Analytical Field Study on Induction Motors under Fluctuated Voltages

M. Ghaseminezhad*, A. Doroudi**, S. H. Hosseinian***, and A. Jalilian****

Abstract: Nowadays study of input voltage quality on induction motors behavior has become a controversial subject due to the wide application of these motors in the industry. The impact of grid voltage fluctuations on the performance of induction motors can be included in this area. The majority of papers devoted to the influence of voltage fluctuations on the induction motors are focusing only on the solving of d-q state equations or steady-state equivalent circuit analysis. In this paper, a new approach to this issue is investigated by field analysis which studies the effects of voltage fluctuations on the magnetic fluxes of induction motors. New analytical expressions to approximate the airgap flux density and the torque under-voltage fluctuation conditions are presented. These characteristics are also calculated directly by the finite-element method considering the magnetic saturation and the harmonic fields. Finally, experimental results on a typical induction motor are employed to validate the accuracy of analytical and simulation results.

Keywords: Induction Motor, Finite Element Method, Field Study, Voltage Fluctuation.

Nomenclature

\[\begin{align*}
\delta & \quad \text{Air gap length [m]} \\
\varphi_r & \quad \text{Angular displacement of rotor [Deg.]} \\
\varphi_s & \quad \text{Angular displacement of stator [Deg.]} \\
\omega_s & \quad \text{Angular frequency of the supply [rad/s]} \\
\omega_m & \quad \text{Angular modulation frequency [rad/s]} \\
\mathbf{k}_c & \quad \text{Carter coefficient of rotor} \\
\mathbf{k}_s & \quad \text{Carter coefficient of stator} \\
T_e & \quad \text{Electromagnetic torque [N.m]} \\
W_m & \quad \text{Energy stored in the magnetic field of the air gap [J]} \\
f_0 & \quad \text{Fundamental frequency [Hz]} \\
V_p & \quad \text{Line to neutral peak voltage [V]} \\
T_l & \quad \text{Load torque [N.m]} \\
k_m & \quad \text{Modulation depth} \\
f_m & \quad \text{Modulation frequency [Hz]} \\
D & \quad \text{Motor diameter [m]} \\
R & \quad \text{Number of rotor slot} \\
N_1 & \quad \text{Number of turns in the stator winding of one phase} \\
B_r & \quad \text{Peak amplitude of fundamental component of rotor flux density [T]} \\
B_s & \quad \text{Peak amplitude of fundamental component of stator flux density [T]} \\
B_{lm} & \quad \text{Peak amplitude of the lower frequency component of rotor flux density [T]} \\
B_{sm} & \quad \text{Peak amplitude of the lower frequency component of stator flux density [T]} \\
B_{rp} & \quad \text{Peak amplitude of the upper frequency component of rotor flux density [T]} \\
B_{sp} & \quad \text{Peak amplitude of the upper frequency component of stator flux density [T]} \\
\varphi_0 & \quad \text{Phase angle of the no-load current} \\
\varphi_1 & \quad \text{Phase angle of the stator phase current} \\
p & \quad \text{Pole pair number} \\
k_{aw} & \quad \text{Resultant winding factor for the v^{th} harmonic} \\
B_2 & \quad \text{Rotor flux density [T]} \\
\theta_r & \quad \text{Rotor position [Deg.]}
\end{align*} \]
\(\omega_r \) \text{ Rotor speed [rad/s]} \\
\(s \) \text{ Slip} \\
\(s_{\text{m}} \) \text{ Slip for maximum torque} \\
\(B_1 \) \text{ Stator flux density [T]} \\
\(l \) \text{ Stator length [m]} \\
\(\mu_0 \) \text{ Vacuum permeability}

