
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 3, September 2020 371 

 

Iranian Journal of Electrical and Electronic Engineering 03 (2020) 371–392 

Special Issue on Smart Grids 

 

Stochastic Joint Optimal Distributed Generation Scheduling 

and Distribution Feeder Reconfiguration of Microgrids 

Considering Uncertainties Modeled by Copula-Based Method 
 

M. Khajehvand*, A. Fakharian*(C.A.), and M. Sedighizadeh** 
 

 
Abstract: Using distributed generations (DGs) with optimal scheduling and optimal 

distribution feeder reconfiguration (DFR) are two aspects that can improve efficiency as 

well as technical and economic features of microgrids (MGs). This work presents a 

stochastic copula scenario-based framework to jointly carry out optimal scheduling of DGs 

and DFR. This framework takes into account non-dispatchable and dispatchable DGs. In 

this paper, the dispatchable DG is a fuel cell unit and the non-dispatchable DGs with 

stochastic generation are wind turbines and photovoltaic cells. The uncertainties of wind 
turbine and photovoltaic generations, as well as electrical demand, are formulated by a 

copula-based method. The generation of scenarios is carried out by the scenario tree 

method and representative scenarios are nominated with scenario reduction techniques. To 

obtain a weighted solution among the various solutions made by several scenarios, the 

average stochastic output (ASO) index is used.  The objective functions are minimization of 

the operational cost of the MG, minimization of active power loss, maximization of voltage 

stability index, and minimization of emissions. The best-compromised solution is then 

chosen by using the fuzzy technique. The capability of the proposed model is investigated 

on a 33-bus MG. The simulation results show the efficiency of the proposed model to 

optimize objective functions, while the constraints are satisfied. 
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Nomenclature1 

Sets 

NBR Set of branches. 

NDDGN  Set of non-dispatchable DGs. 

DDGN  Set of dispatchable DGs. 

Nbus Set of buses. 
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S Set of scenarios. 

Np Set of populations. 

D Set of decision variables. 

K Set of iterations. 

Variables 

Ploss(s) Active power loss and s-th scenario 
[kW]. 

I(k.s) Current in k-th branch and s-th scenario 

[A]. 

VSIr(s) Voltage stability index for r-th bus and 

s-th scenario [pu]. 

Vz(s) Voltage for z-th bus and s-th scenario 

[pu]. 

Pzr(s) Active power between z-th and r-th 

buses and s-th scenario [pu]. 

Qzr(s) Reactive power between z-th and r-th 

buses and s-th scenario [pu]. 
Cgrid(s) Cost of energy exchanged with upstream 

grid and s-th scenario [$]. 
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( . )
NDDGC i s  

Cost of active power generated by i-th 

non-dispatchable DG [$]. 

( . )
DDGC j s  

Cost of active power generated by j-th 

dispatchable DG and s-th scenario [$]. 

Pgrid(s) Active power exchanged with upstream 

grid [kW]. 

( . )
NDDGP i s  

Active power generated by i-th non-

dispatchable DG and s-th scenario [kW]. 

( . )
DDGP j s  

Active power generated by j-th 

dispatchable DG and s-th scenario [kW]. 

fi(s) Value of i-th objective function and s-th 
scenario. 

fimin Nadir value for i-th objective function. 

fimax Ideal value for i-th objective function. 

ai(s) Fuzzy membership for i-th objective 

function and s-th scenario. 

PG(i.s) Generated active power in i-th bus and 

s-th scenario [pu]. 

PD(i.s) Demanded active power in i-th bus and 

s-th scenario [pu]. 

|V(i.s)| Magnitude of voltage in ith bus and s-th 

scenario [pu]. 
δ(i.s) Phase voltage in i-th bus and s-th 

scenario [pu]. 

|Y(i.j)| Magnitude of admittance of between i-th 

and j-th bus [pu]. 

φ(i.j.s) Phase of admittance of between i-th and 

j-th bus [pu]. 

QG(i.s) Generated reactive power in i-th bus and 

s-th scenario [pu]. 

QD(i.s) Demanded reactive power in i-th bus 

and s-th scenario [pu]. 

|I(i.j.s)| Magnitude of current of between i-th 
and j-th bus and s-th scenario [pu]. 

Xj
(k.i) j-th candidate solution for i-th particle in 

k-th iteration. 

Vj
(k.i) j-th element of velocity vector for i-th 

particle in k-th iteration. 

