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Abstract: In this paper, we propose an efficient approach to design optimization of analog 

circuits that is based on the reinforcement learning method. In this work, Multi-Objective 

Learning Automata (MOLA) is used to design a two-stage CMOS operational 

amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and 
area so as to achieve minimum Total Optimality Index (TOI), as a new and comprehensive 

proposed criterion, and also meet different design specifications such as DC gain, Gain-

Band Width product (GBW), Phase Margin (PM), Slew Rate (SR), Common Mode 

Rejection Ratio (CMRR), Power Supply Rejection Ratio (PSRR), etc. The proposed 

MOLA contains several automata and each automaton is responsible for searching one 

dimension. The workability of the proposed approach is evaluated in comparison with the 

most well-known category of intelligent meta-heuristic Multi-Objective Optimization 

(MOO) methods such as Particle Swarm Optimization (PSO), Inclined Planes system 

Optimization (IPO), Gray Wolf Optimization (GWO) and Non-dominated Sorting Genetic 

Algorithm II (NSGA-II). The performance of the proposed MOLA is demonstrated in 

finding optimal Pareto fronts with two criteria Overall Non-dominated Vector Generation 
(ONVG) and Spacing (SP). In simulations, for the desired application, it has been shown 

through Computer-Aided Design (CAD) tool that MOLA-based solutions produce better 

results. 
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1 Introduction1 

HE main field of this paper is related to three topics: 

integrated circuit design, meta-heuristic 

optimization methods, and the use of Learning 

Automata (LA) based on the reinforcement learning 

approach. Its main topic is the relationship between the 

Multi-Objective Learning Automata (MOLA) in terms 

of optimal design of operational amplifiers (op-amps), 

which are one of the most used modules in analog 
integrated circuits. In the following, in three different 

parts, these main topics are described separately. 
   Op-amps are one of the most important sub-sections 
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in analog circuits. A two-stage op-amp is used widely 

for various applications due to its robustness and 

structure. For example in [1], a novel low-voltage two-

stage operational amplifier employing resistive biasing 

is presented. In [1], for each stage, an independent 

common-mode feedback a circuit has been used which 

reduced the power consumption and increased output 
voltage swing. Analog circuit design is a challenging 

process which involves the characterization of complex 

trade-offs between nonlinear objectives and the 

specifications such as DC gain, Gain-Band Width 

product (GBW), Phase Margin (PM), Slew Rate (SR), 

Common Mode Rejection Ratio (CMRR), Power 

Supply Rejection Ratio (PSRR), etc. Due to the 

complexity of analog circuits, their manual design with 

high performance and low power is not simple. 
Therefore, intelligent optimization methods are required 

for automation and optimal sizing of CMOS analog ICs 

design [2]. One of the most well-known categories is 

meta-heuristic algorithms. 

T 
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   Meta-heuristic algorithms have high performance and 

the ability for solving optimization problems. The 

purpose of meta-heuristic algorithms is to find proper 

values for the decision design parameters of an 

optimization problem to optimize one/multiple objective 

function [3]. These methods are being developed to 

design the size of analog circuits. With the advancement 

of ICs manufacturing technology, it is important to 

design circuits with high accuracy and in the smallest 

size possible. Heuristic-based approaches perform 

circuit design in the form of the Single-Objective (SO) 
and Multi-Objective (MO) optimization. Usually, 

analog circuits have several conflicting performances. 

For this reason, the Multi-Objective Optimization 

(MOO) has also been introduced for the automated 

design of CMOS analog ICs. It would be useful to 

produce a set of results for the designers with the best 

trade-off between performances. Unlike SO 

optimization methods, a MOO algorithm attempts to 

find non-dominated solutions during the optimization 

process. In designing amplifier circuits, power and area 

conflict with each other; so that by decreasing the 
channel length, the speed of MOSFETs increases 

(which means reducing the delay). This increase in 

speed leads to increased power consumption. Therefore, 

MO techniques are used simultaneously to reduce the 

power consumption and area of MOSFETs [4]. Meta-
heuristic methods are applied for MO analog circuit 

optimizations. 
   One of the important MO methods is the NSGA-II 

evolutionary algorithm. NSGA-II was proposed in 2002 

by Deb [5]. It is a modified version of the Genetic 

Algorithm (GA) [6] with the elitist approach. The GA 

concept is developed from natural evolution process. 

Based on the Darwin theory “survival of fittest”, the GA 

mimics the natural evolution method. The elitism 

approach used to copy best parents and offspring (i.e., 

child) produce by the genetic operators. In NSGA-II 

algorithm, non-dominated solution is obtained from the 

current parents and their offspring using objective 
functions. This algorithm has shown its ability in many 

applications. Therefore, in this paper, it is used as one of 

the competing algorithms and is assigned in a sub-

section [5]. 

   Several studies have been carried out in the design and 

optimization of circuits, which have achieved favorable 

results by providing approaches based on circuit theory 

and intelligent optimization techniques. For example, 

GSA-PSO algorithm was used to optimization 

differential amplifier circuit with current mirror load 

and CMOS two-stage operational amplifier circuit [7]. 

In [8], a new approach is proposed to automatically size 
three conventional amplifier circuits. In order to 

enhance the performance of automatic sizing of analog 

circuits, a new shrinking circles technique has been 

used [9]. A Weighted Expected Improvement based 

Bayesian Optimization (WEIBO) is proposed for the 

automated analog circuit sizing [10]. The hierarchical 

Non-dominated Sorting Genetic Algorithm II (hNSGA–

II) [11] and Improved Brain Storm 

Optimization (IMBSO) [12] algorithms are proposed for 

MOO of circuits. An Inversion Coefficient (IC) 

optimization-based analog/RF circuit sizing approach is 

proposed in three different circuits [13]. One of the 

other important approaches that is ignored in the 

optimal design of analog circuits and can be applied 

along with meta-heuristic algorithms is LA-based on 

reinforcement learning. 