1 Introduction

Several recent studies in power engineering have been concerned with voltage fluctuations. This type of power quality events has many undesirable effects on domestic and industrial loads. The most significant influence of voltage fluctuations is in the light flicker, which can be noticed on lamps as undesired illumination intensity variations [1]. Flicker frequencies in the range of 0.05 to 35 Hz can cause perceptible flicker [2]. Voltage fluctuations are simply an amplitude modulation signal which is usually expressed as a percent of the total change in voltage with respect to the average voltage over a specified time interval. The voltage waveform exhibits variations in magnitude due to the intermittent operation of connected loads. The instantaneous line to neutral voltage can be expressed as [3]:

\[
v_p(t) = V_p \left(1 + \sum_{m=1}^{\infty} k_m \sin(2\pi f_m t) \cos(2\pi f_p t) \right)
\]

In the balanced systems, the other two phases can be defined in the same manner except in that the phase angle of base components in those should be modified by -120 and -240, respectively.

Heavy loads such as arc furnaces whose power demands are rapidly variable and light loads such as copying machines that are intermittent in time can lead to voltage fluctuations [4]. In addition to lamps, voltage fluctuations can also influence other sensitive electrical equipment [5].

Induction motors are widely used in many industrial, commercial, and residential applications because of various techno-economic advantages [6, 7]. It is estimated that more than 50% of the world’s electrical energy generated is consumed by electric machines (mainly by induction motors) [8]. Therefore, it is important to analyze the effects of any disturbance such as voltage fluctuations on the behavior of induction motors.

The effect of voltage fluctuations on currents, speed, torque, and efficiency of induction motors was studied in [9-19]. For example, additional symmetrical voltage components produced by voltage fluctuations, creating some torque ripples and unintended noise and vibrations in the structure of the motor. These vibrations may lead to a reduction in the life expectancy of the mechanical components such as bearings and the joints. In [17], an equivalent circuit is presented to investigate the effect of voltage fluctuations on induction motor behavior regardless of speed changes. Simulation results were presented for induction motors with specifications given in [20]. These motors have a moment of inertia larger than that of the practical motor of the same size. Therefore the amplitude of obtained speed fluctuation is small and the results of the equivalent circuit have a good agreement with the large-signal simulations.

In [18], the voltage fluctuation impact on induction motors by an innovative equivalent circuit considering speed changes was investigated. Efficiency, as well as the rotor and stator losses in the steady-state mode of operation were obtained. In [19], a two-dimensional finite element method is utilized to address the effect of supply voltage fluctuations on the ohmic and core losses of induction motors.

A quick survey of the literature shows that in most cases, simulations based on the d-q frame model are applied to analyze induction motor behavior under-voltage fluctuation conditions. However, this paper offers a new point of view to this subject by an analytical method based on the field analysis. The analytical approach gives insight into the stator, rotor and airgap field distributions, slot and MMF space harmonics and torque components of induction motors under-voltage fluctuation conditions. New analytical expressions to approximate the airgap flux density and the torque of induction motor under-voltage fluctuation conditions are presented. The analytical expressions can be used for studies about vibration and life expectancy of the mechanical components. Finally, experimental and finite element method results are employed to verify the results of the analytical approach.

The presented work is organized in the following manner: In Section 2, an analytical approach is utilized to investigate the induction motor response to voltage fluctuations. The results are verified by finite-element simulation in Section 3. Finally, Sections 4 and 5 provide experimental results and the conclusion of the paper.

2 Field Analysis of Induction Motor Under Voltage Fluctuation Conditions

In this section, an analytical approach is first developed to obtain the stator, rotor and resultant airgap flux densities under-voltage fluctuation conditions. Then, the motor torque is calculated mathematically using these flux densities. The focus has been on the torque components and the rotor behavior subjected to these components. Finally, the analysis is verified by the finite element method.

2.1 Air Gap Flux Density Components Caused by Voltage fluctuations

To evaluate the effects of voltage fluctuations on the induction motor flux density distribution, Eq. (1) can be rewritten as follows \((m = 1)\):
\[v(t) = V_p [1 + k \sin(\omega_t t)] \cos(\omega_t t) = V_p \cos(\omega_t t) \]
\[
\frac{kV_p}{2} \cos \left((\omega_b + \omega_n) t - \frac{\pi}{2} \right)
\]
\[
\frac{-kV_p}{2} \cos \left((\omega_b - \omega_n) t - \frac{\pi}{2} \right)
\]
\[(2) \]

The first term in (2) is the voltage fundamental component. The second and third terms are the variations in voltage fluctuations, superimposed to fundamental component with \(f_b + f_n\) (upper component) and \(f_b - f_n\) (lower component) frequencies.

