Stochastic Joint Optimal Distributed Generation Scheduling and Distribution Feeder Reconfiguration of Microgrids Considering Uncertainties Modeled by Copula-Based Method

M. Khajehvand*, A. Fakharian(C.A.), and M. Sedighizadeh**

Abstract: Using distributed generations (DGs) with optimal scheduling and optimal distribution feeder reconfiguration (DFR) are two aspects that can improve efficiency as well as technical and economic features of microgrids (MGs). This work presents a stochastic copula scenario-based framework to jointly carry out optimal scheduling of DGs and DFR. This framework takes into account non-dispatchable and dispatchable DGs. In this paper, the dispatchable DG is a fuel cell unit and the non-dispatchable DGs with stochastic generation are wind turbines and photovoltaic cells. The uncertainties of wind turbine and photovoltaic generations, as well as electrical demand, are formulated by a copula-based method. The generation of scenarios is carried out by the scenario tree method and representative scenarios are nominated with scenario reduction techniques. To obtain a weighted solution among the various solutions made by several scenarios, the average stochastic output (ASO) index is used. The objective functions are minimization of the operational cost of the MG, minimization of active power loss, maximization of voltage stability index, and minimization of emissions. The best-compromised solution is then chosen by using the fuzzy technique. The capability of the proposed model is investigated on a 33-bus MG. The simulation results show the efficiency of the proposed model to optimize objective functions, while the constraints are satisfied.

Keywords: Copula-Based Method, Distribution Feeder Reconfiguration (DFR), Distributed Generation (DG), Microgrids (MGs), Scheduling, Uncertainty.

Nomenclature

Sets
- \(N_{bg} \) Set of branches.
- \(N_{DG_{ndp}} \) Set of non-dispatchable DGs.
- \(N_{DG_{dp}} \) Set of dispatchable DGs.
- \(N_{bus} \) Set of buses.

Variables
- \(S \) Set of scenarios.
- \(N_p \) Set of populations.
- \(D \) Set of decision variables.
- \(K \) Set of iterations.
- \(P_{load}(s) \) Active power loss and \(s \)-th scenario [kW].
- \(I(k,s) \) Current in \(k \)-th branch and \(s \)-th scenario [A].
- \(VSI(r,s) \) Voltage stability index for \(r \)-th bus and \(s \)-th scenario [pu].
- \(V_c(z,s) \) Voltage for \(z \)-th bus and \(s \)-th scenario [pu].
- \(P_{r}(z,r,s) \) Active power between \(z \)-th and \(r \)-th buses and \(s \)-th scenario [pu].
- \(Q_{r}(z,r,s) \) Reactive power between \(z \)-th and \(r \)-th buses and \(s \)-th scenario [pu].
- \(C_{grid}(s) \) Cost of energy exchanged with upstream grid and \(s \)-th scenario [$].
\(C_{DG_{\text{non}}}(i,s) \) Cost of active power generated by \(i \)-th non-dispatchable DG [\$].

\(C_{DG}(j,s) \) Cost of active power generated by \(j \)-th dispatchable DG and \(s \)-th scenario [\$].

\(P_{\text{gen}}(s) \) Active power exchanged with upstream grid [kW].

\(P_{DG_{\text{non}}}(i,s) \) Active power generated by \(i \)-th non-dispatchable DG and \(s \)-th scenario [kW].

\(P_{DG}(j,s) \) Active power generated by \(j \)-th dispatchable DG and \(s \)-th scenario [kW].

\(f_i(s) \) Value of \(i \)-th objective function and \(s \)-th scenario.

\(f_i^{\min} \) Nadir value for \(i \)-th objective function.

\(f_i^{\max} \) Ideal value for \(i \)-th objective function.

\(a_i(s) \) Fuzzy membership for \(i \)-th objective function and \(s \)-th scenario.

\(PG(i,s) \) Generated active power in \(i \)-th bus and \(s \)-th scenario [pu].

\(PD(i,s) \) Demanded active power in \(i \)-th bus and \(s \)-th scenario [pu].

\(|V(i,s)| \) Magnitude of voltage in \(i \)-th bus and \(s \)-th scenario [pu].

\(\delta(i,s) \) Phase voltage in \(i \)-th bus and \(s \)-th scenario [pu].

\(|Y(i,j)| \) Magnitude of admittance of between \(i \)-th and \(j \)-th bus [pu].

\(\varphi(i,j,s) \) Phase of admittance of between \(i \)-th and \(j \)-th bus [pu].

\(QG(i,s) \) Generated reactive power in \(i \)-th bus and \(s \)-th scenario [pu].

\(QD(i,s) \) Demanded reactive power in \(i \)-th bus and \(s \)-th scenario [pu].

\(|I(i,j,s)| \) Magnitude of current of between \(i \)-th and \(j \)-th bus and \(s \)-th scenario [pu].

\(X_{i,j}^{(k)} \) \(j \)-th candidate solution for \(i \)-th particle in \(k \)-th iteration.

\(V_{i,j}^{(k)} \) \(j \)-th element of velocity vector for \(i \)-th particle in \(k \)-th iteration.

\(G_{\text{best}}^{(k)} \) Global best position all of candidate solution found up to \(k \)-th iteration.

\(P_{\text{best}}^{(k)} \) Best previous experience for \(i \)-th particle in \(k \)-th iteration.

\(\psi_{r}(X,Y) \) Rank correlation.

\(G_X(X) \) Calmative distribution function (CDF) of \(X \) random variable.

\(G_Y(Y) \) Calmative distribution function (CDF) of \(Y \) random variable.

\(\text{Cov}(G_X,G_Y) \) Covariance of \(G_X \) and \(G_Y \).

\(\sigma(G_X) \) Standard deviation of \(G_X \).

\(\sigma(G_Y) \) Standard deviation of \(G_Y \).

\textbf{Parameters}

\(R(k) \) Resistance of \(k \)-th branch [\Omega].

\(R_{eh} \) Resistance between \(z \)-th and \(r \)-th buses [pu].

\(X_{er} \) Reactance between \(z \)-th and \(r \)-th buses [pu].

\(P_{\text{grid}}(t) \) Price of electricity in the upstream market at \(r \)-th hour [\$/kW].

\(a_{DG_{\text{non}}}(i) \) Investment (fix) cost of \(i \)-th non-dispatchable DG [\$].

\(b_{DG_{\text{non}}}(i) \) Variable cost of \(i \)-th non-dispatchable DG [\$].

\(a_{DG}(i) \) Investment (fix) cost of \(i \)-th dispatchable DG [\$].

\(b_{DG}(i) \) Variable cost of \(i \)-th non-dispatchable DG [\$].

\(\eta_{\text{ele}} \) Electrical efficiency of dispatchable DGs.

\(\text{Cost}_{\text{Capital}} \) Capital cost of DGs [\$/kW].

\(P_{\text{Capacity}} \) Capacity of DGs [kW].

\(Gr \) Annual rate of benefit.

\(CF_{DG}(i) \) Capacity factor of \(i \)-th DG.

\(T_{\text{Life}} \) Life time of DGs [year].

\(\text{Cost}_{DG_{\text{op}}}^{O&M} \) Cost of operation and maintenance of dispatchable DGs [\$/kW].

\(\text{Cost}_{\text{Fuel}}^{DG} \) Cost of fuel of dispatchable DG [\$/kW].

\(\text{Cost}_{DG_{\text{op}}}^{O&M} \) Cost of operation and maintenance of non-dispatchable DGs [\$/kW].

\(\rho_{\text{gas}} \) Price of natural gas in the upstream market [\$/m\(^3\)].

\(\beta_{\text{gas}} \) Rate of exchanging natural gas to electricity [m\(^3\)/kW].

\(ER(j) \) Emission rate of \(j \)-th DG [kg/kW].

\(ER_{\text{grid}} \) Emission rate of grid [kg/kW].

\(I_{\text{max}} \) Permitted current of feeder or cable between \(i \)-th and \(j \)-th bus [pu].

\(V_{\text{min}} \) Maximum allowable voltage in each bus [pu].

\(V_{\text{max}} \) Minimum allowable voltage in each bus [pu].

\(P_{\text{min}}^{DG}(i) \) Minimum allowable active power generated by \(i \)-th dispatchable DG [kW].

\(P_{\text{max}}^{DG}(i) \) Maximum allowable active power generated by \(i \)-th dispatchable DG [kW].

\(r_1, r_2 \) Random number from the Gaussian distribution.

\(c_{1,2} \) Inertia coefficients.

\(\bar{s} \) Solar irradiance [kW/m\(^2\)].

\(f_0(s(t)) \) Beta PDF of \(s(t) \).

\(a_i \) Parameters of the Beta PDF.

\(\beta_i \) Parameters of the Beta PDF.

\(\mu_i \) Mean of forecasted solar irradiance [kW/m\(^2\)].

\(\eta_{\text{PV}} \) Standard deviation of forecasted solar irradiance [kW/m\(^2\)].

\(S_{\text{PV}} \) Efficiency of PV module.

\(P_{\text{rated}} \) Area of PV module [m\(^2\)].

\(V_r \) Rated output power of WT [kW].

\(V_r \) Rated wind speed [m/s].

\(V \) Wind speed [m/s].

\(V_{\text{cut}} \) Cut-in wind speed [m/s].

\(V_{\text{cuto}} \) Cut-out wind speed [m/s].

\(\beta_i \) Mean of forecasted electrical demand [kW].
\(\sigma_d \) Standard deviation of forecasted electrical demand [kW].

\(z \) A vector of random variables between zero and one.

\(\rho(s) \) Probability of scenario \(s \).

Abbreviations

ASO Average stochastic output.

CDF Cumulative distribution function.

DFR Distribution feeder reconfiguration.

DG Distributed generation.

FC Fuel cell.

IMOPSO Improved multi-objective particle swarm optimization.

MG Microgrid.

MGO Microgrid operator.

MOP Multi-objective problem.

MOPSO Multi-objective particle swarm optimization.

MG O Microgrid operator.

MLP Multi-layer perceptron.

O&M Operation and maintenance.

PV Photovoltaic.

PDF Probability distribution function.

PSO Particle swarm optimization.

SOP Single objective problem.

VSI Voltage stability index (VSI).

WT Wind turbine.

