the elements. The reason for using QPSO is that it has proved its superiority in many of the optimization problems in the recent decade.

The parameters that will be controlled are the Side Lobe Level (SLL), half power beam width (HPBW), and beam width at SLL of the pencil beam radiation pattern and the SLL, HPBW, and ripple in the flat top beam of the radiation patterns. Moreover, experiments are also being done utilizing Dynamic Range Ratio (DRR) in order to suppress the mutual coupling effects. This is done by adding a term based on DRR in the fitness function.

In order to evaluate the validity of QPSO algorithm, the simulated results that are obtained using this algorithm are compared with the results obtained from various well-known variants of PSO algorithm, namely Comprehensive learning PSO (CLPSO) [17], Linearly Decreasing Inertia Weight PSO (LPSO) [18], Unified PSO (UPSO) [19-20] and Random inertia weight PSO (RPSO) [18] algorithms. Further details of the variants of PSO are available in the corresponding references mentioned in parentheses above.

This paper is different from the other papers in the literature shows that evolutionary algorithms played a commanding role in handling the fitness functions dealing with antenna parameters. It is found that these algorithms are more adequate to accomplish and are adaptable than other methods in the synthesis of reconfigurable arrays and this makes the researchers rely and adopt the latest developments in the field of evolutionary algorithms. To quote a few, Genetic Algorithm [2, 7, 8, 11], PSO [3, 12, 13], and Differential Evolution [5, 9, 10] are found to be very successful. They have shown their superiority in various beams, namely, pencil, flat top, and cosecant squared beams.
\[F_i = \begin{cases} D_{pen}^{i,m} - D_{d}^{i,m}, & \text{if } D_{pen}^{i,m} > D_{d}^{i,m} \\ 0, & \text{if } D_{pen}^{i,m} \leq D_{d}^{i,m} \end{cases} \]

(4)

where \(i = 1, 2, 3 \) are the parameters, namely, SLL in dB, HPBW in degrees, and beamwidth at SLL in degrees of pencil beam.

The other term in the RHS of (3) is written as below:

\[F_j = \begin{cases} D_{sec}^{j,d} - D_{ref}^{j,d}, & \text{if } D_{sec}^{j,d} > D_{ref}^{j,d} \\ 0, & \text{if } D_{sec}^{j,d} \leq D_{ref}^{j,d} \end{cases} \]

(5)

where \(j = 1, 2, 3 \) and 4 refers are the parameters, namely, SLL in dB, HPBW in degrees, beamwidth at SLL in degrees, and the ripple in the flat top pattern \((-15^\circ \leq \theta \leq 15^\circ)\) in dB. These parameters and their desired specification values are given in Tables 1 and 2. Moreover, in the above equations, the superscript \(pen \) represents the specification for the pencil beam pattern and the superscript \(sec \) represents the specification for the flat top/sector beam pattern. The term \(D_{sec} \) represents the desired value and \(D_{ref} \) represents the obtained value for each specification parameter. The weight \(w_j \) is kept to unity for all the values of \(j \), except when dealing with the ripple value. The weight for the ripple value is chosen to be 10. The reason for choosing a weight for ripple value parameter is to produce a good shape for the flat top portion in the flat top pattern. A new term in the fitness function is added to examine the effects of mutual coupling in terms of Dynamic Range Ratio (DRR), which is given by

\[\text{Fit } 2 = \text{Fit } 1 + 10 \times (DR_{d} - DR_{c})^2 \]

(6)

where the second term in the above function deals with amplitude DRR which is defined as the ratio of the maximum to the minimum value of the amplitude excitations. \(DR_{d} \) refers to desired amplitude DRR and \(DR_{c} \) refers to obtained amplitude DRR. By reducing this ratio, the differences between the successive excitation amplitudes of the array elements are reduced thus diminishing the effects of mutual coupling. High importance is given to this term by multiplying the differences by a factor of 10.