Balanced 3-phase currents flowing in the stator windings establish a rotating MMF in the air gap with the speed determined by the frequency of stator currents and the number of poles. The complex expressions of the fundamental and the spatial MMF harmonics of the stator are:

\[F_{s'} (\phi, t) = \frac{3\sqrt{2N}}{p \pi} I_{0} \exp \left(j (p \phi - \omega_b t - \phi_0) \right) \]
\[+ \frac{3\sqrt{2N}}{p \pi} I_{0} \sum \exp \left(j (p \nu \phi - \omega_b t - \phi_1) \right) \]
\[(3) \]

where \(\nu = 6g \pm 1, g = \pm 1, \pm 2, \ldots \) \(\) (4)

The stepped distribution of the stator MMF produces harmonic airgap fields of order \(\nu \). The angular displacement along the stator circumference is denoted by \(\phi_0 \). Similarly, additional current components created by voltage fluctuations would make additional MMF components in the air gap. Eq. (5) describes the additional MMF generated by the alternating currents in the stator windings when regular fluctuations appear in the terminals of induction motors.

\[\Delta F_{s'} (\phi, t) = \frac{3\sqrt{2N}}{p \pi} \left[I_{0 p} \exp \left(j (\phi - (\omega_b + \nu \omega) t - \pi / 2) \right) \right. \]
\[- I_{0 p} \exp \left(j (\phi - (\omega_b - \nu \omega) t - \pi / 2) \right) \]
\[+ \frac{3\sqrt{2N}}{p \pi} I_{0 p} \sum \exp \left(j (p \nu \phi - (\omega_b + \nu \omega) t - \pi / 2) \right) \]
\[- I_{0 p} \sum \exp \left(j (p \nu \phi - (\omega_b - \nu \omega) t - \pi / 2) \right) \]
\[(5) \]

According to [17], the \(I_{0p}, I_{0n}, I_{0p}, \) and \(I_{0n} \) can be obtained by the upper and lower equivalent circuits shown in Fig. 1. The stator flux-density is given by the product of the MMF-wave and the permeance-wave.:

\[B_{s'} (\phi, t) = (F_{s'} (\phi, t) + \Delta F_{s'} (\phi, t)) \times G_{s'} \]
\[G_{s'} = G_{s0} + G_{s0}, \]
\[(6) \]

The permeance wave can be expressed as a summation of an average value and slots harmonics permeances. The following points are considered:

a) The stator permeance is calculated separately from the permeance of the rotor.

b) Stator/rotor is slotted while the other is smooth.

c) The magnetic permeance is taken into account by ignoring the saturation harmonics.

d) The space harmonics of MMF waves created by the time harmonics of rotor currents (residual MMF waves) are neglected.

The average permeance of the airgap constrained by a smooth and a slotted surface, \(G_{n0} \), can be calculated using the Carter coefficients, referring to the stator and rotor separately:

\[G_{n0} = \frac{\mu_0}{k_s k_{c1} \delta_s} \]
\[(7) \]

In the case of smooth-rotors, the complex Fourier series of the magnetic permeance due to stator slots is expressed as [21]:

\[G_{n0} = G_{n0} \sum (-1)^k \sin \left(\frac{\pi (k_{c1} - 1)}{k_{c1}} \right) \exp \left(j \nu \phi \right) \]
\[(8) \]