   LA is a reinforcement learning approach that is an 
unsupervised optimization method and one of the main 

components in adaptive learning systems. It is an 

important research area of Artificial Intelligence (AI) 

and has a wide range of applications in, for instance 

data mining [14,15], image processing [16,17], and 

optimization [18-20]. The general technique of choosing 

an action from a series of actions is related to the 

highest reward compared to other actions. This result is 

achieved through interactions with the environment in 

terms of a sequence of repetitive feedback cycles. By 

learning to choose the optimal action, the automata 
adapt themselves to the environment, needless to have 

detailed information about the environment model [21]. 

The idea of LA was first introduced by Tsetlin to model 

biological learning mechanism [22]. In LA research, 

various types of LA-based algorithms have been 

developed. In this work, we have used the MO version 

of Learning Automata (MOLA) method [23] for the 

automated design of a two-stage CMOS op-amp. This 

paper focuses on the design of circuit parameters, 

considering the assumption of the appropriate topology 

is selected by the designer. 
This paper contains several contributions that are listed 

as follows: 
 A new application of LA for MOO in the optimal 

design of CMOS analog IC. 
 Proper definition of design parameters and 

objective functions to create an effective trade-off 

between performance characteristics. 
 Implementation of an automated design simulation 

tool by creating a link between two usable 

software environments. 

 Providing a comprehensive criterion to evaluate 

the proposed approach due to the simultaneous 

effect of objectives and design specifications on 

the optimization problem. 

 The statistical evaluation of the proposed approach 

based on numerical results obtained from circuit 

simulations with other competing algorithms. 
   This paper is organized as follows. Section 2 

introduces our proposed tool, case study, and along with 

a description of the MOLA method and rival meta-
heuristic MOO algorithms. In Section 3, the 

considerations for design and optimization of the 

proposed circuit are provided. The simulation results are 

reported in Section 4. Finally, in Section 5 the 

conclusion is expressed. 
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2 Meta-heuristic Approaches for Multi-Objective 

Simulation-based Optimization 

   In real applications, we constantly deal with problems 

that under specific circumstances are faced with several 

objective functions simultaneously. These issues are in 

the field of MOO. In other words, the role of a MOO is 
to simultaneously optimize two or more objective 

functions. These objectives are usually in trade-off. So, 

the meta-heuristic approaches are the best candidate for 

solving them. In this method, unlike the SO method, 

which only receives an acceptable solution, there is a set 

of optimal solutions, known as Pareto-optimal solutions 
or Pareto-front. In such problems, a set of solutions, 

which complies with each objective function with an 

acceptable level, is defined as optimal solutions. 

   In this section, an automated MO simulation-based 

optimization approach is proposed for intelligent and 

optimal design of analog IC. The proposed Computer-

Aided Design (CAD) tool is applied for this purpose. It 

should be noted that analog circuits are simulated by the 

HSPICE simulator. By connecting MATLAB and 

HSPICE software, the optimization process is 

done (Fig. 1). In the beginning, design parameters and 

design specifications are determined by the designer, 
while a reasonable predefined range is also taken into 

account for each design parameter. Note that design 

parameters consist of the length and width of the CMOS 

transistors, capacitor values, and biasing current. 

   Continue on this section, the desired amplifier circuit, 

the MOLA method with other MOO algorithms 

employed is explained. 

 

2.1 Two-stage CMOS Op-Amp 

   In order to show the performance of the proposed 

MOLA method in the design of analog circuits, a two-

stage CMOS op-amp in 0.25μm technology is used. 
There are 13 design parameters in this circuit. In Fig. 2, 

a two-stage CMOS op-amp is shown with Miller 

compensation capacitance. Miller's compensation 

technique is used to frequency compensation in this 

amplifier to utilize bandwidth, phase margin, and circuit 

stability. This movement of the amplifier pole to reduce 

the frequency of dominant pole improves the amplifier 

stability. Therefore, a low-frequency pole can be 

established with moderate capacitor value, saving 

considerable chip area [24]. Design parameters in this 

circuit include transistor widths and lengths, biasing 
current (Ibias), compensation capacitance (Cc), and load 

capacitance (CL). Here, the appropriate matching 

relations are also imposed as M1 ≡ M2, M3 ≡ M4, and 

M5 ≡ M8. Furthermore, the positive power supply (VDD) 

and the negative power supply (VSS) are equal to 2.5V 

and -2.5V, respectively [8].This circuit set values for the 

CC and CL that provide CC > 0.22CL [7]. Desired 

specifications (small-signal differential voltage 

gain (DC gain), Gain-Band Width product (GBW), 

Common Mode Rejection Ratio (CMRR), Power 

Supply Rejection Ratio (PSRR), etc) are in accordance 

with Table 1. 

 

 

Fig. 1 The general structure of the automated circuit design 
simulation tool based on the intelligent MOO. 

Fig. 2 The proposed two-stage CMOS op-amp circuit [8]. 

 

Table 1 Desired characteristics of two-stage CMOS OP-AMP. 

Design specifications Constraints 

DC gain [dB] ≥70 

GBW [MHz] ≥2 

Phase Margin [deg] ≥50 

Slew Rate [V/µs] ≥1.5 

Output Swing [V] ≥2 

CMRR [dB] ≥70 

PSRR+ [dB] ≥70 

PSRR- [dB] ≥70 

M1, …, M8 Saturation 
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   In this paper, for the first time, the MOLA method is 

used along with four rival MOO algorithms (called 

NSGA-II [5], MOPSO [25], MOIPO [26], and 

MOGWO [27]). In the following, the description of the 

proposed algorithm is presented with four competing 

algorithms. 

 

2.2 Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) 

   In NSGA-II, sorting and ranking all solutions are 

created by the main features (diversity, convergence, 
and robustness of solutions in the Pareto-front) in order 

to choose better solutions to create new offsprings. The 

NSGA-II is based on fast non-dominated sorting and 

crowding distance assignment methods. The NSGA-II 

creates a population of individuals and then creates a 

non-domination level to rank and sort each individual. 

Then, it utilizes cross-over, mutation, and selection 

operators to produce new offspring. Subsequently, the 

parents and offsprings are combined before partitioning 

the new combined pool into fronts [5]. The flowchart of 

the NSGA-II algorithm is depicted in Fig. 3. 
 