Gbestj
(k) Global best position all of candidate 

solution found up to k-th iteration. 

Pbestj
(k.i) Best previous experience for i-th particle 

in k-th iteration. 

ψr(X.Y) Rank correlation. 

GX(X) Calmative distribution function (CDF) 

of X random variable. 
GY(Y) Calmative distribution function (CDF) 

of Y random variable. 

Cov(GX.GY) Covariance of GX and GY. 

σ(GX) Standard deviation of GX. 

σ(GY) Standard deviation of GY. 

Parameters 

R(k) Resistance of k-th branch [Ω)]. 

Rzr Resistance between z-th and r-th buses 

[pu]. 

Xzr Reactance between z-th and r-th buses 

[pu]. 
ρgrid(t) Price of electricity in the upstream 

market at t-th hour [$/kW]. 

( )
NDDGa i  Investment (fix) cost of i-th non-

dispatchable DG [$]. 

( )
NDDGb i  Variable cost of i-th non-dispatchable 

DG [$]. 

( )
DDGa i  Investment (fix) cost of i-th dispatchable 

DG [$]. 

( )
DDGb i  Variable cost of i-th non-dispatchable 

DG [$]. 

ηele Electrical efficiency of dispatchable 

DGs. 

 

DG

CapitalCost  Capital cost of DGs [$/kW]. 

DG

CapacityP  Capacity of DGs [kW]. 

Gr Annual rate of benefit. 

CFDG(i) Capacity factor of i-th DG. 

TLife Life time of DGs [year]. 
&

D

O M

DGCost  Cost of operation and maintenance of 

dispatchable DGs [$/kW]. 

D

Fuel

DGCost  Cost of fuel of dispatchable DG [$/kW]. 

&

ND

O M

DGCost  Cost of operation and maintenance of 

non-dispatchable DGs [$/kW]. 

ρgas Price of natural gas in the upstream 
market [$/m3]. 

βgas Rate of exchanging natural gas to 

electricity [m3/kW]. 

ER(j) Emission rate of j-th DG [kg/kW]. 

ERgrid Emission rate of grid [kg/kW]. 

Iij
max Permitted current of feeder or cable 

between i-th and j-th bus [pu]. 

Vmin Maximum allowable voltage in each bus 

[pu]. 

Vmax Minimum allowable voltage in each bus 

[pu]. 

( )
D

min

DGP i  Minimum allowable active power 
generated by ith dispatchable DG [kW]. 

( )
D

max

DGP i  Maximum allowable active power 

generated by i-th dispatchable DG [kW]. 

r1.r2 Random number from the Gaussian 

distribution. 

c1.c2 Inertia coefficients. 

si Solar irradiance [kW/m2]. 

fb(si) Beta PDF of si. 

αs Parameters of the Beta PDF. 

βs Parameters of the Beta PDF. 

μs Mean of forecasted solar irradiance 
[kW/m2]. 

σs Standard deviation of forecasted solar 

irradiance [kW/m2]. 

ηpv Efficiency of PV module. 

Spv Area of PV module [m2]. 

Prated Rated output power of WT [kW]. 

vr Rated wind speed [m/s]. 

v Wind speed [m/s]. 

vct Cut-in wind speed [m/s]. 

vco Cut-out wind speed [m/s]. 

μd Mean of forecasted electrical demand 
[kW]. 
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σd Standard deviation of forecasted 

electrical demand [kW]. 

z A vector of random variables between 

zero and one. 

ρ(s) Probability of scenario s. 

Abbreviations 

ASO Average stochastic output. 

CDF Cumulative distribution function. 

DFR Distribution feeder reconfiguration. 

DG Distributed generation. 

FC Fuel cell. 
IMOPSO Improved multi-objective particle swarm 

optimization. 

MG Microgrid. 

MGO Microgrid operator. 

MOP Multi-objective problem. 

MOPSO Multi-objective particle swarm 

optimization. 

MGO Microgrid operator. 

MLP Multi-layer perceptron. 

O&M Operation and maintenance. 

PV Photovoltaic. 
PDF Probability distribution function. 

PSO Particle swarm optimization. 

SOP Single objective problem. 

VSI Voltage stability index (VSI). 

WT Wind turbine. 

ASO Average stochastic output. 

CDF Cumulative distribution function. 

DFR Distribution feeder reconfiguration. 