The instantaneous value of the flux density wave is the real part of the complex wave. The radial air gap flux density is thus given by:

\[B_{s'} (\phi, t) = \]
\[\frac{3\sqrt{2N}}{p \pi} \sum \exp \left(j (p \nu \phi - (\omega_b + \nu \omega) t - \pi / 2) \right) \]
\[+ \frac{3\sqrt{2N}}{p \pi} \sum \exp \left(j (p \nu \phi - (\omega_b - \nu \omega) t - \pi / 2) \right) \]
\[= \frac{3\sqrt{2N}}{p \pi} \left[\sum I_{s'} \cos (p \nu \phi - (\omega_b + \nu \omega) t - \nu \phi_0) \right. \]
\[+ \sum I_{s'} \sin (p \nu \phi - (\omega_b + \nu \omega) t - \nu \phi_0) \]
\[- \sum I_{s'} \sin (p \nu \phi - (\omega_b - \nu \omega) t - \nu \phi_0) \]
\[(9) \]

where

\[k_{s'0} = \frac{\sin \left(\frac{\pi (k_{c1} - 1)}{k_{c1}} \right)}{\sin \left(\frac{\pi (k_{c1} - 1)}{k_{c1}} \right)} \]
\[\nu_{s'} = \frac{gS}{p} \]
\[+ 1 \]
\[g = \pm 1, \pm 2, \ldots \]
Analytical Field Study on Induction Motors Under Fluctuated ... M. Ghaseminezhad et al.

Fig. 1 Upper and lower frequencies equivalent circuits of induction motor under voltage fluctuation conditions (V_p=V_s= Terminals Phase Voltage).

\[
B_1(\varphi_r,t) = \frac{3\sqrt{2N}}{p\pi k_s k_r \delta_e} \sum \left[I_0 \cos \phi_0 \cos \left(p \varphi_r - (\omega_b - \omega_r) t - \psi_r \right) + I_{0p} \cos \phi_{p} \sin \left(p \varphi_r - \left[(\omega_b + \omega_s) - \omega_r \right] t - \psi_r \right) \right] \\
+ \frac{3\sqrt{2N}}{p\pi k_s k_r \delta_e} \sum I_p \cos \phi_p \cos \left(p \lambda \varphi_r - (\omega_b - \omega_r) t - \psi_{r1} \right) \\
+ \sum I_{vp} \cos \phi_{vp} \sin \left(p \lambda \varphi_r - \left[(\omega_b + \omega_s) - \omega_r \right] t - \psi_{r1} \right) \\
- \sum I_{wp} \cos \phi_{wp} \sin \left(p \lambda \varphi_r - \left[(\omega_b - \omega_r) - \omega_r \right] t - \psi_{r1} \right) \\
+ \frac{(-1)^2 \sqrt{2N}}{p\pi k_s k_r \delta_e} \sum \left[I_0 \cos \phi_0 \cos \left(p \lambda \varphi_r - (\omega_b - \omega_r) t - \varphi_0 \right) + I_{0p} \cos \phi_{p} \sin \left(p \lambda \varphi_r - \left[(\omega_b + \omega_s) - \omega_r \right] t - \varphi_0 \right) \right] \\
- \sum I_{vp} \cos \phi_{vp} \sin \left(p \lambda \varphi_r - \left[(\omega_b + \omega_s) - \omega_r \right] t - \varphi_0 \right) \\
- \sum I_{wp} \cos \phi_{wp} \sin \left(p \lambda \varphi_r - \left[(\omega_b - \omega_r) - \omega_r \right] t - \varphi_0 \right) \\
(11)
\]

As shown in (9), Stator flux density has three obvious components:

a) Fundamental and its sideband components
b) Spatial MMF harmonics and their sideband components
c) Harmonics due to variations of permeance and their sideband components.

All sideband components are created due to voltage fluctuations. Since the stator and rotor windings are placed in the slots, the MMF-wave itself has its own harmonics. These harmonics are indistinguishable from those caused by variations of permeance due to slotting.