3 Algorithm Used

Inspired by the flocking behavior of the birds, Eberhart and Kennedy developed the Particle Swarm Optimization technique [12]. In the past decades, this algorithm found itself very much successful in solving a variety of optimization problems in different disciplines. However, because of the problems involved in convergence of the global minimum value, many variations in the steps involved in this algorithm resulted in its new versions and they gathered importance in many fields. One of the versions is the Quantum Particle Swarm Optimization, which is inspired by quantum mechanics behavior. It emerged as one of the best versions of PSO, because of its various advantages like simplified equations in the algorithm, fewer control parameters, quick convergence, etc. In QPSO, the state of the particle is defined by a wave function. This is the primary difference with the PSO in a way that in PSO, the state/position of the particle is defined by the position and velocity of the particle and influenced by social and cognitive factors. The probability that a particle appears in a particular state is obtained from the probability density function, which in turn relies on the potential field.

The QPSO algorithm [14-16, 21-22] is given as follows:

(i). The positions of all the particles in the population are randomly initialized.

(ii). All the particles are appraised based on the fitness values and the personal best \(pb \) is chosen. If the current value from the fitness function is better (minima in this problem) than the previous value, then the previous value is substituted with the current one.

(iii). The overall mean best \(mb \) position of all the particles is given by

\[mb = \frac{1}{P} \sum_{p=1}^{P} w_p \]

(7)

(iv). The above steps are utilized for the complete population and the final obtained best fitness value is regarded as the global best \((gb) \), if it’s is better than the original fitness value.

(v). The positions of a particle are updated using the following equation

\[x_{j+y}^{t+1} = x_j^{t} + \beta \left[mb_{j}^{t} - x_j^{t} \right] \ln(1/u_{j}^{t}) \]

(8)

where \(\beta \) is the contraction expansion coefficient whose value is chosen as 0.75.

(vi). The particle’s vector local focus is given by

\[x_{j}^{t} = ran1_{j} \times (pb_{j}^{t}) + (1 - ran1_{j}) \times (gb) \]

(9)

(vii). If \(ran1 \), \(ran2 \), \(ran3 \), \(ran4 \), and \(ran5 \) are the uniform random numbers and \(X'_{min} \) and \(X'_{max} \) are the desired minimum and maximum limits, updating of position of the \(j \)-th dimension of \(i \)-th particle using (10) and imitate steps (ii) to (vi) is done till \(gb \) is acquired.

\[X'_{j} = \begin{cases} \left(x_{j}^{t} \right) + \left(0.5 \times ran2_{j} \right) \times \left(X'_{max} - X'_{min} \right) \times \left(U(0,1) \right) \right) \left(1 - \left(run_{3} \right) \right) \left(\ln(1/u_{j}^{t}) \right) \\ \left(x_{j}^{t} \right) + \left(0.5 \times ran2_{j} \right) \times \left(X'_{max} - X'_{min} \right) \times \left(U(0,1) \right) \right) \left(1 - \left(run_{3} \right) \right) \left(\ln(1/u_{j}^{t}) \right) \end{cases} \]

(10)

If \(X'_{j} < X'_{min} \), then

\[X'_{j} = X'_{min} + 0.25 \times \left(ran4_{j} \right) \times \left(X'_{max} - X'_{min} \right) \]

(11)
else

\[X'_{ij} = X'_{	ext{max}} - 0.25 \times \text{ran} \times (X'_{\text{max}} - X'_{\text{min}}) \]

(12)

Equations (11) and (12) are being used to maintain the position within a certain limit in order to avoid any sort of explosion of particles.

4 Results and Analysis

A linear array of 20 isotropic antennas each separated by a distance of half wavelength from its neighboring antennas for the generation of both the pencil beam and the flat top beam radiation patterns is taken for consideration. Since even symmetry is there from the center of the array, it needs only 10 amplitude excitations lying between 0 and 1, and 10 phase excitations lying between -180° to +180° to be optimized. Out of each 20-element vector obtained from the algorithms after minimization of the fitness equations, the first 10 values are scaled to 6-bit discrete quantized amplitude values and the remaining 10 values are scaled to 6-bit discrete quantized phase excitation values. The following settings are used for the simulations with Matlab software. Two cases are discussed below with and without the amplitude DRR constraint.