1 Introduction

1.1 Motivation and Incitement

Currently, the DGs based on renewable energy resources such as WTs and PVs are attracting the attention of the MGO and even consumers due to the lack of need for fuel, lower operational cost, and less emission [1]. Moreover, they motivate small investors for contributing to the generation of electrical power. The DGs are mainly connected to distribution networks, including MGs. They have a wide range of capacities and technologies such as WTs, PVs, FCs, and etc. [2]. The optimal scheduling of DGs improves the key operational factors of MGs that are active power loss, operational cost, voltage stability and emissions [3, 4].

Distribution networks, including MGs, are normally operated in a radial topology due to the simplicity of the protection coordination and reducing the short-circuit level. The DFR is an operational task that changes the open/close status of sectionalizer and tie switches to enhance the quality of operation in the MGs. However, the MGs have numerous switching combinations, and finding the optimal combination in each hour can be a sophisticated optimization problem for MGO [3].

1.2 Literature Review

There are several researches dedicated to joint problem of optimal DFR and energy management MGs. In [3], a multi-objective fuzzy framework is presented for simultaneous optimal DFR and optimal scheduling of DGs in the distribution network. The proposed method consists of the objective functions of power losses, voltage stability, DG cost, and emissions. In [2], the optimal DFR and optimal scheduling of DGs are simultaneously performed by a multi-objective hybrid big bang big crunch (MOHBB-BC) algorithm. The objective functions are similar to [3], however, the uncertainty of electrical loads is modeled using the Triangular Fuzzy Number (TFN) technique. The important weakness of [2, 3] is to ignore the stochastic behavior of non-dispatchable DGs. In [5], a stochastic multi-objective model is proposed for the optimal DFR and planning of DGs to minimize MGO’s costs without considering emission effects. In [6], a stochastic model for optimal planning of DGs and DFR is proposed to consider the upstream grid market. The stochastic behavior of electrical demand and WTs are modeled. However, the other stochastic generation, such as PV and non-dispatchable DGs are not addressed in this reference. In [7] a two-stage method for optimal energy management and DFR is proposed to consider non-dispatchable DGs in an MG. Yet, the uncertainties of electrical demands are not taken into consideration. In [8], a MOP for optimal energy management and DFR is proposed. The aim of optimization is the minimization of active power losses, annual operation costs, and emissions simultaneously. Nonetheless, the pattern of the variation in wind speed, solar irradiation, and electrical demand is considered as a deterministic time sequence. In [9], the optimal energy management and DFR are simultaneously performed by Hong’s 2m point estimate method. The goals of optimization are to minimize operational costs as well as to improve the reliability and resiliency of the MGs considering the stochastic pattern of generation. In [10], an MOP based on optimal DFR and energy management is proposed.
for minimizing active power losses and phase unbalancing and improving the voltage profile. In [11], a joint stochastic problem for optimal DFR and energy management is proposed. Solving proposed MOP leads to the minimization of active power loss and number of switching operations as well as the maximization of the voltage stability margin. In [12], a stochastic MOP is proposed for the optimal DFR and energy management to maximize the DG owner’s profit and minimize the distribution company’s costs. In [1], a MOP is proposed based on optimal DFR in parallel with energy management for minimizing active power loss, annual operation costs that are installation, maintenance, and active power loss costs and emissions. In [13], an MOP is proposed to optimize DFR and energy management with two goals that are to minimize active power loss and to improve the voltage stability index. The proposed MOP is solved by the cuckoo search algorithm. In [14], an energy management methodology is presented considering DFR. The objective functions are minimization of the total cost, including investment cost of DG, operation and management cost of DG, the fuel cost of DG, and demand-side management cost. In [15], the dedicated search teaching-learning based optimization (DSTLBO) algorithm is proposed for simultaneous DFR and energy management considering DFR to maximize energy loss reduction subject to improve voltage profiles. In [16], a planning method is proposed to maximize the profits of DFR and energy management. It considers numerous objective functions that are investment, operation and maintenance costs and environmental effects. In [17], the metaheuristic harmony search algorithm combined with sensitivity analysis is presented to perform optimal DFR and energy management simultaneously. In [18], an efficient hybrid heuristic search algorithm based on the harmony search algorithm and particle artificial bee colony algorithm is proposed for simultaneous DFR along with optimal energy management of MG, including DGs. In [19], a combination of a fuzzy approach and bacterial foraging optimization (BFO) is developed to solve the simultaneous DFR, and energy management in an MG. In [20], a fuzzy MOP including DFR, and energy management is simultaneously solved by non-dominated sorting genetic algorithm (NSGA-II). The objective functions are minimization of voltage deviation, maximization of voltage stability index, lower amount of pollutant and lower cost. The studies that are performed for simultaneous DFR and scheduling of microgrid can be classified from different perspectives, including the type of formulation, the selected objective functions, the model for uncertainty in the formulation, and the solution methodology. Table 1 lists the recent references regarding the above-mentioned criteria.

1.3 Contribution and Paper Organization

Table 1 shows the differences between the proposed model and other works. Indeed, the present work extends the model proposed by authors in [2], and [3].

<table>
<thead>
<tr>
<th>Reference No.</th>
<th>Type of formulation</th>
<th>Objective function</th>
<th>Uncertainty</th>
<th>Solution method</th>
<th>Reactive power control</th>
<th>DER</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Deterministic</td>
<td>Real power loss, annual operation costs and emissions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Harmony Search Algorithm (HSA)</td>
<td>WT, PV</td>
</tr>
<tr>
<td>[2] Deterministic</td>
<td>Operation cost, power loss, emissions, and voltage stability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>HBB-BC</td>
<td>WT, PV, MT, FC</td>
</tr>
<tr>
<td>[3] Stochastic</td>
<td>Operation cost, power loss, emissions, and voltage stability</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>Pareto-based HBB-BC</td>
<td>WT, PV, MT, FC</td>
</tr>
<tr>
<td>[5] Stochastic</td>
<td>Operation cost, reliability, power loss, and number of switching</td>
<td>✓</td>
<td>GAMS</td>
<td>-</td>
<td>WT, PV, BM, MT, SH, FC, GT, Electric Vehicle</td>
<td></td>
</tr>
<tr>
<td>[7] Deterministic</td>
<td>Cost of energy</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>PSO</td>
<td>WT, PV</td>
</tr>
<tr>
<td>[8] Stochastic</td>
<td>Operation cost, resiliency, and reliability</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>EMA</td>
<td>WT, PV, CHP, BESS</td>
</tr>
<tr>
<td>[9] Deterministic</td>
<td>Phase unbalancing, power loss, and voltage profile</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>Dynamic algorithm</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[12] Stochastic</td>
<td>DG owner’s profit and the distribution company’s costs</td>
<td>✓</td>
<td>✓</td>
<td>GAMS</td>
<td>-</td>
<td>WT</td>
</tr>
<tr>
<td>[13] Deterministic</td>
<td>Real power loss and voltage stability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CSA</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[14] Deterministic</td>
<td>Operation cost and demand side cost</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Differential evolution algorithm</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[15] Deterministic</td>
<td>Energy loss and voltage profile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>DSTLBO</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[16] Deterministic</td>
<td>Costs of line upgrades, energy losses, switching operations, DG capital, operation and maintenance costs and emissions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>GAMS</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[17] Deterministic</td>
<td>Real power loss and voltage profile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Harmony Search Algorithm (HSA)</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[18] Deterministic</td>
<td>Real power loss and voltage profile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>integrating PSO and ABC algorithm with HSA</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[19] Deterministic</td>
<td>Real power loss and voltage profile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>bacterial foraging optimization (BFO)</td>
<td>General form of DER</td>
</tr>
<tr>
<td>[20] Deterministic</td>
<td>Operation cost, reliability, and power quality</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NSGA-II</td>
<td>General form of DER</td>
</tr>
<tr>
<td>Current paper</td>
<td>Operation cost, power loss, emissions, and voltage stability</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>IMOPSO</td>
<td>WT, PV, FC</td>
</tr>
</tbody>
</table>
Stochastic Joint Optimal Distributed Generation Scheduling … M. Khajehvand et al.

with considering the uncertainties of generation and demand. Besides, the uncertainties of WT and PV generation, and electrical demand are modeled by the copula-based method which has received less attention in the similar work. The scenario tree is used to generate scenarios and representative scenarios are nominated with scenario reduction techniques. Another innovation is to use the ASO index for obtaining a weighted solution among the various solutions made by numerous scenarios. The objective functions of the proposed MOP are to minimize the operational cost, to minimize active power loss, to maximize VSI, and to minimize emissions considering different constraints. A Pareto based MOP is derived, and by using the fuzzy decision-maker and a novel algorithm, named IMPSO, the best-compromised solution is chosen.

The main contributions provided by this paper as follows:
- Extending [2], and [3] with considering the uncertainties of generations and demand.
- Using the copula-based method for modeling the stochastic pattern of wind speed, solar irradiance, and electrical demand.
- Using a stochastic optimization based on IMPSO algorithm.
- Using an ASO index to obtain a weighted solution among the numerous solutions made by several scenarios.

The rest of this paper is organized as follows. In Section 2, the proposed problem formulation are elucidated. The uncertainty modeling is elucidated in Section 3. The proposed IMPSO is explained in Section 4. The implementation of the proposed algorithm on proposed MOP is described in Section 5. The simulation results are presented in Section 5 to assess the benefits of this work. Finally, the conclusions are delineated in Section 6.

2 Problem Formulation

This section involves the formulation of objective functions and constraints.