DG Distributed generation. 

FC Fuel cell. 

IMOPSO Improved multi-objective particle swarm 
optimization. 

MG Microgrid. 

MGO Microgrid operator. 

MOP Multi-objective problem. 

MOPSO Multi-objective particle swarm 

optimization. 

MGO Microgrid operator. 

MLP Multi-layer perceptron. 

O&M Operation and maintenance. 

PV Photovoltaic. 

PDF Probability distribution function. 

PSO Particle swarm optimization. 
SOP Single objective problem. 

VSI Voltage stability index (VSI). 

WT Wind turbine. 

 

1 Introduction 

1.1 Motivation and Incitement 

URRENTLY, the DGs based on renewable energy 

resources such as WTs and PVs are attracting the 

attention of the MGO and even consumers due to the 

lack of need for fuel, lower operational cost, and less 

emission [1]. Moreover, they motivate small investors 
for contributing to the generation of electrical power. 

The DGs are mainly connected to distribution networks, 

including MGs. They have a wide range of capacities 

and technologies such as WTs, PVs, FCs, and etc. [2]. 

The optimal scheduling of DGs improves the key 

operational factors of MGs that are active power loss, 

operational cost, voltage stability and emissions [3, 4]. 

   Distribution networks, including MGs, are normally 

operated in a radial topology due to the simplicity of the 

protection coordination and reducing the short-circuit 

level. The DFR is an operational task that changes the 

open/close status of sectionalizer and tie switches to 
enhance the quality of operation in the MGs. However, 

the MGs have numerous switching combinations, and 

finding the optimal combination in each hour can be a 

sophisticated optimization problem for MGO [3]. 

 

1.2 Literature Review 

   There are several researches dedicated to joint 

problem of optimal DFR and energy management MGs. 

In [3], a multi-objective fuzzy framework is presented 

for simultaneous optimal DFR and optimal scheduling 

of DGs in the distribution network. The proposed 
method consists of the objective functions of power 

losses, voltage stability, DG cost, and emissions. In [2], 

the optimal DFR and optimal scheduling of DGs are 

simultaneously performed by a multi-objective hybrid 

big bang big crunch (MOHBB-BC) algorithm. The 

objective functions are similar to [3], however, the 

uncertainty of electrical loads is modeled using the 

Triangular Fuzzy Number (TFN) technique. The 

important weakness of [2, 3] is to ignore the stochastic 

behavior of non-dispatchable DGs. In [5], a stochastic 

multi-objective model is proposed for the optimal 
DFR and planning of DGs to minimize MGO’s costs 

without considering emission effects. In [6], a stochastic 

model for optimal planning of DGs and DFR is 

proposed to consider the upstream grid market. The 

stochastic behavior of electrical demand and WTs are 

modeled. However, the other stochastic generation, such 

as PV and non-dispatchable DGs are not addressed in 

this reference. In [7] a two-stage method for optimal 

energy management and DFR is proposed to consider 

non-dispatchable DGs in an MG. Yet, the uncertainties 

of electrical demands are not taken into consideration. 

In [8], a MOP for optimal energy management and DFR 
is proposed. The aim of optimization is the 

minimization of active power losses, annual operation 

costs, and emissions simultaneously. Nonetheless, the 

pattern of the variation in wind speed, solar irradiation, 

and electrical demand is considered as a deterministic 

time sequence. In  [9], the optimal energy management 

and DFR are simultaneously performed by Hong’s 2m 

point estimate method. The goals of optimization are to 

minimize operational costs as well as to improve the 

reliability and resiliency of the MGs considering the 

stochastic pattern of generation. In [10], an MOP based 
on optimal DFR and energy management is proposed 

C 
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for minimizing active power losses and phase 

unbalancing and improving the voltage profile. In [11], 

a joint stochastic problem for optimal DFR and energy 

management is proposed. Solving proposed MOP leads 

to the minimization of active power loss and number of 

switching operations as well as the maximization of the 

voltage stability margin. In [12], a stochastic MOP is 

proposed for the optimal DFR and energy management 

to maximize the DG owner’s profit and minimize the 

distribution company’s costs. In [1], a MOP is proposed 

based on optimal DFR in parallel with energy 
management for minimizing active power loss, annual 