The Stator flux density wave components affect the rotor through the gas gap and induce a voltage in the rotor windings. The induced voltages create circulating currents in the closed rotor circuits depend on the rotor windings impedance. This impedance is a function of frequency, the number of turns, the number of slots, the permeability of iron, and so forth [21]. The rotor currents develop MMF waves of their own. Rotor flux density can be obtained by the product of the MMF wave of the rotor and the airgap permeance wave as (11), where

\[
k_{\omega} = \frac{\sin \left[g (k_{c2} - 1) \pi / k_{c2} \right]}{g (k_{c1} - 1) \pi / k_{c1}}
\]

As can be seen in (9), Stator flux density has three obvious components:

\[
\lambda = \lambda_{si} = \frac{gR}{p} + 1, \quad g = \pm 1, \pm 2, \ldots
\]

\[
\psi_{r1} = \psi_{r2} = \psi_{r} + \frac{I_{0p}}{I_{vp}}
\]

The angular displacement along the rotor circumference is denoted by \(\varphi_r \) and \(\theta_r \) is the angular displacement of the rotor. The relationships between \(\varphi_r \), \(\psi_{r1} \) and \(\theta_r \) are given by:

\[
\varphi_{r} = \varphi_{r} + \theta_{r}, \quad \theta_{r} = \frac{(1 - s) \omega_{s} t}{p}
\]

Finally, the resultant air-gap flux density can be calculated from (9)-(13) by superposition of rotor and stator flux densities. Figure 2 shows the calculated airgap flux density and its normalized frequency spectrum for a given induction motor (The ratings and main parameters of the induction motor are listed in Table 1. As is seen, in addition to the fundamental component, its sideband components (the lower and upper) are clearly shown in the figure. Furthermore, at 814, 914, 1680, and 1780 Hz, slot harmonics and their sideband components with significant amplitudes are obviously seen in the frequency spectrum. All results
are summarized in Table 2. According to the third term in (11), the principal slot harmonics of the air gap flux density can be expressed as:

\[
P_{sh} = \left(\frac{\mu R}{p} (1-s) + 1 \right) f_p
\]

(14)

The induction motor has \(R = 18 \) rotor slots and its rotor speed is \(n_r = 2880 \) rpm. Therefore, slot harmonics can be easily derived from (14).

2.2 The Motor Torque

Voltage fluctuations can create torque ripples. To explain it mathematically, the motor torque is calculated using the flux densities of rotor and stator obtained from the previous section. For simplicity, the fundamental component of the rotor and stator flux densities will be used and the slotting and space harmonics are ignored. The electromagnetic torque can be expressed as [21]:

\[
T_e = \frac{\partial W_m}{\partial \theta_r}
\]

(15)

where \(W_m \) is given by:

\[
W_m = \frac{\pi D \delta_s}{2 \mu_0} \int_0^{2\pi} \left[B_1(\varphi_s, t) + B_2(\varphi_s, t) \right]^2 d \varphi_r
\]

(16)

Since \(B_1(\varphi_s, t) \) is independent of the rotor position, the electromagnetic torque can be rewritten as:

\[
T_e = \frac{\pi D \delta_s}{2 \mu_0} \int_0^{2\pi} \left[B_1(\varphi_1, t) + B_2(\varphi_1, t) \right]^2 \frac{\partial B_1}{\partial \varphi_1} d \varphi_1
\]

(17)

It is apparent that the second term vanishes since:

\[
\int_0^{2\pi} \sin \alpha \cos \alpha d\alpha = 0
\]

(18)

By substituting (9) and (11) in (14), motor torque expression is calculated as:

Table 1 The motor parameters.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Value</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal power</td>
<td>1100 W</td>
<td></td>
<td>Nominal voltage</td>
<td>220 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
<td></td>
<td>Nominal speed</td>
<td>2825 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stator slot</td>
<td>24</td>
<td></td>
<td>Core length</td>
<td>80 mm</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>120 mm</td>
<td></td>
<td>Stacking factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>62 mm</td>
<td></td>
<td>Connection type</td>
<td>Wye</td>
</tr>
<tr>
<td>Number of pole</td>
<td>2</td>
<td></td>
<td>Number of phase</td>
<td>3</td>
</tr>
<tr>
<td>Strands per conductor</td>
<td>1</td>
<td></td>
<td>Conductor per slot</td>
<td>70</td>
</tr>
<tr>
<td>Rotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Diameter</td>
<td>24.5 mm</td>
<td></td>
<td>Endring width</td>
<td>10 mm</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>61 mm</td>
<td></td>
<td>Endring height</td>
<td>10 mm</td>
</tr>
<tr>
<td>Number of rotor slot</td>
<td>18</td>
<td></td>
<td>Core length</td>
<td>80 mm</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum</td>
<td></td>
<td>Stacking factor</td>
<td>0.95</td>
</tr>
</tbody>
</table>