2.1 Objective Functions

2.1.1 Minimization of Active Power Losses

Minimization of active power losses is one of the key issues in the operation of MGs that can be calculated as follows [21]:

\[
\min f_1(s) = P_{loss} = \sum_{k \in N_{VSI}} R(k) \times |I(k, s)|^2 \quad \forall s \in S
\]

2.1.2 Maximization of VSI

From the voltage stability point of view, the VSI should be maximized in order to have a stable MG. For a typical radial feeder with two end buses of \(z \) and \(r \), the VSI for bus \(r \) is expressed as follows [2, 22]:

\[
VSI_r(s) = \left[V_z(s) \right]^4 - 4 \times \left[P_{r,}\left(s \right) \times X_{r,}\left(s \right) \right] - 4 \times \left[X_{r,}\left(s \right) \times Q_{r,}\left(s \right) \right] - Q_{r,}\left(s \right) \times X_{r,}\left(s \right) \quad \forall s \in S, \forall r, z \in N_{bus} \text{ for } z \neq r
\]

The bus, which has the lowest VSI would be the one which is the most sensitive one to voltage collapse. This means that the critical buses have the most deviation of VSI from unity. To maximize the weakest VSI, the second objective function is defined as follows [2, 22]:

\[
\min f_2(s) = \max_{r} \left\{ -VSI_r(s) \right\} \quad \forall r \in N_{bus}
\]

2.1.3 Minimization of Total Operational Cost

In this paper, it is assumed the MGO is owner of the DGs, therefore, the total operational cost of MG deals with the cost of energy exchanged with upstream grid, and cost of active power generated by DGs. The total operational cost is written in the following [23]:

\[
\min f_3(s) = C_{grid}(s) + \sum_{i=1}^{m} C_{DG_i}(i, s) + \sum_{j \in N_{DG}} C_{DG_j}(j, s) \quad \forall s \in S
\]

The cost of energy exchanged with upstream grid is written as follows [23]:

\[
C_{grid}(s) = P_{grid}(s) \times \rho_{grid} \quad \forall s \in S
\]

The cost of energy active power generated by DGs consists of two components that are the fix or investment costs (cost of equipment, infrastructure, commissioning, and etc.) and variable costs (cost of O&M and fuel costs). The cost of energy generated by DGs can be formulated as follows [24]:

For non-dispatchable DGs (PVs, and WTs):

\[
C_{DG_i}(i, s) = a_{DG_i}(i) + b_{DG_i}(i) \times P_{DG_i}(i, s) \quad \forall s \in S, \forall i \in N_{DG_i}
\]

For dispatchable DGs (FCs):

\[
C_{DG_i}(j, s) = a_{DG_i}(j) + a_{DG_i}(j) \times P_{DG_i}(j, s) \quad \forall t \in T, s \in S, \forall j \in N_{DG_i}
\]

where

\[
a_{DG_i}(i) = \frac{\text{Cost}_{DG_i}^{\text{Capital}} \times \rho_{DG_i} \times \text{Gr}}{T_{year} \times 365 \times 24 \times \text{CF}_{DG_i}(i)} \quad \forall i \in N_{DG_i}, \forall j \in N_{DG_i}
\]

\[
b_{DG_i}(j) = \frac{\text{Cost}_{DG_i}^{\text{Fixed}} + \text{Cost}_{DG_i}^{\text{Variable}}}{\text{Cost}_{DG_i}^{\text{Fixed}}} \quad \forall i \in N_{DG_i}, \forall j \in N_{DG_i}
\]

\[
\text{Cost}_{DG_i}^{\text{Fixed}} = \beta_{\text{Gr}} \times \rho_{Grid}
\]
2.1.4 Minimization of Total Emissions

The total emissions are concerned with the emissions generated by the upstream grid and FCs for generating electrical energy. The total emission is formulated as follows:

\[\min_{s} f_s(s) = P_{g_{ul}}(s) \times LF \times ER_{g_{ul}} \times 8760 \]

\[+ \sum_{j \in N_{bus}} \left(\frac{P_{DG_{i}}(j)}{N_{DG}} \times CF_{DG}(j) \times ER(j) \right) \times 8760 \]

\[\forall s \in S \] \hspace{1cm} (10)

2.2 Constraints

The proposed MOP subject to the following constraints:

2.2.1 Power Flow Equations

Active and reactive power balance at each bus of MG should be satisfied as follows [21]:

\[PG(i,s) - PD(i,s) = \sum_{j \in N_{bus} \cap N_{DG}} \left(V(i,s) \times V(j,s) \times Y(i,j) \times \cos(\delta(i,s) - \delta(j,s) - \phi(i,j,s)) \right) \]

\[\forall s \in S, \forall i \in N_{bus} \text{ for } i \neq j \] \hspace{1cm} (11)

\[QG(i,s) - QD(i,s) = \sum_{j \in N_{bus} \cap N_{DG}} \left(V(i,s) \times V(j,s) \times Y(i,j) \times \sin(\delta(i,s) - \delta(j,s) - \phi(i,j,s)) \right) \]

\[\forall s \in S, \forall i \in N_{bus} \text{ for } i \neq j \] \hspace{1cm} (12)

2.2.2 Network Radiality and Connectivity

One of the most important tasks in DFR is preservation of network radiality and connectivity [25]. In this paper, with the implementation of graph rules [26], the network radiality and connectivity is guaranteed.

2.2.3 Branch Current Limit

To be sure that the current of cables and feeders is not excessive from their rating, the following constraint should be taken into account [2]:

\[I(i,j,s) \leq I_{max} \]

\[\forall s \in S, \forall i,j \in N_{bus} \text{ for } i \neq j \] \hspace{1cm} (13)

2.2.4 Bus Voltage Permissible Range

The voltage in each bus should meet the allowable range as follows [2]:

\[V_{min} \leq V(i,s) \leq V_{max} \]

\[\forall s \in S, \forall i \in N_{bus} \] \hspace{1cm} (14)

2.2.5 Dispatchable DGs Generation Limits

The output active power generated by dispatchable DGs should satisfy the following limit [2, 27]:

\[P_{DG_{i}}^{min}(i) \leq P_{DG_{i}}(i,s) \leq P_{DG_{i}}^{max}(i) \]

\[\forall s \in S, \forall i \in N_{DG} \] \hspace{1cm} (15)

2.2.6 DGs Penetration Level

The limit total power generated by DG units should be kept at a certain level so that the distribution network remains under control from special technical aspects. This level is specified as follows:

\[\sum_{i \in N_{DG}} P_{DG_{i}}(i,s) + \sum_{j \in N_{bus} \cap N_{FC}} P_{FC_{j}}(j,s) \leq \pi \times \sum_{k \in N_{CG}} P_{DG_{k}}(k,s) \]

where \(\pi \) is the maximum penetration level of DGs.

3 Uncertainty Modeling

It is worthwhile to note that the different random variables are stochastically dependent on each other [28]. For instance, the forecasted and actual solar irradiance are significantly correlated together. Consequently, if the solar generation is precisely forecasted, then the actual solar generation is accurately planned. This statement can be expanded to other stochastic variables namely, wind speed, and electrical demand.

3.1 Calculation of Stochastic Correlation

The severity of correlation between the stochastic variables can be formulated as follows [28]:

\[\psi_{i,j}(X,Y) = \psi(G_{x}(X)G_{y}(Y)) = \frac{\text{Cov}(G_{x},G_{y})}{\sigma(G_{x}) \times \sigma(G_{y})} \] \hspace{1cm} (17)

It is seen that rank correlation factor \(\psi_{i,j} \) belongs to interval [0,1] and the random variable is transformed by this factor to uniform random space. When the rank correlation is one, the dependency between the random variables is high. On the contrary, if this factor is zero, thus the correlation is weak.

3.2 Copula Function

To formulate the multivariate distribution functions, one of the useful mathematical functions is copula function, which couples the several one-dimensional functions [29]. The coupling mechanism is carried out through to transform the uniform distribution of random variables in multivariate distribution space [29]. The details of copula function can be found in [28, 30].

It is assumed that \(X \) and \(Y \) are two random variables whose CDFs are \(G_{x} \) and \(G_{y} \), respectively. The copula \(C \) can be formulated to link their distribution function as follows [28]:

\[G_{XY}(X,Y) = C\left(G_{x}(X), G_{y}(Y)\right) \] \hspace{1cm} (18)

If \(G_{x}(X) = w \) and \(G_{y}(Y) = z \), where \(w \) and \(z \) are the realization of the uniform random variables \(W \) and \(Z \),
respectively. Therefore, (21) is rewritten as follows [28]:

\[C_{(W|Z)}(w, z) = G\left(X \cdot Y \right) = G\left(G_{1}^{-1}(w) G_{2}^{-1}(z) \right) \]

(19)

where \(C(W|Z) \) is the conditional distribution of \((W|Z)\) and \(G_{2}^{-1} \) is the inverse of a univariate distribution function.

3.3 Solar Irradiance Modeling and PV Generation Output

The probability distribution of solar irradiance is usually fitted by a bimodal distribution that can be modeled as a linear combination of two unimodal distributions. For this purpose, the Beta PDF is used for each unimodal (Fig. 1) that can be obtained as follows [31, 32]:

\[f_s(u) = \begin{cases} \frac{1}{\Gamma(\alpha_s + \beta_s)} \alpha_s^{-1} (1-u)^{\alpha_s-1} & 0 \leq u < 1, \alpha_s > 0, \beta_s > 0 \\ 0 & \text{otherwise} \end{cases} \]

(20)

\[\beta_s = (1 - \mu_s) \times \left(\frac{\mu_s \times (1 + \mu_s)}{\sigma_s^2} - 1 \right) \]

(21)

\[\alpha_s = \frac{\mu_s \times \beta_s}{(1 - \mu_s)} \]

(22)

The mean and standard deviation of wind speed are forecasted by historical data, which are gathered from the adjacent meteorology station [32, 33].

The solar irradiance, area, and efficiency of the PV modules determine the output power of the PV unit. Consequently, after the Beta PDF is produced, the output power of the PV unit for the different states is computed as follows [31, 32]:

\[P_{pv}(s_i) = \eta^m S^m s_i \]

(23)

3.4 Wind Speed Modeling and WT Generation Output

The stochastic behavior of wind speed is commonly modeled by Weibull PDF which needs two parameters for modeling. These parameters are the scale factor and shape factor which show by \(a \) and \(b \), respectively. In this paper, these parameters are considered as \(a = \frac{v_{mean}}{0.9} \) and \(b = 2 \). It is assumed that the WT is at a site where forecasted mean wind speed \((v_{mean}) \) is known. The Weibull PDF used in this paper is specified by [32, 33]:

\[f_w(v) = \frac{a}{b} \left(\frac{v}{b} \right)^{a-1} \exp\left(-\frac{v}{b} \right) \]

(24)

The output power of the WT is written as follows [32, 34]:

\[P_{w}(v) = \begin{cases} 0 & 0 \leq v < v_{co} \\ P_{rated} \times \left(\frac{v - v_{co}}{v_{ct} - v_{co}} \right) & v_{co} \leq v < v_{ct} \\ P_{rated} & v_{ct} \leq v \end{cases} \]

(25)

Fig. 2 displays the Weibull PDF for wind speed.