operation costs that are installation, maintenance, and 

active power loss costs and emissions. In [13], an MOP 

is proposed to optimize DFR and energy management 

with two goals that are to minimize active power loss 

and to improve the voltage stability index. The proposed 

MOP is solved by the Cuckoo search algorithm. In [14], 

an energy management methodology is presented 

considering DFR. The objective functions are 

minimization of the total cost, including investment cost 

of DG, operation and management cost of DG, the fuel 
cost of DG, and demand-side management cost. In [15], 

the dedicated search teaching-learning based 

optimization (DSTLBO) algorithm is proposed for 

simultaneous energy management considering DFR to 

maximize energy loss reduction subject to improve 

voltage profiles. In [16], a planning method is proposed 

to maximize the profits of DFR and energy 

management. It considers numerous objective functions 

that are investment, operation and maintenance costs 

and environmental effects. In [17], the metaheuristic 

harmony search algorithm combined with sensitivity 

analysis is presented to perform optimal DFR and 

energy management simultaneously. In [18], an efficient 

hybrid heuristic search algorithm based on the harmony 

search algorithm and particle artificial bee colony 

algorithm is proposed for simultaneous DFR along with 

optimal energy management of MG, including DGs. 

In [19], a combination of a fuzzy approach and bacterial 

foraging optimization (BFO) is developed to solve the 

simultaneous DFR, and energy management in an MG. 
In [20], a  fuzzy MOP including DFR, and energy 

management is simultaneously solved by non-

dominated sorting genetic algorithm (NSGA-II). The 

objective functions are minimization of voltage 

deviation, maximization of voltage stability index, 

lower amount of pollutant and lower cost. The studies 

that are performed for simultaneous DFR and 

scheduling of microgrid can be classified from different 

perspectives, including the type of formulation, the 

selected objective functions, the model for uncertainty 

in the formulation, and the solution methodology. 
Table 1 lists the recent references regarding the above-

mentioned criteria. 

 

1.3 Contribution and Paper Organization 

   Table 1 shows the differences between the proposed 

model and other works. Indeed, the present work 

extends the model proposed by authors in [2], and [3] 

 
Table 1 Recent research works addressing DFR and scheduling in microgrids. 

Reference 

No. 

Type of 

formulation 
Objective function 

Uncertainty Solution method Reactive 

power 
control 

DER 
Demand Generation Mathematical Heuristic 

[1] Deterministic Real power loss, annual operation 

costs and emissions 

- - - Strength Pareto Evolutionary 

Algorithm 2 (SPEA2) 

- WT, PV 

[2] Deterministic Operation cost, power loss, 

emissions, and voltage stability 

- - - HBB-BC - WT, PV, MT, FC 

[3] Stochastic Operation cost, power loss, 

emissions, and voltage stability 

 - -  Pareto based HBB-BC - WT, PV, MT, FC 

[5] Stochastic Operation cost, reliability, power 

loss, and number of switching 

-  GAMS - - WT, PV, BM, MT, 

SH, FC, GT, Electric 
Vehicle 

[6] Stochastic Benefit of MGO   - PSO - WT, MT, BESS 

[7] Deterministic Cost of energy - - - PSO - WT, PV 
[9] Stochastic Operation cost, resiliency, and 

reliability 

  - EMA - WT, PV, CHP, BESS 

[10] Deterministic Phase unbalancing, power loss, 

voltage profile, and operation cost 

- - - Bacterial Foraging with Spiral 

Dynamic algorithm 

- General form of DER 

[11] Stochastic Power loss, voltage stability, and 

number of switching 

 - - Knee point driven evolutionary 

algorithm 

- SH 

[12] Stochastic DG owner’s profit and the 

distribution company’s costs 

  GAMS - - WT 

[13] Deterministic Real power loss and voltage 

stability 

- - - CSA - General form of DER 

[14] Deterministic Operation cost and demand side 

cost 

- - - Differential evolution 

algorithm 

- General form of DER 

[15] Deterministic energy loss and voltage profile - - - DSTLBO  General form of DER 

[16] Deterministic Costs of line upgrades, energy 

losses, switching operations, DG 

capital, operation and 
maintenance costs and emissions  

- - GAMS - - General form of DER 

[17] Deterministic Real power loss and voltage 

profile  

- - - Harmony Search Algorithm 

(HSA) 

- General form of DER 

[18] Deterministic Real power loss and voltage 
profile 

- - - integrating PSO and ABC 
algorithm  with HSA 

 General form of DER 

[19] Deterministic Real power loss and voltage 

profile 

- - - bacterial foraging optimization 

(BFO) 