![Fig. 2 Air-gap flux density calculated by analytical approach under voltage fluctuation conditions \(f_m = 20 \text{ Hz and } k_m = 0.05 \).](image)

Table 2 Calculated air-gap flux density components by analytical approach under-voltage fluctuation conditions \(f_m = 20 \text{ Hz and } k_m = 0.05 \).

<table>
<thead>
<tr>
<th>Central frequency [Hz]</th>
<th>Amplitude [dB]</th>
<th>Sideband frequency [Hz]</th>
<th>Amplitude [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>30</td>
<td>-47.1</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>794</td>
<td>-113.4</td>
</tr>
<tr>
<td></td>
<td>834</td>
<td>894</td>
<td>-86.4</td>
</tr>
<tr>
<td></td>
<td>934</td>
<td>934</td>
<td>-103.4</td>
</tr>
<tr>
<td>814</td>
<td>-58.8</td>
<td>794</td>
<td>-113.4</td>
</tr>
<tr>
<td></td>
<td>834</td>
<td>894</td>
<td>-86.4</td>
</tr>
<tr>
<td></td>
<td>934</td>
<td>934</td>
<td>-103.4</td>
</tr>
<tr>
<td>914</td>
<td>-58.8</td>
<td>894</td>
<td>-86.4</td>
</tr>
<tr>
<td></td>
<td>934</td>
<td>934</td>
<td>-103.4</td>
</tr>
<tr>
<td>1680</td>
<td>-63.1</td>
<td>1660</td>
<td>-120.2</td>
</tr>
<tr>
<td></td>
<td>1700</td>
<td>1700</td>
<td>-90.8</td>
</tr>
<tr>
<td></td>
<td>1760</td>
<td>1760</td>
<td>-122</td>
</tr>
<tr>
<td>1780</td>
<td>-76.4</td>
<td>1800</td>
<td>-145.3</td>
</tr>
</tbody>
</table>

Downloaded from ijeee.iust.ac.ir at 8:27 IRST on Tuesday November 9th 2021 [DOI: 10.22068/IJEEE.17.1.1620]
As shown in (18), the average torque produced by the induction motor when subjected to fluctuated voltages consists of three different components; the first component is related to the interaction of the fundamental components of stator and rotor MMF \(B_s B_r \sin(-\psi) \). The second one is based on the joint action of the upper components of stator and rotor MMF \(B_u B_v \sin(-\psi_u) \), and the last one is the interaction of the lower components of stator and rotor MMF \(B_l B_m \sin(-\psi_m) \). For an average torque to be produced, the magnetic field components of the stator and rotor must be stationary with respect to each other. Since the relative motion of the upper component of the stator field and the lower component of the rotor field is not zero, the interaction of these components produces no average torque. Joint actions of the upper and lower components of the stator and rotor MMF yields a pulsating torque component with the frequency of twice of modulation frequency. The latter case has relatively negligible magnitude (so can be easily ignored), because in principal the multiplication of upper and lower flux density components is very small. The terms obtained from the interaction of the main component and upper/lower flux density components have a significant amplitude and pulsate at the modulation frequency \(\omega_m \). Consequently, the electromagnetic torque of induction motor has an average value and a term with significant amplitude which pulsates at the modulation frequency as expressed in the following equation:

\[
T_s = \pi^2 D \delta t \left(B_s B_r \sin(-\psi) + B_u B_v \sin(-\psi_u) + B_l B_m \sin(-\psi_m) \right)
\]

(19)

Assuming a constant load torque, the dynamic motion (Eq. (21)) shows that the torque pulsations obtained in (19) cause speed fluctuations of the same frequency.

\[
T_s = J \left(\frac{1}{p} \frac{d \omega}{dt} \right) + T_L
\]

(21)

Fig. 3 shows the calculated motor torque at rated load, based on (19), under-voltage fluctuation conditions with modulation depth of 5% and modulation frequency of 20 Hz. Torque fluctuations with frequency of 20 Hz are obvious in Fig. 3. The peak to peak value of torque is also about 2.2 N.m (about 59% rated values).