2.3 Multi-Objective Particle Swarm Optimization 

(MOPSO) 

   PSO is one of the most important intelligent 

optimization algorithms [28]. One of the most popular 

and effective proposals for MO versions of the PSO 

optimization algorithm is presented in [25]. The position 

of the non-dominated particles is stored in a repository. 

Then, the search space is divided into some hypercubes. 

These non-dominated particles are located in 

accordance with the values of their objective functions 
in the hypercubes. While the maximum number of 

iterations is not provided, the speed and position of the 

particles are updated. Then the contents of the 

repository are updated. This update consists the 

inserting all the currently non-dominated locations in 

the repository and the removal of the dominated 

locations from it during the process. Since the 

repository size is limited, whenever it gets full, 

hypercubes that contain more particles in themselves are 

identified and the excess particles are randomly 

removed from the hypercubes [25]. The flowchart of the 

MOPSO algorithm is shown in Fig. 4. 

 

2.4 Multi-Objective Inclined Planes system 

Optimization (MOIPO) 

   The search factors in the Inclined Planes system 

Optimization (IPO) algorithm are the number of small 

balls that are located on a sloping surface without 

friction. Three attributes of position, height, and angels 

in relation to other balls are considered for each ball. 

The main idea of this algorithm is to assign a height to 

each ball according to its objective function. Height 

values represent the potential energy of the balls, and 

the movement of the balls downwards converts potential 

energy to kinetic energy and causes acceleration. In fact, 

agents tend to tine their potential energy and to reach 
the minimum point(s). The position of each agent is a 

possible solution in the problem space [29]. The MO 

version of the algorithm has been created in [26]. Also, 

Fig. 5 shows its flowchart. 

 

2.5 Multi-Objective Gray Wolf Optimization 

(MOGWO) 

   The Gray Wolf Optimization algorithm is inspired by 

the hierarchical structure of the wolf position in the 

group as well as its structure and duties in hunting. In 

this algorithm, the search factors corresponding to 
wolves, the hunting process corresponds to the process 

of finding the optimal response and the location of the 

hunt corresponding to the optimal response 

position [30]. MOGWO flowchart is shown in Fig. 6. 

 

 
 

Fig. 3 Flowchart of the NSGA-II algorithm. Fig. 4 Flowchart of the MOPSO algorithm. 
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Fig. 5 Flowchart of the MOIPO algorithm. Fig. 6 Flowchart of the MOGWO algorithm. 

 

  
Fig. 7 The structure of learning automata for MOLA [23]. Fig. 8 The two possible paths taken by a search starting at 

dimensional state xi on the i-th dimension [23]. 

 

2.6 Multi-Objective Learning Automata (MOLA) 

   The MOLA is found more practicable and efficient in 

finding accurate solutions for complex optimization 

problems. The number of automata used in the MOLA 

method is equal to the dimensions of the problem. For 
N-dimensional problem, the MOLA includes N 

automata [23]. The structure of learning automata for 

MOLA has been shown in Fig. 7. Each automaton is 

responsible for searching one dimension and acts 

independently in the environment. 

   The i-th learning automata is defined by <xi, Ai, r, Pi, 

U>, where χi = {xi} is the set of possible states on the i-

th dimension. Also, xi is the dimensional state on the i-

th dimension (xi ∈ [xmin,i, xmax,i]), the minimum and 

maximum values in the i-th dimension are xmin,i and 

xmax,i, respectively. In MOLA, Ai = {al,η} is the set of 
possible actions which the learning automata can take 

on dimension i, al,η indicates that an action moves 

left (l = 1) or right (l = 2) and η is step length. Note that 

r is a scalar value and shows reinforcement signal. It 
produced through the environment to indicate the 

quality of the action of moving xi in a step length on the 

selected path. Also, Pi consists of two probabilities p1 

and p2. Where p1 shows the probability of selecting the 

left path or the right path on i-th dimension. Assume 

that the right path is selected, the probability of 
choosing a cell between the k cells located on the path 

determines by the probability of p2. Also, U is a scheme 

adopted to calculate the probabilities of actions, P. 

   In the MOLA method, each dimension is divided into 

D cells. This means that χi is divided into D subsets and 

subset includes all dimensional states located in the cell. 

Therefore, N×D cells are produced for an N-dimensional 

search space. Considering the xmin,i and xmax,i are 

minimum and maximum values in the i-th dimension, 

respectively. Also, D is the number of divisions of each 

cell. Then, ωc,i is the width of a cell in i-th dimension, 

and it is calculated by (1). 
 

max, min,

,

i i

c i

x x

D



   (1) 

 

   In the beginning of the action search, in order to 
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estimate the choice of a better solution on the path, we 

should be able to choose one of two possible directions. 
In other words, the path values must be determined by 

the cell values on the path. 

   As shown in Fig. 8, the value of L2(xi) is specified by 

the values of k adjacent cells on the right path, where k 

is the integer predefined value and ci,j is j-th cell in i-th 

dimension. Also, j is calculated by (2). 
 

min,

,

floor
i i

c i

x x
j



 
   

 

  (2) 

 

   The value of a path can be estimated as (3). Where 
v*

i,m presents the m-th element of the vector which is 

placed on path l. Also, λ1 is calculated with 0 ≤ λ1 ≤ 1 

and
1

1 1

1 1 1

1

(1 ) 1
k

m k

m

  


 



   , subject to (1-λ1)λ1
k-2 ≥ λ1

k-1. 

 

1
1 * 1 *

1 1 , 1 ,

1

( ) (1 ) 1, 2
k

m k

l i l m l k

m

L x v v l  


 



   
 

(3) 

 

   Two probabilities of p1 and p2 are obtained from (4) 

and (5). Where V(xi) is cell value. Temperature τ creates 

a trade-off between exploration and exploitation. 
 

 

( )

1 ( )2

1

( ) 1,2

l i

s i

L x

l i L x

s

e
p L x l

e







 



 (4) 

,

,

( )

2

2 ,
( )

2

1

( ) 1,2 , 1,...,

i x ci i j s

i x ci i j z

V x

i j s
V x

k

z

e
p c l s k

e





 

 





  


 

(5) 

 

   By choosing a cell, an action moves to the new cell 

with a step length that can be denoted as η. Which is 

calculated in accordance with (6). In (6), the distance (in 

the form of the number of cells) between the current cell 

and the selected cell is ξ and ζ is a random number (ζ ∈ 

(0, 1]). 
 