 General form of DER 

[20] Deterministic Operation cost, reliability, and 
power quality 

- - - NSGA-II  General form of DER 

Current 

paper 

Stochastic Operation cost, power loss, 

emissions, and voltage stability 

  - IMOPSO  WT, PV, FC  
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with considering the uncertainties of generation and 

demand. Besides, the uncertainties of WT and PV 

generation, and electrical demand are modeled by the 

copula-based method which has received less attention 

in the similar work. The scenario tree is used to generate 

scenarios and representative scenarios are nominated 

with scenario reduction techniques. Another innovation 

is to use the ASO index for obtaining a weighted 

solution among the various solutions made by numerous 

scenarios. The objective functions of the proposed MOP 

are to minimize the operational cost, to minimize active 
power loss, to maximize VSI, and to minimize 

emissions considering different constraints. A Pareto 

based MOP is derived, and by using the fuzzy decision-

maker and a novel algorithm, named IMOPSO, the best-

compromised solution is chosen. 

   The main contributions provided by this paper as 

follows: 

 Extending [2], and [3] with considering the 

uncertainties of generations and demand. 

 Using the copula-based method for modeling the 

stochastic pattern of wind speed, solar irradiance, 
and electrical demand. 

 Using a stochastic optimization based on IMOPSO 

algorithm. 

 Using an ASO index to obtain a weighted solution 

among the numerous solutions made by several 

scenarios. 

   The rest of this paper is organized as follows. In 

Section 2, the proposed problem formulation are 

elucidated. The uncertainty modeling is elucidated in 

Section 3. The proposed IMPSO is explained in 

Section 4. The implementation of the proposed 
algorithm on proposed MOP is described in Section 5. 

The simulation results are presented in Section 5 to 

assess the benefits of this work. Finally, the conclusions 

are delineated in Section 6. 

 

2 Problem Formulation 

   This section involves the formulation of objective 

functions and constraints. 

 

2.1 Objective Functions 

2.1.1 Minimization of Active Power Losses 

   Minimization of active power losses is one of the key 

issues in the operation of MGs that can be calculated as 

follows [21]: 
 

     
2

1min .    
BR

loss

k N

f s P R k I k s s S


    
 

(1) 

 

2.1.2 Maximization of VSI 

   From the voltage stability point of view, the VSI 

should be maximized in order to have a stable MG. For 

a typical radial feeder with two end buses of z and r, the 

VSI for bus r is expressed as follows [2, 22]: 
 

       

     

4 2

2

4

4  

  ,   .   for 

r z zr zr zr zr

z zr zr zr zr

bus

VSI s V s P s X Q s R

V s P s R Q s X

s S r z N z r

           

           

    
 

 

 

 

(2) 

 

   The bus, which has the lowest VSI would be the one 

which is the most sensitive one to voltage collapse. This 

means that the critical buses have the most deviation of 

VSI from unity. To maximize the weakest VSI, the 

second objective function is defined as follows [2, 22]: 
 

    2min   max 1       t

r r busf s VSI s r N     (3) 

 

2.1.3 Minimization of Total Operational Cost 

   In this paper, it is assumed the MGO is owner of the 

DGs, therefore, the total operational cost of MG deals 

with the cost of energy exchanged with upstream grid, 

and cost of active power generated by DGs. The total 

operational cost is written in the following [23]: 
 

     

 

3min   .

.    

ND

DGND

D

DGD

grid DG

i N

DG

j N

f s C s C i s

C j s s S





 

  




 

 
 

(4) 

 

   The cost of energy exchanged with upstream grid is 

written as follows [23]: 
 

       grid grid gridC s P s s S     (5) 

 

   The cost of energy active power generated by DGs 

consists of two components that are the fix or 

investment costs (cost of equipment, infrastructure, 

commissioning, and etc.) and variable costs (cost of 

O&M and fuel costs). The cost of energy generated by 

DGs can be formulated as follows [24]: 

For non-dispatchable DGs (PVs, and WTs): 
 

       . .      

,

ND ND ND ND

ND

DG DG DG DG

DG

C i s a i b i P i s

s S i N

  

   

 

 

 
 

(6) 
 

For dispatchable DGs (FCs): 
 

       . .   