3 Verification by Finite Element Method

The finite element method (FEM) rapidly grew as the most useful numerical analysis tool to study and design of electric machines. The finite element method with the addition of time-stepping can provide a quite accurate prediction of transient performance of electrical machines [15]. The advantage of this technique is that magnetic saturation and space distribution of stator and rotor windings can be taken into account.

The design parameters of the motor (listed in Table 1) are applied in FE analysis. This motor has a one-layer lap stator winding, arranged for three phases and two poles in 24 stator slots. The rotor is an aluminum cage with 18 slots.

The rotor slots are not skewed. The stator and rotor cores are made of steel sheet laminations with 3.5% silicon and 0.5 mm thickness.

The nonlinear characteristic of the core materials has been taken into account in the finite element analysis. Three balanced fluctuated voltages are applied to the motor terminals by the use of external circuits. The flux
density distribution obtained from FEM simulation under-voltage fluctuation conditions is shown in Fig. 4. For comparison, the analytical results have been also shown in this figure. A good agreement can be seen between the FEM and the analytical results. The variations of flux density versus time and its frequency spectrum at one point in the middle of airgap lying directly under a stator tooth (hereafter called point A) in two cases; normal operation and under-voltage fluctuation conditions have been illustrated in Fig. 5. Similar to the analytical approach, the slot harmonics can be indicated by arrows in 814, 914, 1680, and 1780 Hz.

Comparing the results of FEM and the analytical approach shows more frequency components around the slot harmonics in the FEM results. The reason for this is the fact that space harmonic MMF waves created by the time harmonics of the currents in the rotor windings and their effects are not considered in the analytical approach (assumption “d” in section 2.1).

Variations of motor torque and speed for a 20 Hz modulation frequency determined by FEM simulation are shown in Fig. 6. It is clear that the speed and torque of the motor pulsate at the modulation frequency as knowledge gained by the analytical approach. However, there are some ripples in torque in Fig. 6 which do not observe in the analytical approach. This happens because of the fact that in the analytical approach, torque calculations were done by ignoring the total slot and space harmonics.

The stator current, voltage and flux linkage of phase A and their frequency spectrums under-voltage fluctuation conditions are illustrated in Fig. 7. As it is seen, the same fundamental voltage magnitude of upper and lower components establishes different magnitudes of current at corresponding frequencies. Referring to the equivalent circuits shown in Fig. 1, this occurs due to smaller effective input impedance of the motor at the lower frequency (30 Hz) compared with the upper frequency (70 Hz). Also, relatively negligible current components at frequencies of \(f_0 \pm 2j fm \) (\(j = 1, 2, 3, \ldots \)) are seen in the figure.

4 Experimental Results

In this section, the numerical results are validated under laboratory conditions. A 61704-Chroma programmable AC source supplies 1.1 kW induction
motor. To vary the load conditions, a 1.5 kW DC generator is coupled by a belt and pulley to the tested motor. An encoder is fastened to the shaft of the motor as an angular speed sensor to measure and records the speed changes versus time. LEM-LA-100-P and 5CSNE151 Honeywell current transducer sensors are used in the data conditioning board. PCI-1710HG Advantech DAQ card acquires and transfers all data to a PC. Fig. 8 shows an overview of the complete experimental setup.