  ,c i      (6) 

 

   Therefore, when the L1 is selected, current 

dimensional state xi moves to xi = xi – η and with the 

choice of L2, xi moves to xi = xi + η. Then a 
reinforcement signal is used to check the new 

dimensional state xi. When dimensional state xi moves 

to x'i, the i-th element of the current state X(xi) is 

replaced by X(x'i). Reinforcement signal is assigned to 

cell ci,j according to (7). In (7), r = 1 indicates that the 

solution is desirable and r = 0 presents an undesirable 

response. 
 

 
1, if ( ) is a non-dominated solution

( )
0, otherwise

i

i

X x
r X x


  


(7) 

 

   The reinforcement signal is applied to update the cell 

value of cell ci,j which dimensional state x'i. Considering 

that Lmax(xi) = max{L1(xi), L1(xi)} and Lmin(xi) = 

min{L1(xi), L1(xi)} are the two estimated path values at 

xi.Also, weights α1 and (1–α1) present the influence of 

previous estimates and path values on the new estimate, 

respectively. Then, the value of cell ci,j, where the 

current dimensional state xi locates, is updated as (8). In 
(8), the Lmax(xi) has a greater influence on the cell value 

than Lmin(xi), therefore parameter λ2 should be given 

such that ((1–λ2) > λ2). 
 

  

        

, ,1

1 2 max 2 min

( ) ( )

1 1

i i j i i ji x c i i x c

i i

V x r X x V x

L x L x



  

  

   
 

 
 

(8) 

 

   A repository saves all non-dominated solutions in an 

elite list, L. If X(x'i) dominates all of the L solutions, it is 

known as Xbest and then L is updated. In (9), the relation 

between X and Xbest is shown. 
 

( ), if ( ) is a non-dominated solution

, otherwise

i i

best

best

X x X x
X

X

 
 


 

(9) 

 

where 
 

 1 1 1( ) ,..., , , ,...,i i i i NX x x x x x x 
   (10) 

 

Then L is updated according to (11). Where B is set of 

the solutions which is dominated by Xbest 
 

  , if 1

, otherwise

bestL X B r
L

L

  
 


 (11) 

 

   To increase the variety and explore the solutions of 

radiation solutions, we apply perturbations according to 

(12). Where β is a random variable (β ∈ [0, 1]).  
 

( )bestX X X X    (12) 
 

   Also, Δ is calculated according to (13). Where ζ is a 

random variable (ζ ∈ [0, k/D]). The input to the sign 

function is the subtraction of the two adjacent cell 

values of ci,j, which is represented by (14) 
 

max, min,sign( ) ( )i i ix x     (13) 

, 1 , 1
( ) ( )

i i j i i ji y c i z cV y V z
     (14) 

 

The sign function acts as (15) 
 

1, 0
sign( )

1, 0







 

 
 (15) 

 

   The Nfemax is a given maximum number of objective 

functions evaluations by which the MOLA 

computations proceed in episodes. 
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3 The Considerations for Design and Optimization 

of the Proposed Circuit 

   The approach is based on intelligent sizing to power 

and area optimization using the proposed meta-heuristic 

methods. So, in this Section, the objective functions, the 

proposed new index, and Pareto-front evaluation criteria 

are presented. 

 

3.1 Objective Functions 

   In this paper, intelligent methods are used to optimize 

the two important and essential indicators of amplifier 
circuits that are in conflict with each other, namely 

power consumption and area. These objective functions 

are considered as follows: 

o Minimizing power consumption, 

o Minimizing the area. 

 

3.2 Total Optimality Index (TOI) 

   In this paper, due to the diversity and multiplicity of 

qualitative indicators in the design problem, a total 

criterion is presented that illustrates the success of the 

optimization method. This criterion can be used to 
investigate the performance of the proposed 

optimization method in the design problem. Therefore, a 

criterion called Total Optimality Index (TOI) is 

proposed. The TOI has been introduced to express the 

impact of the design specifications and the objective 

functions of the problem. The lower value of TOI 

represents the more favorable response. In the paper, 

TOI is not considered as an objective function. 

   The main purpose of the proposed index is to provide 

a comprehensive criterion for verifying the superiority 

and success of an intelligent optimization method 
employed in the optimal design of the problem; so that 

the audience, through the numerical values of this index, 

can grasp the definitive and comprehensive success of 

the proposed approach in this paper. Therefore, its 

scientific basis is based on the merging of the 

parameters the objective functions, problem constraints, 

and some mathematical tools in such a way as to 

achieve the optimal value of each of the parameters can 

be found in the minimum/maximum value of the index. 

For this purpose, in addition to incorporating the 

optimal values of the objective functions, the circuit 

constraints are also intelligently taken into account. The 
resulting values of this index are to be minimized, and 

its low value represents the success of an optimization 

method to overcome the design challenge and to achieve 

global optimal solutions while satisfying the exact 

constraints of the problem. 

   Assuming that A is the total area of the MOSFET in 

µm2 and P is the power consumption in mW (as the 

objective functions), C is design specifications 

(constraints) and CB is specifications boundary value in 

the problem of designing an amplifier circuit. Then, the 

index is defined as follows: 
 

 
 
 

2normalized [ ]. [ ]

sum

sum B

A m P mW
TOI

C

C


  

 

(16) 

 

In (16), to balance the values of power and area, the 

amount of area is normalized between zero and one and 

due to the negativity of some of the design 

specifications, the |CB| is used. The most desirable 
TOI (minimum) is created by minimizing objective 

functions and maximizing the design specifications. The 

design of the TOI is such that the main focus is on the 

objective functions of the problem and a minor 

improvement in one of them will minimize the TOI. 

 

3.3 Pareto-Front Evaluation Criteria 

   In order to evaluate Pareto-front, two criteria of the 

Overall Non-dominated Vector Generation (ONVG) 

and Spacing (SP) are used. Despite the existence of 

other criteria for studying the quality of the Pareto-front, 

the reason for choosing these two criteria is that there is 
no need to know the real Pareto-front and they are 

produced in accordance with the received Pareto-front. 