4.1 Case (i)

The simulations are done for the fitness function \(\text{Fit1} \) using QPSO and other variants of PSO algorithms. The number of particles in the population is 400 and the total number of iterations is 1000 for all the algorithms along with the same number of function evaluations. The upper and lower boundaries are set to the maximum upper and lower boundaries of the input variable. The variants of the PSO algorithm have the same acceleration constants [2] as well as the same number of maximum function evaluations. In UPSO [19, 20], \(u \) is kept equal to 0.2. The equations that are used for RPSO is taken from [18]. For LPSO, the inertia weight is allowed to linearly decrease from 0.9 to 0.4. Since the results depend on the initial seed values of the algorithms, care is taken in such a way that the best results are chosen from a set of 20 results obtained from different initial seed values for all the algorithms. The amplitude excitations are controlled to quantized values using 6-bit digital attenuators between 0 and 1 for both the beam patterns. All the elements’ phase excitations are kept at 0° for pencil beam pattern and are varied between -180° and 180° in quantized values for flat top beam using 6-bit digital phase shifters. Table 1 shows the simulated results for Pencil beam radiation pattern and flat top beam radiation pattern without Dynamic range ratio constraint. Fig. 2 shows the corresponding Normalized power pattern.

Table 1 shows that QPSO succeeded completely in producing the expected values of parameters. Even though other algorithms tried using their versatility in bringing their outputs to the expected ones, they were able to bring only a few parameters to the expected value, but not all completely. In other words, the best fitness value became zero only for QPSO algorithm. These values are obtained from the best run out of 20 different runs. Even the statistical parameters also prove that the mean value, as well as standard deviation of QPSO, is best when comparing with other algorithms.

4.2 Case (ii)

The simulations are done for the fitness function \(\text{Fit2} \) and the settings that are used for Case (i) are used here. Here, the value of the desired DRR is chosen to be 6. The reason for choosing this value is to try out a value of DRR, which is less than or equal to 60% of the max DRR value obtained from case (i). In this case, the mutual coupling effects can be reduced to around 60% in the power patterns obtained from the case (i). Table 2 shows the simulated results for Pencil beam radiation pattern and flat top beam radiation pattern with an expected DRR of less than or equal to 6. Fig. 3 shows its corresponding normalized power pattern.
D. Jamunaa et al.

Table 2 Simulated results for pencil beam radiation pattern and flat top beam radiation pattern with dynamic range ratio constraint.

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Parameters</th>
<th>Desired values</th>
<th>Obtained values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat top beam</td>
<td>SLL in dB</td>
<td>-25</td>
<td>-23.7467</td>
</tr>
<tr>
<td></td>
<td>HPBW in degrees</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Beamwidth at SLL in degrees</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Ripple (in dB; -15° ≤ θ ≤ 15°)</td>
<td>0.5</td>
<td>-0.63766</td>
</tr>
<tr>
<td>Pencil beam</td>
<td>SLL in dB</td>
<td>-25</td>
<td>-25.1253</td>
</tr>
<tr>
<td></td>
<td>HPBW in degrees</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Beamwidth at SLL in degrees</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Both beams</td>
<td>Amplitude DRR</td>
<td>6.0</td>
<td>6.11</td>
</tr>
<tr>
<td>Statistical Parameters for both beams</td>
<td>Global fitness value</td>
<td>NA</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>NA</td>
<td>35.56</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>NA</td>
<td>142.7</td>
</tr>
</tbody>
</table>

Table 3 Amplitude and phase distributions obtained using the QPSO algorithm.

<table>
<thead>
<tr>
<th>Element Numbers</th>
<th>Amplitude distribution</th>
<th>Phase distribution in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without DRR</td>
<td>With DRR</td>
</tr>
<tr>
<td>1 & 20</td>
<td>0.0938</td>
<td>0.1406</td>
</tr>
<tr>
<td>2 & 19</td>
<td>0.1563</td>
<td>0.1563</td>
</tr>
<tr>
<td>3 & 18</td>
<td>0.2813</td>
<td>0.2500</td>
</tr>
<tr>
<td>4 & 17</td>
<td>0.3594</td>
<td>0.2969</td>
</tr>
<tr>
<td>5 & 16</td>
<td>0.4375</td>
<td>0.2656</td>
</tr>
<tr>
<td>6 & 15</td>
<td>0.6875</td>
<td>0.4531</td>
</tr>
<tr>
<td>7 & 14</td>
<td>0.9219</td>
<td>0.6406</td>
</tr>
<tr>
<td>8 & 13</td>
<td>0.8906</td>
<td>0.6875</td>
</tr>
<tr>
<td>9 & 12</td>
<td>0.7969</td>
<td>0.7031</td>
</tr>
<tr>
<td>10 & 11</td>
<td>0.9219</td>
<td>0.8594</td>
</tr>
</tbody>
</table>