The waveforms captured in Fig. 9, show the measured stator current and their frequency spectrums under normal (top) and voltage fluctuation conditions (bottom). The slot and saturation harmonics can be clearly seen in both normalized frequency spectrums while the upper and lower frequency components around each harmonic are only observed under voltage fluctuation conditions. Some additional harmonics can also be seen in the frequency spectrum under voltage fluctuation conditions. According to [18], variations of speed due to the voltage fluctuations result in the appearance of these additional components.

To measure the airgap flux density, a search coil with integral pitch is located in the air gap and in the middle of a slot opening. The airgap flux density is measured using the induced voltage in this coil. Induced voltage has the same waveform as the resulting airgap flux density and the relationship is:

$$E_j = 2l v B_j = 2l \frac{\pi D_{n}}{60} \frac{B_{m}}{\sqrt{2}}$$ (22)

Fig. 10 shows the air gap flux density. For comparison, the airgap flux obtained from the analytical approach is also given in the figure. Table 3 compares FEM, analytical and experimental results. There is a good agreement between the simulations and experimental results.

Finally, the experimental waveforms of the motor speed is given in Fig. 11 and compared with the speed...
fluctuations obtained by FEM. A good correlation can be seen between the FEM and experimental results.

5 Conclusion

In this paper, electromagnetic field components of both the stator and rotor have been analytically evaluated to show resultant airgap and torque components. How motor torque pulsates with modulation frequency can be proved by the proposed analytical approach. The proposed analytical method can be also calculated as new electromagnetic field components under-voltage fluctuation conditions. Finite element analysis was employed to obtain the flux distribution and the other motor quantities. The FEM and experimental results show good agreement with the results of the analytical approach. These analytical expressions can be used for optimization problems and studies about vibration and life expectancy of the mechanical components.

References

Introduction Motors Under Fluctuated

Analytical Field Study on Induction Motors Under Fluctuated

M. Ghaseminezhad et al.

Iranian Journal of Electrical and Electrotechnology, Vol. 17, No. 1, 2021

M. Ghaseminezhad was born in Bardsir, Iran, in 1985. He received the B.Sc. degree from the Electrical Engineering Department of Shahid Bahonar University, Kerman, Iran, in 2007 and the M.Sc. and Ph.D. degrees in Electrical Engineering from Shahed University, Tehran, Iran, in 2010, and 2017, respectively. At the present, he is an Assistant Professor of Electrical Engineering department at Sirjan University of Technology. His special fields of interest include transient in power systems, power quality, and electrical machines.

A. Doroudi was born in 1968 in Tehran, Iran. He received the B.Sc. degree from the Electrical Engineering Department of Amirkabir University of Technology, Tehran, Iran, in 1992 and the M.Sc. degree in Electrical Engineering from Tabriz University, Tabriz, Iran, in 1994 and the Ph.D. degree in Electrical Engineering from Amirkabir University of Technology, Tehran, Iran, in 2000. At the present, he is an Associate Professor of Electrical Engineering Department at Shahed University, Tehran, Iran. His special fields of interest include power quality, electric machines design, and power systems dynamic.

S. H. Hosseinian was born in 1961 in Iran. He received both the B.Sc. and M.Sc. degrees from the Electrical Engineering from Amirkabir University of Technology, Iran, in 1985, and 1988, respectively, and the Ph.D. degree in Electrical Engineering from the University of Newcastle England, 1996. At the present, he is a Professor of the Electrical Engineering Department at Amirkabir University of Technology (AUT). His special fields of interest include transient in power systems, power quality, restructuring and deregulation in power systems. He is also the author and co-author of over one hundred technical papers.
A. Jalilian was born in Yazd, Iran, in 1961. He received the B.Sc. degree in Electrical Engineering from Mazandaran University, Babol, Iran, in 1989, and the M.Sc. and Ph.D. degrees from the University of Wollongong, Wollongong, New South Wales, Australia, in 1992 and 1997, respectively. He joined the Power Group of the Department of Electrical Engineering at the Iran University of Science and Technology in 1998, where he is an Associate Professor. His research interests are causes, effects and mitigation of power quality problems in electrical systems and microgrids.

© 2021 by the authors. License IUST, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).