 ONVG: The ONVG represents the number of 

optimally non-dominated responses (based on 

Pareto-front) in a MO problem. Where |PFknown| is 

the number of vectors in PFknown (known/current 

Pareto-front). 
 

knownONVG PF  (17) 

 

 SP: The SP numerically represents the spread of 

the vectors in the PFknown and measures the 

distance variance of neighboring vectors in it (as 
(18)). Where di = minj(|f1

i(x)–f1
j(x)|+|f2

i(x)–f2
j(x)|), i, 

j=1,…, n, d  is the mean of all di, and n is the 

number of vectors in PFknown (|PFknown|). So that, 

SP = 0, means that all members are spaced evenly 

apart in [26]. 
 

 

2

1

( )

1

n

i

i

d d

SP
n









 

(18) 

 

4 Simulation Results 

   In this section, the results and analysis are presented 

in the optimization of two-stage CMOS op-amp. All the 

results are reported in the form of the values of fitness 

objective functions, design parameters, design 

specifications, and TOI. The best, worst, mean, and 

variance of the values of the objective functions and the 

TOI are presented for proposed methods in the best run. 

Figures of the Pareto-front and the design specifications 

of the two-stage CMOS op-amp including DC gain, 
Phase Margins, PSRR, and Slew Rate are plotted by the 

proposed methods. In addition, the Pareto indexes and 

the runtime of MOLA performance are analyzed in 
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comparison with other proposed algorithms for the best 

run. All implementations are performed in MATLAB 

2016a MathWorks and HSPICE A-2008.3 under a 

computer system with Intel® Core™ i5-4460U CPU 

@ 3.20GHz, 4GB RAM, and Windows Enterprise 10. 

The vector of design parameters that should be 

determined by the proposed methods is as follows: 
 

1 3 5 6 7 1 3 5 7[ , , , , , , , , , , , ]L C biasX W W W W W L L L L C C I
 

(19) 
 

   The details on design parameters for two-stage CMOS 

op-amp are listed in Table 2. Also, in Table 3 all control 

parameters of the proposed methods in this paper are 

presented. 

   In order to demonstrate the ability of the 

reinforcement learning method to solve the problem of 

circuit optimization, the results are compared with 
several intelligent methods and previous studies. 

   Tables 4-9 show the best run of the algorithms for this 

circuit that is generated by the best TOI. In all tables, 

the bolded responses show the best values in terms of 

design specifications, objective functions, and TOI in 

the best run. A solution marked by a sub-line expresses 

a solution in the desired Pareto-front, which has the best 

TOI (minimum). MOLA method is able to produce the 

minimum area and power consumption with the values 

72.825µm2 and 0.560mW, respectively. The algorithms 
intelligently set values for the CC and CL that provide 

CC > 0.22CL. Additionally, the ability of the MOLA is 

more specific than other algorithms in the TOI. The 

algorithms performance presents an intelligent 

optimization and trade-off between objectives of the 

problem. The variety and the number of presented 
Pareto-front solutions provide a wide range of selection 

for the circuit designer. According to tables, this 

superiority, relative to all the Pareto-optimal solutions 

of algorithms, is achieved with 36.36, 18.18, 18.18, and 

9.09% by MOLA, MOGWO, MOPSO, and NSGA-II, 

respectively. Due to the well-known and widely used of 

NSGA-II, it was expected to perform better than other 

algorithms. Although it has not been able to  
 

Table 2 The range of design parameters. 

Design parameters Lower bound Upper bound 

W [µm] 5 40 
L [µm] 0.25 2 
Ibias [µA] 20 40 
CC [pF] 2 20 
CL [pF] 7 15 
 

Table 3 Control settings. 
Parameters NSGA-II MOPSO MOIPO MOGWO MOLA 

Total Run 20 20 20 20 20 
MaxIt / Nfemax 100 100 100 100 2000 
nPop 20 20 20 20 1 
nRep 20 20 20 20 20 
nGrid 4 4 4 4 4 

α 0.1 0.1 0.1 0.1 0.1 
β 4 4 4 4 4 
γ 2 2 2 2 2 
Pc 0.9 ― ― ― ― 
Pm 0.1 ― ― ― ― 
ηc 2 ― ― ― ― 
ηm 18 ― ― ― ― 
C1 / c1 ― 1.4962 0.1 ― ― 

C2 / c2 ― 1.4962 3.05 ― ― 
w ― 1 ― ― ― 
wdamp ― 0.73 ― ― ― 
shift1 ― ― 100 ― ― 
shift2 ― ― 300 ― ― 
scale1 ― ― 0.03 ― ― 
scale2 ― ― 0.03 ― ― 

a  ― ― ― ∈ [0, 2] ― 

1
r  ― ― ― ∈ [0,1] ― 

2
r  ― ― ― ∈ [0,1] ― 

D ― ― ― ― 500 
k ― ― ― ― 50 

α1 ― ― ― ― ∈ [0, 1] 

λ1 ― ― ― ― 0.5 
λ2 ― ― ― ― ∈ [0, 1] 

τ ― ― ― ― ∈ [0, 0.5] 
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demonstrate its superiority to others, especially the 

proposed method MOLA; but it has in many cases been 

able to provide good results than MOPSO, MOIPO, and 

MOGWO. 

 
Table 4 Optimal design of parameters, specifications, objectives, and TOI for MOLA method. 