3.5 Electrical Demand Modeling

The uncertainty of forecasting electricity demand is regularly demonstrated by a Normal PDF which is given by [32, 35]:

\[f_d(l) = \frac{1}{\sigma_d \times \sqrt{2\pi}} \exp\left(-\frac{\left(l - \mu_d \right)^2}{2\sigma_d^2} \right) \]

(26)

\[l = z \times \sigma_d + \mu_d \]

The Normal PDF for electrical demand is shown in Fig. 3.

3.6 State Selection

To consider the stochastic behavior of the output
power of PV, WT, and electrical demand in the proposed model, the continuous PDFs are divided into states (periods). In this paper, the number of states is assumed to be 5 for solar irradiance, 5 for wind speed, and 7 for electrical demand.

The probability of solar irradiance, wind speed, and electrical demand for each state is considered as follows [32, 36]:

\[
P_r(G_r) = \int_{s_{r1}}^{s_{r2}} f_r(s) ds_i
\]

\[
P_v(G_v) = \int_{v_{v1}}^{v_{v2}} f_v(v) dv
\]

\[
P_L(G_L) = \int_{d_{L1}}^{d_{L2}} f_L(l) dl
\]

where \(P_r(G_r), P_v(G_v),\) and \(P_L(G_L)\) are the probability of the solar irradiance, wind speed, and electrical demand in states \(r, v,\) and \(L,\) respectively; \(s_{r1}\) and \(s_{r2}\) represent the solar irradiance limits of state \(r; v_{v1}\) and \(v_{v2}\) are the wind speed limits of state \(v; d_{L1}\) and \(d_{L2}\) are the load limits of state \(L; f_r(s), f_v(v),\) and \(f_L(l)\) represent the probabilities for different states of PV unit, WT, and electrical demand, respectively.

3.7 Scenario Reduction Techniques

In this paper, the PV generation, WT generation, and electrical demand, including 5, 5, and 7 states, respectively. Considering the scenario tree generation, 5×5×7=175 operating states should be studied. It is clear that a better modeling of the uncertainty deals with a higher number of scenarios while it needs a higher computational burden. Therefore, to well approximate stochastic behavior of MG, a suitable scenario reduction strategy should be applied to the model [37].

3.8 Automatic Clustering for Selecting Scenarios Using Genetic Algorithm

To minimize the intracluster spread, the K-means algorithm is one of the best alternatives that uses an iterative algorithm for clustering [38]. However, it has shortcomings that are dependent on the initial condition and the number of clusters specified by the user. This work clusters a dataset as an optimization problem that is solved by the genetic algorithm.

In this paper, a well-evaluated validity index named Davies-Bouldin (DB) is used for the automatic clustering algorithm [39]. In this index, the ratio between sums of within-cluster scatter to between cluster separations is calculated. The index uses both cluster and their corresponding sample mean. To begin, within \(i\)-th cluster distance and the distance between \(i\)-th and \(j\)-th clusters are denoted as follows [38, 39]:

\[
S_{q} = \left[\frac{1}{N_r} \sum_{s} \left| \bar{X} - \bar{m}_r \right|^q \right]^{\frac{1}{q}} \quad q \geq 1
\]

\[
d_{g,i} = \left[\sum_{p=1}^{P} \left(\bar{m}_r - \bar{m}_j \right)^q \right]^{\frac{1}{q}} \quad r \geq 1
\]

where \(S_{q}\) and \(d_{g,i}\) are within \(i\)-th cluster distance and the distance between \(i\)-th and \(j\)-th clusters, respectively; \(\bar{m}_r\) is the \(i\)-th cluster center; \(N_r\) is the number of elements in the \(i\)-th cluster \(C_i\); \(q\) (which is an integer) and \(t\) is arbitrary selected.

Next, \(R_{i,q}\) is given as [38, 39]:

\[
R_{i,q} = \max \left\{ \frac{S_{q} + S_{q}}{d_{g,i}} \right\} \quad j \in k, j \neq i
\]

Finally, the DB validity index is calculated as follows [38, 39]:

\[
DB(K) = \frac{1}{K} \sum_{i=1}^{K} R_{i,q}
\]

The smallest \(DB(K)\) validity index takes into account as an objective function that is solved by the genetic algorithm. After solving the optimization problem, at first, the specific number of centroids is selected and next, these selected centroids are allocated to the nearest scenario from the main scenario set and update the centroids. Then a redistribution of probabilities is performed. It comprises adding the probabilities of those scenarios which have not been finally selected to those recently updated centroids in every cluster. Thus, the reduced scenario set is provided by the final selected scenarios with associated probabilities.

ASO is a parameter indicating the average probable weighted output of a specified variable in the selected scenarios and it can be calculated as follows [40]:

\[
ASO = \frac{\sum_{s=1}^{P} PO(s) \times PVAR(s)}{\sum_{s=1}^{P} PVAR(s)}
\]

where \(PO(s)\) represents the probable outcome of specific variable in the \(s\)-th selected scenario and \(PVAR(s)\) shows the occurrence probability of that variable in the \(s\)-th selected scenario.

4 Improved Multi-Objective Particle Swarm Optimization (IMOPSO) Algorithm

In this paper, with the changes made to existing MOPSO optimization algorithms, a hybrid multi-objective algorithm with an appropriate accuracy and high-speed responsiveness known as IMOPSO is obtained; consequently, at first, the original PSO is briefly expressed and then presented algorithm is completely introduced.
4.1 Original PSO

The PSO is a population-based optimization algorithm that is inspired by the natural behavior of birds looking for food. Each solution of the problem is actually a bird in the search space known as particle. The algorithm is initialized with a random particle set. Each particle flies at a velocity across the multi-dimensional search space that its velocity and position are constantly improved by (35)-(36) with respect to the best previous position (Pbest) and the best global position (Gbest) [24].

\[
V_{i}^{(k+1)} = \omega_{i}^{(k+1)} \times V_{i}^{(k)} + c_{1} \times r_{1} \times (P_{i}^{(k)} - X_{i}^{(k)}) + c_{2} \times r_{2} \times (G_{i}^{(k)} - X_{i}^{(k)})
\]

where \(j \in D, i \in N_{p}, \forall k \in K \)

\[
X_{j}^{(k+1)} = X_{j}^{(k)} + V_{j}^{(k+1)} \quad \forall j \in D, i \in N_{p}, \forall k \in K
\]

\[
\omega_{i}^{(k+1)} = \omega_{i}^{(k)} - \frac{\omega_{i}^{\max} - \omega_{i}^{\min}}{t_{\max}} \times k \quad \forall k \in K
\]

4.2 Multi-Objective PSO (MOPSO) and Improved MOPSO (IMOPSO) Algorithms

4.2.1 MOP

Solving the SOP results in finding an optimal solution. However, in the real world, the problem space is faced with several objective functions that often conflict together. To simultaneously optimize the several objective functions, a MOP should be formulated while the problem constraints are met. The MOP can be defined as follows [2, 22].

\[
\min F = [f_{1}(x), f_{2}(x), \ldots, f_{n}(x)]
\]

\[
h_{i}(x) = 0 \quad i \in N_{eq}
\]

\[
g_{i}(x) \leq 0 \quad i \in N_{ineq}
\]

where \(x \) is the control variable for decision making, \(f_{i}(x) \) is \(i \)-th objective function, and \(n \) is the number of objective functions. \(h(x) \) and \(g(x) \) show the equality and inequality constraints, respectively.

There are two general methods for solving the MOPs [41] including 1) using the aggregation operators for converting the MOP to SOP such as weighted sum and fuzzy aggregators. 2) the non-dominated sorting methods and obtaining the Pareto sets solutions. This paper uses the second method which is explained as follows:

The optimal solution which is not improved in one of the objective functions unless worsens the performance of the solution in at least one of the rest is named Pareto optimal solution. Hence \(Y^{*} \) is named a Pareto optimal solution if finding a solution \(Y \) in \(Q \) is infeasible such that \(Y \) overcomes \(Y^{*} \in Q \). \(Q \) is the set of all vectors \(Y \) which satisfies the constraints of the problem. By definition, if the following two conditions are met for the solution, \(Y_{1} \) will dominate \(Y_{2} \) [2]:

\[
g_{j}(Y_{1}) \leq g_{j}(Y_{2}) \quad \forall j \in n \quad (40)
\]

\[
g_{k}(Y_{1}) < g_{k}(Y_{2}) \quad \forall k \in n \quad (41)
\]

4.2.2 IMOPSO Algorithm

One of the powerful algorithms used in MOPs is the MOPSO. This algorithm was first proposed by Coello in 2004 [42]. In the multi-objective problems, the word “best” does not have a specific meaning, because it looks for a set of solutions that are not dominated by any other solution [2].

In this paper, with improvements made to MOPSO algorithm, an improved MOPSO algorithm with a suitable accuracy and high response speed is obtained that converts it into a very powerful and efficient multi-objective algorithm known as Improved MOPSO (IMOPSO) to solve various optimization problems. The IMOPSO finds a set of the dominated solutions (Pareto solutions) during the process and stores them in a repository. For many MOPs, the number of Pareto optimal solutions might be high and perhaps unlimited. Therefore, in this paper for improving MOPSO, a crowding distance operator is used to control the size of the repository and its most diversity (spread). Therefore, after the end of the optimization process, a set of dominated solutions is achieved. One of the other improvements is to select the best compromise solution among Pareto solutions using fuzzy technique by combining objective function belongs to each solution based on priorities, finally a fuzzy fitness function belongs to each solution is obtained. In this paper, the “maximum geometric mean “ operator is used to determine the value of the fitness function, which seems more suitable than other operators [3]. Table 1 shows the steps of the proposed IMOPSO algorithm.

4.2.3 Choosing Best Personal Experience (Pbest)

In the proposed algorithm, a method based on the concept of superior classification is used for choosing new Pbests. Fig. 4 shows the principles of this method. With this approach, firstly, all Pbests and all solutions generated in the \(k \)-th iteration are combined, and a partial \(2N \) population is formed, then, the concept of superior classification is applied.