, ,

D D D D

D

DG DG DG DG

DG

C j s a j b j P j s

t T s S j N

  

     
 

 
 

(7) 
 

where 
 

   
 

 
  

365 24

  . 

ND D

ND D

DG DG

Capital Capacity

DG DG

Life DG

DG DG

Cost P Gr
a i a j

T CF i

i N j N

 
 

  

   
 

 

 
 

(8) 

 

 

&

& , ,

  

    

D D D

ND ND ND D

D

O M Fuel

DG DG DG

O M

DG DG DG DG

Fuel

DG gas gas

b j Cost Cost

b j Cost i N j N

Cost  




 

   







 
 

(9) 
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2.1.4 Minimization of Total Emissions 

   The total emissions are concerned with the emissions 

generated by the upstream grid and FCs for generating 

electrical energy. The total emission is formulated as 

follows: 
 

   

 
   

4min   8760

.
( ) 8760

 

D

DGD

grid grid

DG

DG

j N ele

f s P s LF ER

P j s
CF j ER j

s S



   

 
    
  

 



 

 

 

 

 
 

(10) 

 

2.2 Constraints 

   The proposed MOP subject to the following 

constraints: 
 

2.2.1 Power Flow Equations 

   Active and reactive power balance at each bus of MG 

should be satisfied as follows [21]: 
 

         

      

. . . . .

cos . . . .  

,    for 

busj N

bus

PG i s PD i s V i s V j s Y i j

i s j s i j s

s S i N i j

  



    

 

    



 

 

 

 

(11) 

         

      

. . . . .

sin . . . .

                                       ,      for 

busj N

bus

QG i s QD i s V i s V j s Y i j

i s j s i j s

s S i N i j

  



    

 

    



 

 

 
 

(12) 

 

2.2.2 Network Radiality and Connectivity 

   One of the most important tasks in DFR is 

preservation of network radiality and connectivity [25]. 

In this paper, with the implementation of graph rules 

[26], the network radiality and connectivity is 

guaranteed. 

 

2.2.3 Branch Current Limit 

   To be sure that the current of cables and feeders is not 

excessive from their rating, the following constraint 
should be taken into account  [2]: 
 

 . .          ,   .   for max

ij busI i j s I s S i j N i j     
 

(13) 

 

2.2.4 Bus Voltage Permissible Range 

   The voltage in each bus should meet the allowable 

range as follows [2]: 
 

 .          ,  min max busV V i s V s S i N       (14) 

 

2.2.5 Dispatchable DGs Generation Limits 

   The output active power generated by dispatchable 
DGs should satisfy the following limit [2, 27]: 

     min max.      ,
D D D DDG DG DG DGP i P i s P i s S i N     

 

(15) 

 
2.2.6 DGs Penetration Level 

   The limit total power generated by DG units should be 

kept at a certain level so that the distribution network 

remains under control from special technical aspects. 

This level is specified as follows: 
 

     . . .
D ND

DG DG busD ND

DG DG

i N j N k N

P i s P j s PD k s
  

    
 

(16) 

 

where π is the maximum penetration level of DGs. 

 

3 Uncertainty Modeling 

It is worthwhile to note that the different random 

variables are stochastically dependent on each other 

[28]. For instance, the forecasted and actual solar 

irradiance are significantly correlated together. 

Consequently, if the solar generation is precisely 

forecasted, then the actual solar generation is accurately 
planned. This statement can be expanded to other 

stochastic variables namely, wind speed, and electrical 

demand. 

 

3.1 Calculation of Stochastic Correlation 

   The severity of correlation between the stochastic 

variables can be formulated as follows [28]: 
 

      
 

   

.
. .

X Y

r X Y

X Y

Cov G G
X Y G X G Y

G G
 

 
 


  

(17) 

 

   It is seen that rank correlation factor ψr belongs to 

interval [0,1] and the random variable is transformed by 

this factor to uniform random space. When the rank 

correlation is one, the dependency between the random 
variables is high. On the contrary, if this factor is zero, 

thus the correlation is weak. 