MOLA 
Pareto-solutions 

1 2 3 4 … 17 18 19 20 

D
esig

n
 P

aram
eters 

W1/L1=W2/L2 [µm/µm] 5.104/1.654 5.104/1.654 5.104/1.654 5.104/1.654 … 5.104/1.654 5.104/1.654 5.104/1.654 5.104/1.654 

W3/L3=W4/L4 [µm/µm] 6.813/0.537 6.813/0.537 6.813/0.537 6.813/0.537 … 6.813/0.537 6.813/0.537 6.813/0.537 6.813/0.537 

W5/L5=W8/L8 [µm/µm] 9.221/1.479 9.221/1.479 9.221/1.479 9.221/1.479 … 9.221/1.479 9.221/1.479 9.221/1.479 9.221/1.479 

W6/L6 [µm/µm] 25.988/0.735 25.988/0.481 25.988/0.735 25.988/0.580 … 25.988/0.481 25.988/0.481 25.988/0.481 25.988/0.481 

W7/L7 [µm/µm] 12.071/0.797 12.071/0.935 12.071/0.91 12.071/0.91 … 12.071/0.888 12.071/0.882 12.071/0.802 12.071/0.935 

CC [pF] 7.831 7.831 7.831 7.831 … 7.831 7.831 7.831 7.831 

CL [pF] 8.868 8.891 8.868 8.868 … 8.868 8.868 8.868 8.868 

Ibias [µA] 20.037 20.037 20.037 20.037 … 20.037 20.037 20.037 20.037 

D
esig

n
 S

p
ecificatio

n
s 

DC gain [dB] 72.751 72.104 73.808 73.546 … 71.648 71.925 72.098 72.104 

GBW [MHz] 2.110 2.125 2.113 2.124 … 2.127 2.127 2.127 2.126 

Phase margin [deg] 50.596 59.362 50.244 55.904 … 60.616 60.247 59.756 59.394 

Slew rate [V/µs] 3.017 3.020 3.021 3.023 … 3.016 3.018 3.020 3.022 

Output swing [V] 2.306 2.334 2.309 2.331 … 2.341 2.337 2.343 2.334 

CMRR [dB[ 104.156 78.64 103.110 79.807 … 79.363 79.178 78.896 78.644 

PSRR+[dB] 82.222 82.460 82.530 80.819 … 78.621 78.501 78.613 78.690 

PSRR- [dB] 82.892 85.131 85.797 89.585 … 92.825 88.981 92.522 95.485 

O
b

jectiv
es 

Area [µm2] 80.199 75.263 81.563 77.535 … 72.825 73.658 74.624 75.264 

Power consumption 

[mW] 

0.562 0.631 0.560 0.604 … 0.650 0.645 0.637 0.631 

TOI 0.0526 0.0560 0.0530 0.0562 … 0.0567 0.0566 0.0563 0.0560 

 
Table 5 Optimal design of parameters, specifications, objectives, and TOI for MOGWO algorithm. 

MOGWO 
Pareto-solutions 

1 2 3 4 … 8 9 10 11 

D
esig

n
 P

aram
eters 

W1/L1=W2/L2 [µm/µm] 6.689/1.62 5.192/1.159 5.175/1.207 5.245/1.158 … 5.104/1.064 5.242/1.144 5.16/1.115 5.208/1.123 

W3/L3=W4/L4 [µm/µm] 27.493/1.618 21.035/1.122 15.907/0.96 18.37/1.068 … 16.004/0.947 18.21/1.017 16.677/0.989 17.01/0.984 

W5/L5=W8/L8 [µm/µm] 19.377/1.482 13.251/0.972 10.114/0.84 11.801/0.937 … 10.606/0.813 11.716/0.941 10.73/0.876 11.055/0.889 

W6/L6 [µm/µm] 32.483/0.311 24.632/0.302 22.511/0.295 24.377/0.307 … 23.732/0.286 24.942/0.305 23.523/0.294 24.103/0.296 

W7/L7 [µm/µm] 30.656/1.824 20.274/1.283 17.765/1.183 18.52/1.251 … 19.031/1.086 18.83/1.263 18.322/1.18 18.688/1.186 

CC [pF] 5.397 5.014 4.035 4.593 … 4.227 4.398 4.233 4.283 

CL [pF] 10.163 7.785 7.12 7.571 … 7 7.496 7.092 7.21 

Ibias [µA] 20 20.035 20 20 … 20 20.107 20 20.036 

D
esig

n
 S

p
ecificatio

n
s 

DC gain [dB] 74.121 72.214 71.014 72.049 … 70.21 71.836 70.972 71.127 

GBW [MHz] 3.311 3.844 4.661 4.177 … 4.722 4.386 4.601 4.552 

Phase margin [deg] 50.274 51.086 51.864 50.205 … 53.962 50.214 51.982 51.876 

Slew rate [V/µs] 4.095 4.568 5.725 4.984 … 5.503 5.227 5.439 5.379 

Output swing [V] 2.355 2.353 2.343 2.348 … 2.350 2.347 2.346 2.347 

CMRR [dB] 80.3413 78.2213 77.1162 77.7234 … 76.6052 77.7917 77.1882 77.3476 

PSRR+[dB] 77.867 75.299 74.342 75.544 … 73.762 75.219 74.459 74.565 

PSRR- [dB] 92.281 92.281 86.285 87.811 … 85.978 87.907 86.858 87.18 

O
b

jectiv
es 

Area [µm2] 234.0919 118.4479 87.68215 104.1531 … 85.87326 102.4719 91.82859 94.12709 

Power consumption 

[mW] 

0.573 0.588 0.641 0.598 … 0.674 0.607 0.636 0.633 

TOI 0.1778 0.0902 0.0710 0.0800 … 0.0730 0.0797 0.0742 0.0758 

 
Table 6 Optimal design of parameters, specifications, objectives, and TOI for MOIPO algorithm. 

MOIPO 
Pareto-solutions 

1 2 3 4 … 13 14 15 16 

D
esig

n
 P

aram
eters 

W1/L1=W2/L2 [µm/µm] 9.525/1.263 9.216/1.227 9.701/1.279 9.791/1.28 … 9.845/1.289 14.047/1.321 9.943/1.299 9.999/1.306 

W3/L3=W4/L4 [µm/µm] 24.843/0.77 24.644/0.808 24.919/0.756 24.993/0.745 … 25.026/0.735 11.327/0.7040 25.086/0.732 25.108/0.731 

W5/L5=W8/L8 [µm/µm] 15.581/1.466 15.458/1.492 15.671/1.444 15.713/1.431 … 15.742/1.429 18.379/0.565 15.782/1.413 15.825/1.408 

W6/L6 [µm/µm] 29.797/0.295 29.343/0.27 30.093/0.304 30.174/0.316 … 30.312/0.325 33.6060/0.570 30.465/0.331 30.548/0.341 