Followed by implementing superior classification, the partial \(2N \) population is divided into different fronts (classes). The first front is the most dominated front in the current population that dominates the second front. The next step is to choose the best-experienced location for each solution (new \(P_{best} \)), which is randomly selected from the upper part of the first front. Finally, \(N \) members should be selected based on the value of fitness. The selected \(N \) members play the role of Pbests in the next generation [23].
1. Importing the input parameters of the algorithm;
2. Making the initial population and initial velocity of each particle;
3. Evaluating each particle based on objective functions;
4. Separating non-dominated members of the population based on the concept of dominance and their storage in the external repository;
5. Selecting a leader among the members of the repository for each particle and starts moving;
6. Generating a new solution and updating the best personal memory of each particle based on the concept of non-dominated sorting;
7. Selecting the dominated solutions and upgrading the repository;
8. Non-dominated members of the current population are added to the repository and the dominant members of the repository are removed;
9. Using a crowding distance operator to control the size of the repository and diversity;
10. If the termination conditions are not met, go back to step 5, otherwise, go to step 11;

4.2.4 Non-Dominated Sorting Method

In this method, for each member of the population, two parameters of \(n_p \) and \(S_p \) are defined. \(n_p \) or dominance counter refers the number of population members that are superior to \(p \)-th member, and \(S_p \) is a set of members to which the \(p \)-th member is superior. Since all these quantities have been calculated for all existing solutions in the population, these solutions should be classified in such a way that is based on \(n_p \). This process continues in the same way for the next fronts until the solutions are eventually classified in different fronts.

4.2.5 Crowding Distance Operator

This operator acts based on concept of population density around a solution known as the “crowding distance”. This operator provides the possibility of choosing more varied solutions from solutions located on a front. This distance is equal to the average distance between two solutions \(j-1 \) and \(j+1 \) that are located on the sides of \(j \)-th solution. Calculating the crowding distance attributed to each solution on a given front requires covering the following steps.

- Calculate the number of solutions located in \(n \)-th front and call it \(|L[\bar{F}_n]|=L \). For each \(I \) in this set, the initial value of swarm distance is assumed to be \(0 \).
- Sort the existing solutions in the \(n \)-th front for each of the objective function \(m \in M \) that \(M \) refers number of objective functions.

\[CD^n(I_j) = \frac{f_{nm}(I_{j-1}) - f_{nm}(I_{j+1})}{f_{nm(I_{j-1})} + f_{nm(I_{j+1})}} \]

\[\forall j \in n, \ m \in M \]

According to above, in the selection process of new Pbests among the \(2N \) member set, the \(i \)-th solution is in priority compared to the \(j \)-th solution if at least one of the two below conditions is met:

I. \(i \)-th solution has a better ranking.
II. The ranking of both solutions is equal, but the crowding distance of \(i \)-th solution is greater than the \(j \)-th solution.

4.2.6 Selecting a Leader for Each Particle

Here, where the MOP is solved, there is no unique optimal solution, but there will be a repository of optimal solutions in the entire search space. Any solution in the Pareto repository can be a guide for population members. Here, instead of a unique Gbest, a different Gbest can be found from the repository for each member of the population.

In this paper, the concept of dominance is used to select Gbest for each member of the population; as Gbest is selected for \(X_a \) solution among the solutions from the repository that dominates \(X_a \). If \(A_{X_a} = \{a \in A|x < X_a\} \) shows a set of solutions in a repository that dominates \(X_a \), then the relevant Gbest is randomly selected from this set, so that all members of this set have equal chances for being selected as guides. If \(X_a \) is not dominated by any member in the repository, if it is among the solutions of the repository, the set \(A_{X_a} \) will be empty, in which the relevant Gbest is randomly selected among all existing members in the repository [2]. The above expression can be formulated as follows:

Table 1 The steps of implementation of IMOPSO algorithm.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Importing the input parameters of the algorithm.</td>
</tr>
<tr>
<td>2.</td>
<td>Making the initial population and initial velocity of each particle.</td>
</tr>
<tr>
<td>3.</td>
<td>Evaluating each particle based on objective functions.</td>
</tr>
<tr>
<td>4.</td>
<td>Separating non-dominated members of the population based on the concept of dominance and their storage in the external repository.</td>
</tr>
<tr>
<td>5.</td>
<td>Selecting a leader among the members of the repository for each particle and starts moving.</td>
</tr>
<tr>
<td>6.</td>
<td>Generating a new solution and updating the best personal memory of each particle based on the concept of non-dominated sorting.</td>
</tr>
<tr>
<td>7.</td>
<td>Selecting the dominated solutions and upgrading the repository.</td>
</tr>
<tr>
<td>8.</td>
<td>Non-dominated members of the current population are added to the repository and the dominant members of the repository are removed.</td>
</tr>
<tr>
<td>9.</td>
<td>Using a crowding distance operator to control the size of the repository and diversity.</td>
</tr>
<tr>
<td>10.</td>
<td>If the termination conditions are not met, go back to step 5, otherwise, go to step 11.</td>
</tr>
</tbody>
</table>
\[G_{best}^v = \begin{cases} a \in A \text{ with probability } |A|^{-1} \text{ if } X_v \in A \\ a \in A_v \text{ with probability } |A_v|^{-1} \text{ otherwise} \end{cases} \]

4.2.7 Selecting the Dominated Solutions and Upgrading the Repository

As noted earlier, the concept of dominance is used in order to find dominated solutions. In each iteration of algorithms, the new Pbest are extracted and become a candidate to be present in Pareto repository. The following four states might occur for a solution which candidates for adding to the repository:

1. If the repository of the dominated solutions is empty, then the new solution is added to the repository.
2. If the candidate’s solution is not being dominated by any of the repository’s solutions and if not dominated on any of it, then which goes to the repository.
3. If the candidate's solution dominates at least one of the archived solutions, then all dominant solutions are removed from the repository, and the new solution is added.
4. If the candidate's solution is dominated by one of the repository’s solutions, then it is excluded. Since the capacity of the repository is limited, it is necessary to preserve the best and most varied solutions. Hence, the crowding distance operator is used here, and the solutions in low-density areas have a higher priority to remain in the repository to increase the variety of solutions in the repository.

4.2.8 Choosing the Best Compromised Solution

Solving the MOP by Pareto-based methods does not lead to a unique optimal solution that takes the objective functions to the most optimal possible states, but in some studies, the methods are used to determine the best-compromised solution. Since objective functions have different dimensions, a method must be adopted for scaling. This paper uses a Fuzzy operator for scaling as follows [25, 26]:

\[a_i = \begin{cases} 1 & f_i < f_i^{\text{min}} \\ \frac{f_i^{\text{max}} - f_i}{f_i^{\text{max}} - f_i^{\text{min}}} & f_i^{\text{min}} \leq f_i \leq f_i^{\text{max}} \forall i \in \{1, 2, 3, 4\} \\ 0 & f_i \geq f_i^{\text{max}} \end{cases} \]

To combine the scaled objective function, the “max geometric mean” operator is used as follows [25, 26]:

\[\mu = \left(\prod_{i=1}^{n} a_i \right)^{\frac{1}{n}} \]

Therefore, through this method, a value of fitness function \(\mu \) is obtained for each solution of the problem that it is used to select the best-compromised solution.

Table 2 Parameters of the proposed algorithm for the case study

<table>
<thead>
<tr>
<th>Population size</th>
<th>(\omega_{\text{max}})</th>
<th>(\omega_{\text{min}})</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>Max iterations</th>
<th>(\text{Trials}^{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.005</td>
<td>0.05</td>
<td>0.09</td>
<td>0.1</td>
<td>100</td>
<td>35</td>
</tr>
</tbody>
</table>

The solution archived as an optimal Pareto solution that has the largest value of \(\mu \) is proposed as the best-compromised solution.

5 Applying the IMOPSO Algorithm to Proposed MOP

For the proposed problem, decision variables include the status of open switches in each loop that are integer variables and output electrical power of dispatchable DGs, output electrical power of non-dispatchable DGs, and exchanged power with an upstream grid that are continuous variables. Consequently, the vector of decision variables can be as follows:

\[Y = \left[\text{Tie}(v), P_{grid}(t), P_{DG,i}(i), P_{DG,j}(j) \right] \]

\[\forall v \in N_{sv}, \forall i \in N_{DG}, \forall j \in N'_{DG} \]

Fig. 5 illustrates the flow chart of the implementation of IMOPSO algorithms to the proposed MOP. The termination criteria algorithm can be either when the maximum number of iterations is achieved or when the algorithms converge to an acceptable fitness value.

6 Simulation results

This section is partitioned through numerous subsections. Firstly, the two-dimensional PDFs stochastic parameters are simulated by copula-based method. These parameters are wind and solar power, and electrical demand. Next, the proposed MOP is solved by the proposed algorithm for a 32-bus MG. Finally, the optimal Pareto fronts and the best-compromised solution are derived. A trial and error process is used to tune the parameters of the proposed algorithm for the case study that is shown by Table 2. Due to the existence of random operators and for the sake of statistical analysis, the proposed algorithm is run several times. The maximum number of trials is displayed in Table 2. It should be noted that the simulations performed in this paper were implemented using the MATLAB (R2014b) software on a computer with Intel Core i7, 2.50GHz memory.

6.1 Modeling of Stochastic Parameters by Copula Function

Regarding Section 3, the copula function method needs the actual and predicted amounts of the stochastic parameters for time duration equal to one year. The real-time data that are solar irradiance, wind speed, and electrical demand is derived from our previous work [44]. An MLP neural network is used to obtain the
predicted values of the stochastic parameters. Details of the implementation of the neural network have been described by [44]. Figs. 6-8 show the probabilistic relationship between the actual and the predicted data of solar power, wind power, and electrical demand.

To model multivariate PDFs, one of the most suitable copula functions is the Gaussian copula [45]. Therefore, in this paper, the Gaussian copula is used. The joint conditional distribution function of actual and predicted values of the stochastic parameters is displayed by Figs. 9-11.

Figs. 9-11 confirm the PDFs assumed in Section 3 are very close to PDFs obtained from the actual stochastic data. It can be observed that the Fig. 9-11 approximately show the Beta, Weibull, and Normal PDF, respectively.

Firstly, the scenario generation is carried out by the algorithm proposed by Subsection 3.6. Then, the infeasible scenarios are reduced by the scenario reduction technique proposed by Subsection 3.8. Finally, the ASO index presented by the same...
subsection is applied to reduce the computational burden and to simplify the optimization process.