 

3.2 Copula Function 

   To formulate the multivariate distribution functions, 

one of the useful mathematical functions is copula 

function, which couples the several one-dimensional 

functions [29]. The coupling mechanism is carried out 

through to transform the uniform distribution of random 

variables in multivariate distribution space [29]. The 

details of copula function can be found in [28, 30]. 
   It is assumed that X and Y are two random variables 

whose CDFs are GX and GY, respectively. The copula C 

can be formulated to link their distribution function as 

follows [28]: 
 

      . .XY X YG X Y C G X G Y  (18) 

 

If GX(X) = w and GY(Y) = z, where w and z are the 

realization of the uniform random variables W and Z, 
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respectively. Therefore, (21) is rewritten as 

follows [28]: 
 

          1 1

|
. . .X YW Z

C w z G X Y G G w G z    (19) 

 

where C(W|Z) is the conditional distribution of (W|Z) 

and G-1 is the inverse of a univariate distribution 

function. 

 

3.3 Solar Irradiance Modeling and PV Generation 

Output 

   The probability distribution of solar irradiance is 

usually fitted by a bimodal distribution that can be 

modeled as a linear combination of two unimodal 

distributions. For this purpose, the Beta PDF is used for 

each unimodal (Fig. 1) that can be obtained as 

follows [31, 32]: 
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   The mean and standard deviation of wind speed are 

forecasted by historical data, which are gathered from 

the adjacent meteorology station [32, 33]. 

   The solar irradiance, area, and efficiency of the PV 
modules determine the output power of the PV unit. 

Consequently, after the Beta PDF is produced, the 

output power of the PV unit for the different states is 

computed as follows [31, 32]: 
 

  . .pv pv

pvP si S si  (23) 

 

3.4 Wind Speed Modeling and WT Generation 

Output 

   The stochastic behavior of wind speed is commonly 

modeled by Weibull PDF which needs two parameters 

for modeling. These parameters are the scale factor and 

shape factor which show by a and b, respectively. In 

this paper, these parameters are considered as 

a = vmean/0.9 and b = 2. It is assumed that the WT is at a 
 

 
Fig. 1 Beta PDF for solar irradiation and its associated 

probability. 

site where forecasted mean wind speed (vmean) is known. 

The Weibull PDF used in this paper is specified by [32, 

33]: 
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   The output power of the WT is written as follows [32, 

34]: 
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Fig. 2 displays the Weibull PDF for wind speed. 

 

3.5 Electrical Demand Modeling 

The uncertainty of forecasting electricity demand is 

regularly demonstrated by a Normal PDF which is given 

by [32, 35]: 
 

 
 

2

221

2

d

d

l

d

d

d d

f l e

l z





 

 

 

 


  

 (26) 

 

The Normal PDF for electrical demand is shown in 

Fig. 3. 

 

3.6 State Selection 

   To consider the stochastic behavior of the output  
 

 
Fig. 2 Weibull PDF for wind speed and its associated 

probability. 
 

 
Fig. 3 Normal PDF for electrical demand its associated 

probability. 
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power of PV, WT, and electrical demand in the 

proposed model, the continuous PDFs are divided into 

states (periods). In this paper, the number of states is 

assumed to be 5 for solar irradiance, 5 for wind speed, 

and 7 for electrical demand. 

   The probability of solar irradiance, wind speed, and 

electrical demand for each state is considered as follows 

[32, 36]: 
 

   
2

1

y

y

S

s y b

S

P G f si dsi   (27) 
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v w w
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L

L

d

d L d

d

P G f l dl   (29) 

 

where Ps{GY}, Pv{GW}, and Pd{GL} are the probability 

of the solar irradiance, wind speed, and electrical 

demand in states y, w, and L, respectively; sy1 and sy2 

represent the solar irradiance limits of state y; vw1 and 

vw2 are the wind speed limits of state w; dL1 and dL2 are 

the load limits of state L; fb(si), fw(v), and fd(l) represent 

the probabilities for different states of PV unit, WT, and 

electrical demand, respectively. 

 

3.7 Scenario Reduction Techniques 

In this paper, the PV generation, WT generation, and 

electrical demand, including 5, 5, and 7 states, 

respectively. Regarding the scenario tree generation, 

5×5×7=175 operating states should be studied. It is clear 

that a better modeling of the uncertainty deals with a 

higher number of scenarios while it needs a higher 

computational burden. Therefore, to well approximate 

stochastic behavior of MG, a suitable scenario reduction 

strategy should be applied to the model [37]. 

 

3.8 Automatic Clustering for Selecting Scenarios 

Using Genetic Algorithm  

   To minimize the intracluster spread, the K-means 

algorithm is one of the best alternatives that uses an 

iterative algorithm for clustering [38]. However, it has 

shortages that are dependent on the initial condition and 

the number of clusters specified by the user. This work 

clusters a dataset as an optimization problem that is 

solved by the genetic algorithm. 