W7/L7 [µm/µm] 23.873/1.524 23.956/1.499 23.821/1.556 23.77/1.565 … 23.76/1.571 33.8530/0.861 23.72/1.576 23.706/1.58 

CC [pF] 12.259 11.936/ 12.434 12.504 … 12.538 10.362 12.563 12.635 

CL [pF] 14.419 14.581 14.314 14.241 … 14.227 16.002 14.171 14.138 

Ibias [µA] 27.481 27.36 27.727 27.818 … 27.855 26.581 27.930 27.981 

D
esig

n
 S

p
ecificatio

n
s 

DC gain [dB] 71.683 70.311 72.087 72.615 … 72.967 75.63 73.221 73.637 

GBW [MHz] 2.341 2.3776 2.332 2.337 … 2.331 2.327 2.335 2.328 

Phase margin [deg] 54.252 56.21 53.307 52.183 … 51.505 50.129 50.914 50.164 

Slew rate [V/µs] 2.666 2.5009 2.661 2.661 … 2.659 2.103 2.668 2.661 

Output swing [V] 2.327 2.3263 2.326 2.326 … 2.327 2.371 2.327 2.327 

CMRR [dB] 81.494 81.229 81.502 81.598 … 81.837 77.220 82.123 87.416 

PSRR+[dB] 73.705 72.638 74.085 74.561 … 74.882 83.413 75.149 75.570 

PSRR- [dB] 100.460 97.850 100.200 101.310 … 102.500 85.003 102.450 103.460 

O
b

jectiv
es 

Area [µm2] 153.174 152.4001 153.964 154.010 … 154.337 122.13 154.624 155.260 

Power consumption 

[mW] 

0.789 0.816 0.780 0.769 … 0.763 0.940 0.757 0.748 

TOI 0.1778 0.1548 0.1606 0.1540 0.1516 … 0.1500 0.1485 0.1492 
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Table 7 Optimal design of parameters, specifications, objectives, and TOI for MOPSO algorithm. 

MOPSO 
Pareto-solutions 

1 2 3 4 5 6 7 

D
esig

n
 P

aram
eters 

W1/L1=W2/L2 [µm/µm] 7.568/1.367 8.411/1.464 14.107/1.332 6.484/1.416 12.924/1.34 8.627/1.391 10.094/1.301 

W3/L3=W4/L4 [µm/µm] 22.511/1.279 10.496/1.508 24.642/0.989 19.366/1.272 19.866/1.111 20.276/1.271 26.725/0.808 

W5/L5=W8/L8 [µm/µm] 15.726/1.281 8.375/1.119 13.405/1.227 13.649/1.26 9.786/1.27 12.678/1.334 12.955/1.203 

W6/L6 [µm/µm] 37.749/0.563 22.054/0.449 21.915/0.305 33.489/0.548 18.986/0.31 29.183/0.375 27.811/0.285 

W7/L7 [µm/µm] 18.418/0.964 22.921/0.67 20.317/1.08 16.599/0.919 15.438/0.797 10.584/0.642 19.126/1.191 

CC [pF] 11.135 8.964 11.634 10.845 9.428 12.278 12.31 

CL [pF] 9.486 10.042 9.531 9.181 8.55 8.016 9.151 

Ibias [µA] 22.162 37.668 21.724 23.889 36.864 25.352 22.845 

D
esig

n
 S

p
ecificatio

n
s 

DC gain [dB] 79.296 72.729 74.067 78.197 72.445 72.867 71.756 

GBW [MHz] 2.113 3.443 2.463 2.091 4.049 2.172 2.190 

Phase margin [deg] 51.274 58.045 51.755 54.470 52.557 55.667 59.140 

Slew rate [V/µs] 2.213 4.568 2.083 2.436 4.237 2.266 2.074 

Output swing [V] 2.365 2.308 2.352 2.355 2.304 2.365 2.343 

CMRR [dB] 108.677 93.156 98.652 99.358 91.661 78.619 81.534 

PSRR+[dB] 86.172 79.378 76.093 85.245 75.113 80.875 73.791 

PSRR- [dB] 121.63 87.097 118.88 115.7 93.453 101.03 102.73 

O
b

jectiv
es 

Area [µm2] 157.573 100.286 147.845 135.632 121.825 127.105 131.327 

Power consumption [mW] 0.566 1.698 0.617 0.641 1.180 0.664 0.662 

TOI 0.0980 0.2037 0.1063 0.0975 0.1776 0.1046 0.1082 
 

Table 8 Optimal design of parameters, specifications, objectives, and TOI for NSGA-II algorithm. 

NSGA-II 
Pareto-solutions 

1 2 3 4 … 17 18 19 20 

D
esig

n
 P

aram
eters 

W1/L1=W2/L2 [µm/µm] 10.143/1.046 12.808/1.853 10.425/1.034 12.491/1.633 … 7.185/1.336 7.185/1.336 7.188/1.336 7.184/1.336 

W3/L3=W4/L4 [µm/µm] 16.988/0.908 32.126/0.925 24.704/0.908 32.123/0.925 … 19.761/0.521 19.756/0.523 19.767/0.522 19.765/0.524 

W5/L5=W8/L8 [µm/µm] 16.164/0.701 16.403/1.104 16.196/0.779 16.403/1.046 … 12.408/1.036 12.408/1.048 12.408/1.021 12.408/1.055 

W6/L6 [µm/µm] 29.756/0.324 29.751/0.325 29.755/0.325 29.751/0.325 … 24.578/0.377 24.583/0.377 24.585/0.377 24.584/0.377 

W7/L7 [µm/µm] 33.364/0.437 33.371/0.436 33.364/0.437 33.370/0.436 … 15.694/0.895 15.694/0.89 15.694/0.795 15.694/0.872 