6.2 Thirty Two-Bus MG

To evaluate the IMOPSO algorithm to solve the proposed MOP, the simulation is performed on the case study of 33-bus MG [46]. The voltage level, the active and reactive power consumption of the understudy network is 12.66kV, 3715kW and 2300kVAr, respectively. The number of the tie (normally open) and
sectionalizer (normally closed) switches in this radial distribution network is 5 and 32, respectively [2]. In Fig. 12, a single-line diagram of balance 32-bus MG is shown. Two combined energy systems, including PV, WT, and FC are installed on buses 4, and 14. In the basic configuration of the 33-bus distribution network without DFR and energy management (base case), the power loss, VSI, operational cost and emissions objective functions are 202.67kW, 0.6969, 219.38$/h and 22272 tons, respectively.

The details of the characteristics of combined energy system are represented in Table 3.

In this section, three case studies are taken into account to evaluate the proposed model. These case studies are as follows:

Case study 1: only optimal DFR without considering the combined energy systems.
Case study 2: only optimal energy scheduling the combined energy systems without DFR.
Case study 3: optimal energy scheduling the combined energy systems and DFR simultaneously.

6.2.1 Case Study 1

Table 4 lists the results of optimal DFR and values of the four objective functions as a set of Pareto optimal solutions. In this table, the optimal values of each objective function are colored. In this case study, the electrical demand and power losses are supplied by the upstream maim grid. Regarding Table 4, it is seen that solution numbers 14, 23, 25, and 28 have the best values for objective functions, including power loss, VSI, operation cost, and emission, respectively. It can be observed that the IMPSO cannot find a global optimum solution, while it obtains a set of the Pareto solutions which all of them are suitable for MGO. The selection

Table 3 Data of combined energy system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{D_{G_{0}}}$</td>
<td>0</td>
<td>$Cost_{D_{G_{0}}}$</td>
<td>6675</td>
<td>$Cost_{D_{G_{0}}}$</td>
<td>1500</td>
</tr>
<tr>
<td>$P_{D_{G_{0}}}$</td>
<td>400</td>
<td>$P_{D_{G_{0}}}$</td>
<td>400</td>
<td>$P_{D_{G_{0}}}$</td>
<td>400</td>
</tr>
<tr>
<td>$Cost_{D_{G_{0}}}$</td>
<td>3674</td>
<td>Gr</td>
<td>0.136</td>
<td>Gr</td>
<td>0.136</td>
</tr>
<tr>
<td>$P_{D_{G_{0}}}$</td>
<td>400</td>
<td>CF_{DG}</td>
<td>0.25</td>
<td>CF_{DG}</td>
<td>0.2</td>
</tr>
<tr>
<td>Gr</td>
<td>0.136</td>
<td>T_{life}</td>
<td>20</td>
<td>T_{life}</td>
<td>20</td>
</tr>
<tr>
<td>CF_{DG}</td>
<td>0.2</td>
<td>$Cost_{D_{G_{0}}}$</td>
<td>0.05</td>
<td>$Cost_{D_{G_{0}}}$</td>
<td>0.05</td>
</tr>
<tr>
<td>T_{life}</td>
<td>10</td>
<td>P_{rated}</td>
<td>18.6</td>
<td>P_{rated}</td>
<td>400</td>
</tr>
<tr>
<td>$Cost_{D_{G_{0}}}$</td>
<td>0.0039</td>
<td>V_{rr}</td>
<td>40</td>
<td>V_{rr}</td>
<td>12</td>
</tr>
<tr>
<td>ER_{grid}</td>
<td>14.447</td>
<td>V_{co}</td>
<td>25</td>
<td>V_{co}</td>
<td>3.5</td>
</tr>
</tbody>
</table>

V_{min} 0.90, V_{max} 1.05, ER_{grid} 27.34

* Units of quantities have been expressed in nomenclature.
of the final solution depends on the preferences of the MGO. Nonetheless, the fuzzy technique presented by Subsection 4.2 is used for deriving the best-compromised solution. In this case study, this solution that is solution number 28 is bolded in Table 4. Fig. 13 shows the 3D plots of the objective functions.

Fig. 13 shows the optimal Pareto solution by star sign. Regarding the preferences of the MGO for optimizing a special objective function, the arrow sign shows the best solutions. Fig. 13 (a) displays the three objective functions such as power loss, operation cost, and emission which are plotted versus each other, and the VSI is not taken into account. It is seen that the optimal solution with coordinates (132.752kW (power loss), 226.258$/h (operation cost), and 22.14×10^3 ton (emission)) has the best solution for power loss objective functions, although it is not appropriate for the other objective functions. The other optimal solution with coordinates (133.021kW (power loss), 226.115$/h (operation cost), and 22.0510 ton (emission)) is suitable for MGO whose priority is to minimize emissions. Also, if the preference of MGO is to reduce the operational cost, it is satisfied with the other optimal solution presented in Fig. 13 (a). Figs. 13 (b)-(d) illustrate that the best solution for VSI objective is 0.7969 (solution number 23), while this optimal solution has no suitable solutions for the other objectives that are 162.455kW (power loss), 226.774$/h (cost) and 24.823×10^3 ton (emission) respectively. However, the best-compromised solution obtained by the fuzzy decision maker corresponds to solution number 1. As regards Table 5, the FC-based generation units have a tendency to decrease the output power due to high emission rate. However, the PV and WT generation units in the combined energy system number 2 have tended to increase the power generation to the maximum capacity limit. This is due to the fact that renewable generation units have the low emission rate and operational cost compared to FC units and upstream generation units. Fig. 14 illustrates the 3D plots of the objective functions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>133.197</td>
<td>0.7730</td>
<td>210.294</td>
<td>20.8036</td>
<td>7, 10, 14, 37, 31</td>
</tr>
<tr>
<td>2</td>
<td>134.082</td>
<td>0.7736</td>
<td>212.171</td>
<td>21.0379</td>
<td>7, 11, 14, 37, 31</td>
</tr>
<tr>
<td>3</td>
<td>157.427</td>
<td>0.7814</td>
<td>214.048</td>
<td>22.1775</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>4</td>
<td>132.952</td>
<td>0.7657</td>
<td>217.488</td>
<td>20.8238</td>
<td>7, 10, 13, 37, 31</td>
</tr>
<tr>
<td>5</td>
<td>157.617</td>
<td>0.7829</td>
<td>213.280</td>
<td>21.9049</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>6</td>
<td>155.348</td>
<td>0.7803</td>
<td>222.767</td>
<td>22.8813</td>
<td>7, 10, 14, 37, 34</td>
</tr>
<tr>
<td>7</td>
<td>132.977</td>
<td>0.7685</td>
<td>218.181</td>
<td>21.6888</td>
<td>7, 9, 13, 37, 31</td>
</tr>
<tr>
<td>8</td>
<td>134.748</td>
<td>0.7753</td>
<td>211.894</td>
<td>21.3043</td>
<td>7, 9, 14, 37, 31</td>
</tr>
<tr>
<td>9</td>
<td>162.138</td>
<td>0.7959</td>
<td>225.981</td>
<td>24.5476</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>10</td>
<td>135.758</td>
<td>0.7796</td>
<td>216.820</td>
<td>25.3573</td>
<td>6, 14, 37, 31, 34</td>
</tr>
<tr>
<td>11</td>
<td>158.563</td>
<td>0.7665</td>
<td>221.508</td>
<td>23.3223</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>12</td>
<td>158.841</td>
<td>0.7880</td>
<td>224.859</td>
<td>24.0471</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>13</td>
<td>159.227</td>
<td>0.7901</td>
<td>222.201</td>
<td>22.7766</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>14</td>
<td>132.752</td>
<td>0.7725</td>
<td>220.084</td>
<td>22.1405</td>
<td>7, 9, 13, 37, 31</td>
</tr>
<tr>
<td>15</td>
<td>160.907</td>
<td>0.7935</td>
<td>225.451</td>
<td>24.3751</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>16</td>
<td>135.398</td>
<td>0.7791</td>
<td>215.523</td>
<td>23.2632</td>
<td>6, 9, 14, 37, 31</td>
</tr>
<tr>
<td>17</td>
<td>156.684</td>
<td>0.7823</td>
<td>226.497</td>
<td>24.6800</td>
<td>7, 11, 14, 37, 34</td>
</tr>
<tr>
<td>18</td>
<td>132.904</td>
<td>0.7703</td>
<td>218.899</td>
<td>21.5153</td>
<td>7, 9, 13, 37, 31</td>
</tr>
<tr>
<td>19</td>
<td>159.631</td>
<td>0.7900</td>
<td>222.755</td>
<td>22.9644</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>20</td>
<td>135.275</td>
<td>0.7779</td>
<td>222.024</td>
<td>23.0568</td>
<td>6, 9, 14, 37, 31</td>
</tr>
<tr>
<td>21</td>
<td>160.534</td>
<td>0.7915</td>
<td>224.632</td>
<td>23.5620</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>22</td>
<td>135.590</td>
<td>0.7792</td>
<td>223.486</td>
<td>23.4495</td>
<td>6, 9, 14, 37, 31</td>
</tr>
<tr>
<td>23</td>
<td>162.544</td>
<td>0.7909</td>
<td>226.258</td>
<td>24.8232</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>24</td>
<td>155.686</td>
<td>0.7764</td>
<td>221.810</td>
<td>22.6226</td>
<td>7, 8, 14, 37, 34</td>
</tr>
<tr>
<td>25</td>
<td>133.021</td>
<td>0.7676</td>
<td>211.276</td>
<td>20.7149</td>
<td>7, 10, 13, 37, 31</td>
</tr>
<tr>
<td>26</td>
<td>160.657</td>
<td>0.7927</td>
<td>224.506</td>
<td>23.854</td>
<td>6, 10, 14, 37, 34</td>
</tr>
<tr>
<td>27</td>
<td>132.945</td>
<td>0.7712</td>
<td>219.353</td>
<td>21.6647</td>
<td>7, 9, 13, 37, 31</td>
</tr>
<tr>
<td>28</td>
<td>134.197</td>
<td>0.7736</td>
<td>203.124</td>
<td>20.7237</td>
<td>7, 9, 14, 37, 31</td>
</tr>
<tr>
<td>29</td>
<td>156.947</td>
<td>0.7830</td>
<td>227.115</td>
<td>24.9510</td>
<td>7, 10, 14, 37, 34</td>
</tr>
<tr>
<td>30</td>
<td>162.495</td>
<td>0.7969</td>
<td>226.774</td>
<td>25.0958</td>
<td>6, 10, 14, 37, 34</td>
</tr>
</tbody>
</table>
indicates the three objective functions which are plotted versus each other without taking into consideration the fourth objective function. Given the priority of MGO, the arrow sign solutions represent the optimal solutions. The red circles in Fig. 14 depicts the best-compromised solution that is solution number 1 in Table 5. It has coordinates (106.908kW (power loss), 161.144$/h (operation cost), 13.229×10³ tons (emission), 0.7562 (VSI)) that denote a suitable compromise among the objectives.