Table 2 shows that QPSO succeeded in producing many parameters to the expected value. Even though CLPSO matched better in a few aspects, it is the ripple value that made QPSO more acceptable, as it produced the value closer to the expected. These values are obtained from the best run out of 20 different runs. Even the statistical parameters also prove that the mean value of QPSO is best when comparing with other algorithms. The discrete amplitudes, as well as the discrete phase distributions, are shown in Table 3. Fig. 4 shows the plot between fitness values and number of iterations for both the discussed cases (i) and (ii) using QPSO and other variants of PSO algorithms. It is found that the convergence speed of QPSO is best in case (i) and fitness value produced is best in both cases than other algorithms. The mean of the fitness is 15.99 case (i) and 35.56 for case (ii) for QPSO, which is better than others. Moreover, the final fitness values are less for QPSO when compared with other variants of PSO. This also proves that QPSO performed better than other variants of PSO in the design of reconfigurable arrays.

5 Conclusion

This paper dealt with the synthesis of dual beam
radiation pattern simultaneously in a linear antenna array constructed using isotropic elements with common variable discrete amplitude excitations and different variable discrete phase excitations. QPSO algorithm was successfully used for the generation of the element’s amplitude and phase excitations in quantized values based on the fitness functions. It was compared with few other variants of PSO algorithms for evaluating its performance and the experimental results showed its superiority over other algorithms. The obtained patterns and their corresponding amplitude, as well as phase distributions, greatly simplified the network because of symmetric nature. This also would help in keeping the costs very low as well as resulting in simple control circuitry. In addition to the advantages as well providing the expected radiation pattern parameters, amplitude dynamic range ratio was also considered for the reduction of mutual coupling and the results obtained were considerable to a very good extent. This algorithm can also be applied for the synthesis of multi-beams using non-isotropic elements as well as with other geometries of antenna arrays like circular arrays, rectangular arrays, etc.

References

Fig. 4 Fitness values versus the number of iterations using QPSO and other swarm algorithms for cases (i) and (ii).

D. Jamunaa was born in Tamil Nadu, India. She obtained her B.E. in Electronics and Communication Engineering from Bharathiar University, Coimbatore, and obtained her Masters in Microwave and Optical Engineering from AC College of Engineering and Technology, Karaikudi, India. She has been involved in teaching subjects related to Electronics and Communication Engineering. Currently, she is pursuing her Ph.D. in the Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India. Her research areas are antenna arrays and evolutionary algorithms.

G. K. Mahanti was born in the year 1967 in West Bengal, India. He obtained his B.E. in Electronics and Communication Engineering in 1988 from NIT, Durgapur, India, M.E. in Electronics System and Communication in 1994 from NIT, Rourkela, India, and Ph.D. (Engg.) from IIT, Kharagpur, India. He has more than 33 years of teaching and research experience. Presently he is working as a Professor, Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India. He is a senior member of IEEE, USA. He has published approximately 80 papers in journals and in national and international conferences. He was the reviewer of many international journals and many conferences. He was also the Program Committee Member of many national and international conferences. His biography is listed in Marqui’s Who is Who in the world. His research area is array antenna synthesis, evolutionary algorithms, and electromagnetics.

F. N Hasoon was born in Basrah, Iraq in 1973. He obtained his Ph.D. degree in Electrical, Electronics, and System Engineering from University Kebangsaan Malaysia in 2008. He is currently an Assistant Professor in the Department of Electrical and Communication Engineering in the College of Engineering, NUST, Sultanate of Oman. He has more than 15 years of academic experience in teaching and research. His research areas include communication systems, optical communications, and coding techniques.