CC [pF] 11.246 10.948 10.96734 10.948 … 9.755 9.771 9.741 9.748 

CL [pF] 13.053 10.135 11.04778 10.135 … 9.108 9.095 9.117 9.094 

Ibias [µA] 21.4758 20.8225 20.99641 20.840 … 21.7796 21.77965 21.77966 21.77966 

D
esig

n
 S

p
ecificatio

n
s 

DC gain [dB] 70.382 71.024 70.322 70.966 … 70.42 70.388 70.365 70.301 

GBW [MHz] 2.511 2.205 2.567 2.295 … 2.504 2.544 2.651 2.525 

Phase margin [deg] 57.922 58.471 55.802 57.237 … 57.712 57.467 52.651 55.102 

Slew rate [V/µs] 2.318 2.160 2.284 2.176 … 2.295 2.326 2.163 2.309 

Output swing [V] 2.412 2.413 2.413 2.413 … 2.412 2.412 2.413 2.412 

CMRR [dB] 77.201 108.906 79.472 107.212 … 77.622 77.869 105.039 80.101 

PSRR+[dB] 76.172 76.403 75.405 76.241 … 76.099 75.898 75.133 76.147 

PSRR- [dB] 88.421 81.464 83.833 81.688 … 87.184 86.454 80.991 88.012 

O
b

jectiv
es 

Area [µm2] 99.042 167.392 115.943 158.843 … 101.401 103.899 146.002 119.513 

Power consumption 

[mW] 

0.825 0.583 0.693 0.587 … 0.801 0.779 0.592 0.678 

TOI 0.1075 0.1212 0.1050 0.1163 … 0.1036 0.1039 0.1096 0.1032 
 

Table 9 Statistical comparison of objective values and TOI of the methods. 

 NSGA-II MOPSO MOIPO MOGWO MOLA 

Best 
Area 99.042 100.286 122.1317 85.8733 72.825 
Power Consumption 0.583 0.566 0.748 0.573 0.560 

TOI 0.1032 0.0975 0.1451 0.0710 0.0526 

Worst 
Area 167.392 157.572 155.261 234.091 81.563 
Power Consumption 0.825 1.180 0.940 0.674 0.650 
TOI 0.1212 0.2037 0.1606 0.1778 0.0567 

Mean 
Area 125.875 131.656 147.807 112.583 75.499 
Power Consumption 0.686 0.861 0.811 0.614 0.625 
TOI 0.1081 0.1280 0.1526 0.0879 0.0558 

Variance 
Area 536.942 341.846 159.312 1783.500 6.663 
Power Consumption 0.008 0.179 0.004 9.6333E-04 8.5793 E-04 
TOI 2.9815E-05 0.0019 2.0063E-05 9.4183E-04 1.7106 E-06 

 

   Fig. 9 shows the Pareto-fronts in the best run (in terms 

of TOI criterion) for the proposed methods. Despite the 

greater spread of the Pareto-front of the NSGA-II, it can 

be argued that MOLA responses have dominated 

Pareto-front solutions of other algorithms. The HSPICE 

simulation results obtained from the optimally designed 
two-stage CMOS op-amp are shown in Figs. 10-13 for 

the best solution (based on the best TOI value) in the 

best run. Also, the results obtained from the MOLA 

method are shown in the figures. A comprehensive 

comparison is presented in Table 10 between the results 

of the proposed MOLA algorithm and those of other 

rival methods along with other studies. Finally, for the 

performance analysis of Pareto indexes and runtime of 
MOLA with other assumed algorithms for the best run, 

Table 11 is provided. 
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Fig. 9 Pareto-front of the proposed methods. 

 

 

 

 
Fig. 10 Bode diagram plotted by the proposed methods. 
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Fig. 11 Positive PSRR of plotted by the proposed methods. 

 

 
Fig. 12 Negative PSRR of plotted by the proposed methods. 

 

 
Fig. 13 Slew rate of plotted by the proposed methods. 

 

Table 10 Compare the best results with previous works. 

Parameters 
References Present work 

GSA-PSO [7] AGSA_PSO+PF [8] CO-GSA [9] NSGA-II MOPSO MOIPO MOGWO MOLA 

Technology [µm] 0.35 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

DC gain [dB] 75.43 70.441 74.785 71.024 79.296 75.63 74.121 73.808 

GBW [MHz] 5.776 2.017 2.644 2.651 4.049 2.340 4.722 2.127 

Phase margin [deg] 66.2 50.181 78.448 58.471 59.140 54.252 53.962 60.616 

Slew rate [V/µs] 10.88 2.231 10.897 2.295 4.568 2.668 5.725 3.023 

Output swing [V] - 2.415 2.232 2.413 2.364 2.371 2.355 2.343 

CMRR [dB] 87 88.187 78.040 108.906 108.677 87.416 80.341 104.156 

PSRR+ [dB] 83.2 72.675 87.190 76.403 86.172 83.413 77.867 82.530 

PSRR- [dB] 110.4 131.910 86.650 88.421 121.630 103.460 92.281 95.485 

Area [µm2] 109.6 210.003 129.845 99.042 100.286 122.13 85.873 72.825 

Power consumption [mW] 0.713 0.701 0.349 0.583 0.566 0.748 0.573 0.560 

TOI 0.1330 0.3908 0.2400 0.1032 0.0975 0.1451 0.0710 0.0526 
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Table 11 Pareto and timing performance analysis. 

Parameters NSGA-II MOPSO MOIPO MOGWO MOLA 

SP 21.695 27.155 0.197 6.666 0.9305 
ONVG 20 7 16 11 20 

Time [s] 1248 1436 1456 1356.2 1188.86 

 

5 Conclusions 

   In this paper, for the first time, the workability of 

learning automata verified in the optimal design of 

analog circuits. The circuit was a two-stage CMOS op-

amp as a challenging and complex engineering problem. 

The optimized circuit provided the following features: 

simultaneous optimization of area and power 

consumption, minimizing the TOI, satisfies of design 

characteristics. The performance of the proposed 
MOLA method with four rival optimization algorithms 

NSGA-II, MOPSO, MOIPO, and MOGWO on the 

designed circuit has been investigated comprehensively. 

Results obtained by MOLA shown the significant 

improvement of the desired features in terms of the best 

Pareto-fronts along with suitable evaluation criteria. As 

future work, we will apply the proposed methodology to 

optimize more complex analog and digital circuits with 

particular design specifications. Also, optimization 

algorithms and reinforcement learning methods can be 

combined to make the circuit more efficient. 
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