6.2.3 Case study 3

This case study considers the DFR and generation scheduling of combined energy systems simultaneously. Table 6 denotes the Pareto solutions of the optimal DFR and generation scheduling of the combined energy systems and values of objective functions at each solution. In this case study, the best optimal solution for power loss, VSI are related to solution numbers 12, and 13, respectively, while the solution number 6 has the best solution for operation cost and emission. Nevertheless, the best compromised solution corresponds to solution number 10. Similar to the previous case study, the FCs reduce the output power. Fig. 15 exemplifies the 3D plots of the objective functions.

6.2.4 Comparative Studies

To assess the proposed model and comparison the case studies, a comparative analysis is carried out in this subsection. Regarding the four objective functions proposed by this paper, Table 7 compares the results of case studies with respect to its best-compromised solution. In order to show the efficacy of the proposed algorithm in comparison to another algorithm, the simulation of Case study 3 is repeated by the HBB-BC algorithm proposed by [2]. The last row of the Table 7 displays the results of the HBB-BC algorithm.

Despite the lack of combined energy systems in the Case study 1, the results display that all objective functions of power losses, VSI, operation cost, and emissions are enhanced in comparison to the base case. This is due to the fact that the solving proposed MOP leads to the determination of the optimal open switches (7, 9, 14, 28, 31) in which all objective functions improve. Again, comparing the results of Case study 2 and Case study 1 shows that utilizing the optimal combined energy systems instead of optimal DFR improves all of the objective functions except the VSI. In Case study 3, all objective functions are enhanced in comparison to the other case studies. These results show that a better solution is obtained, whenever the optimal
Table 5 Set of the Pareto solutions (case study 2).

<table>
<thead>
<tr>
<th>Solution number</th>
<th>Power losses [kW]</th>
<th>VSI</th>
<th>Cost [$/h]</th>
<th>Emission [tons]</th>
<th>P_{dG} for the best solution [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106.908</td>
<td>0.7562</td>
<td>161.144</td>
<td>13.2296</td>
<td>311.96</td>
</tr>
<tr>
<td>2</td>
<td>107.618</td>
<td>0.7568</td>
<td>162.583</td>
<td>13.4391</td>
<td>295.58</td>
</tr>
<tr>
<td>3</td>
<td>126.356</td>
<td>0.7644</td>
<td>164.022</td>
<td>14.1671</td>
<td>282.20</td>
</tr>
<tr>
<td>4</td>
<td>106.712</td>
<td>0.7490</td>
<td>166.657</td>
<td>13.3024</td>
<td>322.00</td>
</tr>
<tr>
<td>5</td>
<td>126.509</td>
<td>0.7639</td>
<td>163.433</td>
<td>13.9930</td>
<td>283.00</td>
</tr>
<tr>
<td>6</td>
<td>124.687</td>
<td>0.7633</td>
<td>170.326</td>
<td>14.6167</td>
<td>244.45</td>
</tr>
<tr>
<td>7</td>
<td>106.731</td>
<td>0.7518</td>
<td>167.189</td>
<td>13.5227</td>
<td>319.13</td>
</tr>
<tr>
<td>8</td>
<td>108.153</td>
<td>0.7585</td>
<td>162.371</td>
<td>13.6093</td>
<td>353.42</td>
</tr>
<tr>
<td>9</td>
<td>130.137</td>
<td>0.7786</td>
<td>173.165</td>
<td>15.6811</td>
<td>191.43</td>
</tr>
<tr>
<td>10</td>
<td>108.964</td>
<td>0.7626</td>
<td>166.146</td>
<td>15.0358</td>
<td>282.20</td>
</tr>
<tr>
<td>11</td>
<td>127.268</td>
<td>0.7694</td>
<td>169.737</td>
<td>14.2506</td>
<td>269.22</td>
</tr>
<tr>
<td>12</td>
<td>127.491</td>
<td>0.7709</td>
<td>172.306</td>
<td>15.3614</td>
<td>241.56</td>
</tr>
<tr>
<td>13</td>
<td>127.801</td>
<td>0.7720</td>
<td>170.269</td>
<td>14.5498</td>
<td>246.06</td>
</tr>
<tr>
<td>14</td>
<td>106.551</td>
<td>0.7557</td>
<td>168.646</td>
<td>14.1435</td>
<td>294.66</td>
</tr>
<tr>
<td>15</td>
<td>129.149</td>
<td>0.7762</td>
<td>172.76</td>
<td>15.5709</td>
<td>225.45</td>
</tr>
<tr>
<td>16</td>
<td>108.675</td>
<td>0.7622</td>
<td>165.151</td>
<td>14.8607</td>
<td>286.30</td>
</tr>
<tr>
<td>17</td>
<td>125.761</td>
<td>0.7653</td>
<td>173.561</td>
<td>15.7657</td>
<td>182.54</td>
</tr>
<tr>
<td>18</td>
<td>106.673</td>
<td>0.7535</td>
<td>167.739</td>
<td>13.7441</td>
<td>312.16</td>
</tr>
<tr>
<td>19</td>
<td>128.125</td>
<td>0.7729</td>
<td>170.693</td>
<td>14.6698</td>
<td>237.50</td>
</tr>
<tr>
<td>20</td>
<td>108.576</td>
<td>0.7610</td>
<td>170.133</td>
<td>14.7288</td>
<td>292.69</td>
</tr>
<tr>
<td>21</td>
<td>128.850</td>
<td>0.7743</td>
<td>172.132</td>
<td>15.0515</td>
<td>224.50</td>
</tr>
<tr>
<td>22</td>
<td>108.828</td>
<td>0.7623</td>
<td>171.253</td>
<td>14.9797</td>
<td>285.88</td>
</tr>
<tr>
<td>23</td>
<td>130.463</td>
<td>0.7796</td>
<td>173.377</td>
<td>15.8572</td>
<td>186.46</td>
</tr>
<tr>
<td>24</td>
<td>124.958</td>
<td>0.7596</td>
<td>169.969</td>
<td>14.4514</td>
<td>260.77</td>
</tr>
<tr>
<td>25</td>
<td>106.223</td>
<td>0.7509</td>
<td>161.897</td>
<td>13.5011</td>
<td>305.34</td>
</tr>
<tr>
<td>26</td>
<td>128.949</td>
<td>0.7755</td>
<td>172.035</td>
<td>15.2384</td>
<td>226.88</td>
</tr>
<tr>
<td>27</td>
<td>106.706</td>
<td>0.7544</td>
<td>168.086</td>
<td>13.8395</td>
<td>312.23</td>
</tr>
<tr>
<td>28</td>
<td>107.711</td>
<td>0.7568</td>
<td>155.651</td>
<td>13.2384</td>
<td>315.51</td>
</tr>
<tr>
<td>29</td>
<td>125.971</td>
<td>0.7639</td>
<td>174.034</td>
<td>15.9389</td>
<td>172.73</td>
</tr>
<tr>
<td>30</td>
<td>130.424</td>
<td>0.7801</td>
<td>173.773</td>
<td>16.0313</td>
<td>181.15</td>
</tr>
</tbody>
</table>

Fig. 14 The Pareto optimal solutions (case study 2).
Table 6 Set of the non-dominated solutions (case study 3).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91.206</td>
<td>0.7827</td>
<td>155.222</td>
<td>12.9085</td>
<td>13.38, 37, 37, 34</td>
<td>0.87, 37, 37, 34</td>
</tr>
<tr>
<td>2</td>
<td>82.216</td>
<td>0.8508</td>
<td>160.721</td>
<td>12.9222</td>
<td>13.38, 37, 37, 34</td>
<td>0.87, 37, 37, 34</td>
</tr>
<tr>
<td>3</td>
<td>99.648</td>
<td>0.8142</td>
<td>155.065</td>
<td>12.8909</td>
<td>33.10, 13, 28, 34</td>
<td>32.80, 0.00, 39.31, 37.40</td>
</tr>
<tr>
<td>4</td>
<td>82.100</td>
<td>0.8405</td>
<td>160.906</td>
<td>12.9869</td>
<td>7.10, 13, 37, 31</td>
<td>307.11, 0.61, 400.00, 0.00</td>
</tr>
<tr>
<td>5</td>
<td>82.774</td>
<td>0.8538</td>
<td>179.741</td>
<td>18.3720</td>
<td>7.10, 14, 37, 30</td>
<td>160.82, 31.30, 200.01, 350.32</td>
</tr>
<tr>
<td>6</td>
<td>126.164</td>
<td>0.7534</td>
<td>155.055</td>
<td>12.8699</td>
<td>33.10, 28, 31, 15</td>
<td>324.73, 0.00, 39.79, 37.13</td>
</tr>
<tr>
<td>7</td>
<td>97.465</td>
<td>0.8615</td>
<td>164.669</td>
<td>14.3638</td>
<td>6.9, 14, 37, 8</td>
<td>371.93, 30.82, 358.35</td>
</tr>
<tr>
<td>8</td>
<td>95.024</td>
<td>0.8519</td>
<td>168.089</td>
<td>13.470</td>
<td>7.10, 14, 37, 34</td>
<td>300.01, 13.01, 374.71, 373.90</td>
</tr>
<tr>
<td>9</td>
<td>83.003</td>
<td>0.8513</td>
<td>157.368</td>
<td>13.1476</td>
<td>7.10, 14, 37, 31</td>
<td>313.21, 0.00, 394.31, 377.41</td>
</tr>
<tr>
<td>10</td>
<td>82.758</td>
<td>0.8510</td>
<td>156.801</td>
<td>13.0839</td>
<td>7.10, 14, 37, 31</td>
<td>307.23, 0.00, 389.30, 366.90</td>
</tr>
<tr>
<td>11</td>
<td>82.351</td>
<td>0.8523</td>
<td>178.556</td>
<td>18.1202</td>
<td>7.10, 14, 37, 30</td>
<td>166.30, 35.01, 216.22, 349.08</td>
</tr>
<tr>
<td>12</td>
<td>81.400</td>
<td>0.8298</td>
<td>173.518</td>
<td>16.0043</td>
<td>7.9, 14, 37, 34</td>
<td>156.80, 36.11, 365.39, 350.34</td>
</tr>
<tr>
<td>13</td>
<td>102.906</td>
<td>0.8779</td>
<td>178.379</td>
<td>17.8781</td>
<td>7.9, 14, 37, 34</td>
<td>167.41, 29.02, 230.78, 345.41</td>
</tr>
<tr>
<td>14</td>
<td>95.447</td>
<td>0.8332</td>
<td>163.052</td>
<td>13.4936</td>
<td>7.10, 14, 37, 34</td>
<td>285.20, 0.00, 373.03, 368.38</td>
</tr>
<tr>
<td>15</td>
<td>97.712</td>
<td>0.8634</td>
<td>170.608</td>
<td>14.5892</td>
<td>6.9, 14, 37, 8</td>
<td>230.06, 0.42, 371.91, 360.49</td>
</tr>
<tr>
<td>16</td>
<td>81.407</td>
<td>0.8289</td>
<td>172.783</td>
<td>15.6917</td>
<td>7.10, 14, 37, 30</td>
<td>179.41, 29.81, 355.42, 365.34</td>
</tr>
<tr>
<td>17</td>
<td>81.577</td>
<td>0.8223</td>
<td>171.059</td>
<td>14.9459</td>
<td>7.10, 14, 37, 30</td>
<td>227.44, 19.20, 357.02, 366.11</td>
</tr>
<tr>
<td>18</td>
<td>101.322</td>
<td>0.8754</td>
<td>177.311</td>
<td>17.4381</td>
<td>7.10, 14, 37, 34</td>
<td>186.20, 32.30, 240.81, 348.12</td>
</tr>
<tr>
<td>19</td>
<td>81.660</td>
<td>0.8203</td>
<td>170.343</td>
<td>16.4441</td>
<td>7.10, 14, 37, 34</td>
<td>242.10, 15.44, 359.20, 369.31</td>
</tr>
<tr>
<td>20</td>
<td>82.036</td>
<td>0.8414</td>
<td>166.492</td>
<td>13.0046</td>
<td>7.10, 13, 37, 31</td>
<td>305.32, 0.06, 397.60, 400.00</td>
</tr>
<tr>
<td>21</td>
<td>102.415</td>
<td>0.8776</td>
<td>178.036</td>
<td>17.738</td>
<td>7.10, 14, 37, 34</td>
<td>174.61, 31.72, 226.11, 351.33</td>
</tr>
<tr>
<td>22</td>
<td>84.485</td>
<td>0.8589</td>
<td>174.773</td>
<td>15.3938</td>
<td>6.9, 14, 37, 31</td>
<td>233.90, 0.79, 284.20, 361.48</td>
</tr>
<tr>
<td>23</td>
<td>96.451</td>
<td>0.8601</td>
<td>170.833</td>
<td>14.6794</td>
<td>7.10, 14, 37, 34</td>
<td>235.62, 16.18, 367.73, 374.59</td>
</tr>
<tr>
<td>24</td>
<td>95.731</td>
<td>0.8571</td>
<td>169.020</td>
<td>13.9665</td>
<td>7.10, 14, 37, 34</td>
<td>268.81, 0.17, 372.92, 364.62</td>
</tr>
<tr>
<td>25</td>
<td>83.814</td>
<td>0.8553</td>
<td>165.277</td>
<td>14.4491</td>
<td>6.9, 14, 37, 31</td>
<td>236.33, 0.00, 357.90, 367.37</td>
</tr>
<tr>
<td>26</td>
<td>81.991</td>
<td>0.8440</td>
<td>167.080</td>
<td>13.1868</td>
<td>7.10, 13, 37, 31</td>
<td>299.00, 0.43, 385.11, 378.88</td>
</tr>
<tr>
<td>27</td>
<td>100.992</td>
<td>0.8746</td>
<td>176.968</td>
<td>17.3097</td>
<td>7.10, 14, 37, 34</td>
<td>188.40, 36.00, 244.09, 351.55</td>
</tr>
<tr>
<td>28</td>
<td>84.637</td>
<td>0.8581</td>
<td>174.655</td>
<td>15.1821</td>
<td>6.9, 14, 37, 31</td>
<td>235.30, 0.43, 380.36, 366.41</td>
</tr>
<tr>
<td>29</td>
<td>81.631</td>
<td>0.8256</td>
<td>171.941</td>
<td>15.1586</td>
<td>7.10, 14, 37, 30</td>
<td>198.21, 12.73, 362.00, 363.10</td>
</tr>
<tr>
<td>30</td>
<td>81.450</td>
<td>0.8315</td>
<td>174.283</td>
<td>16.2738</td>
<td>7.10, 14, 37, 30</td>
<td>142.50, 36.31, 365.42, 352.48</td>
</tr>
</tbody>
</table>

Fig. 15 The Pareto optimal solutions (case study 3).
energy management of the combined energy systems and optimal DFR are simultaneously carried out (as the proposed method), the highest enhancement in objective functions is acquired. The values achieved in Case study 3 for objective functions of power losses (82.75kW), VSI (0.8510), operation cost (156.801$/h), and emissions (13.08 tons) are the most optimal value of all case studies and base case. Regarding the last row of the Table 7, it is seen that although the HBB-BC algorithm has found the status of tie switches similar to proposed algorithm, however, due to fewer use of generations of renewable energies (WT, and PV), the objective functions are converged to unsuitable values compared to the results of the proposed algorithm in Case study 3.

As observed in Table 7, the last case study has also a better minimum voltage. To accurately observe resulted voltage status of MG, voltage profile for all case studies is illustrated by Fig. 16.

It is seen that Case study 2 results in a higher voltage for a number of buses in comparison to the proposed formulation of Case study 3. Yet, Case study 3 improves the weakest bus voltage as motivated by VSI. It can be noted that the voltage instability and voltage collapse of an MG can be triggered by the weakest bus voltage, and subsequently, the reinforcement of the weakest voltage leads to the improvement of the whole power system voltage status. This fact occurs in the proposed MOP where the minimum voltage of 0.9489 p.u. (at bus 31) is higher than other minimum voltages given by other case studies. It is important to also note that the voltage of bus 0 of the MG, which is connected to the upstream main grid, is kept at 1 (p.u.) as observed in Fig. 16. The voltage of combined energy systems connected to buses (4 and 14) cannot be fixed at 1 p.u. due to operating them with unity power factor.

7 Conclusions

In this paper, the optimal DFR, and optimal generation scheduling of combined energy systems are simultaneously carried out by a combined algorithm named IMOPSO algorithm in an MG. Minimization of active power loss, VSI index, operational costs, and emissions are the objective functions. This MOP is optimized by the above-mentioned algorithm considering the uncertainties of WT generation, PV generation, and electrical demand. This paper proposes the copula-based stochastic energy management for the MG. The scenarios are generated by the scenario tree algorithm and scenario reduction is carried out by a clustering algorithm based on the genetic algorithm. To consider all of the probable solutions, a new index named ASO is proposed to aggregate the solutions.

The main achievements of the proposed MOP model as follows:

- The active power loss is reduced by 59.41%, 47.52%, and 33.66% in Case study 3, 2, and 1, respectively compared to the base case.
- The VSI index is increased by 23.18%, 8.63%, and 11.59% in Case study 3, 2, and 1, respectively in comparison to the base case.
- The total operational costs are elucidated by 28.76%, 26.48% and 7.32% in Case study 3, 2, and 1, respectively in comparison to the base case.
- The emissions are reduced by 41.23%, 40.60%, and 9.09% in Case study 3, 2, and 1, respectively in comparison to the base case.

To improve the research work presented in this paper, the following future works can be considered as follows:

- Presenting an optimal day-ahead scheduling and DFR considering uncertainties modeled by copula method.
- Applying the proposed model on unbalanced MGs.

References

Stochastic Joint Optimal Distributed Generation Scheduling

M. Khajehvand et al.

M. Khajehvand received the B.Sc. degree in Electrical Engineering from the Power and Water University of Technology, Tehran, Iran, and M.Sc. degree in Electrical Engineering from Qazvin branch of Islamic Azad University, Qazvin, Iran in 2002 and 2007, respectively. He is currently a Ph.D. Candidate at the faculty of Electrical, Biomedical and Mechatronics Engineering of Islamic Azad University, Qazvin Branch. His research interests are distribution systems, smart grid, electric vehicles and renewable energies.

A. Fakharian received his B.Sc. and M.Sc. degrees in Control Engineering from University of Tehran, Iran in 1999 and 2002. He received his Ph.D. degree in Control Engineering from Tarbiat Modares University, Iran in 2010. Now, he is an Associate Professor at the Faculty of Electrical, Bio-medical and Mechatronics Engineering of Islamic Azad University, Qazvin Branch. His research interests include convex optimization, large scale systems modeling and control, singular perturbation systems control and robust control. He was the recipient of a postdoctoral program award from Lulea University of Technology, Sweden in 2010. Now, he is a guest researcher in this university with some collaborating works in the field of control and optimization of complex and large scale systems especially with application in microgrids and biological systems.

M. Sedighizadeh received the B.Sc. degree in Electrical Engineering from the Shahid Chamran University of Ahvaz, Iran and M.Sc. and Ph.D. degrees in Electrical Engineering from the Iran University of Science and Technology (IUST), Tehran, Iran, in 1996, 1998 and 2004, respectively. From 2000 to 2007 he was with power system studies group of Moshanir Company, Tehran, Iran. Currently, he is as an Associate professor with the Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran. His research interests are Power system control and modeling, FACTS devices, microgrids, and distributed generation.

© 2020 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).