   In this paper, a well-evaluated validity index named 

Davies-Bouldin (DB) is used for the automatic 

clustering algorithm [39]. In this index, the ratio 
between sums of within-cluster scatter to between 

cluster separations is calculated. The index uses both 

cluster and their corresponding sample mean. To begin, 

within i-th cluster distance and the distance between i-th 

and j-th clusters are denoted as follows [38, 39]: 
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where Si.q and dij.t are within i-th cluster distance and the 

distance between i-th and j-th clusters, respectively; 
im  

is the i-th cluster center; Ni is the number of elements in 

the i-th cluster Ci; q (which is an integer) and t is 

arbitrary selected. 

Next, Ri.qt is given as [38, 39]: 
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Finally, the DB validity index is calculated as 

follows [38, 39]: 
 

  .

1
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i qt

i
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   (33) 

 

   The smallest DB(K) validity index takes into account 

as an objective function that is solved by the genetic 

algorithm. After solving the optimization problem, at 

first, the specific number of centroids is selected and 

next, these selected centroids are allocated to the nearest 

scenario from the main scenario set and update the 

centroids. Then a redistribution of probabilities is 

performed. It comprises adding the probabilities of 

those scenarios which have not been finally selected to 
those recently updated centroids in every cluster. Thus, 

the reduced scenario set is provided by the final selected 

scenarios with associated probabilities. 

   ASO is a parameter indicating the average probable 

weighted output of a specified variable in the selected 

scenarios and it can be calculated as follows [40]: 
 

   

 
s S

s S

PO s PVAR s
ASO

PVAR s










 (34) 

 

where PO(s) represents the probable outcome of 

specific variable in the s-th selected scenario and 

PVAR(s) shows the occurrence probability of that 

variable in the s-th selected scenario. 
 

4 Improved Multi-Objective Particle Swarm 

Optimization (IMOPSO) Algorithm 

   In this paper, with the changes made to existing 

MOPSO optimization algorithms, a hybrid multi-

objective algorithm with an appropriate accuracy and 

high-speed responsiveness known as IMOPSO is 

obtained; consequently, at first, the original PSO is 

briefly expressed and then presented algorithm is 

completely introduced. 
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4.1 Original PSO 

   The PSO algorithm is a set-based optimization 

algorithm that is inspired by the natural behavior of 

birds looking for food. Each solution of the problem is 

actually a bird in the search space known as particle. 

The algorithm is initialized with a random particle set. 

Each particle flies at a velocity across the multi-

dimensional search space that its velocity and position 

are constantly improved by (35)-(36) with respect to the 

best previous position (Pbest) and the best global 

position (Gbest) [24]. 
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4.2 Multi-Objective PSO (MOPSO) and Improved 

MOPSO (IMOPSO) Algorithms 

4.2.1 MOP 

   Solving the SOP results in finding an optimal solution. 

However, in the real world, the problem space is faced 

with several objective functions that often conflict 

together. To simultaneously optimize the several 

objective functions, a MOP should be formulated while 

the problem constraints are met. The  MOP can be 

defined as follows [2, 22]. 
 

     1 2min . . .  
T

nF f x f x f x      
(38) 
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  (39) 

 

where x is the control variable for decision making, fi(x) 

is i-th objective function, and n is the number of 
objective functions. h(x) and g(x) show the equality and 

inequality constraints, respectively. 

   There are two general methods for solving the 

MOPs [41] including 1) using the aggregation operators 

for converting the MOP to SOP such as weighted sum 

and fuzzy aggregators. 2) using the non-dominated 

sorting methods and obtaining the Pareto sets solutions. 

This paper uses the second method which is explained 

as follows: 

   The optimal solution which is not improved in one of 

the objective functions unless worsens the performance 
of the solution in at least one of the rest is named Pareto 

optimal solution. Hence Y* is named a Pareto optimal 

solution if finding a solution Y in Q is infeasible such 

that Y overcomes Y* ∈ Q. Qis the set of all vectors (Y) 

which satisfies the constraints of the problem. By 

definition, if the following two conditions are met for 

the solution, Y1 will dominate Y2 [2]: 
 

   1 2   g  j jg Y Y j n     (40) 

   1 2g g  k kY Y k n     (41) 

 

4.2.2 IMOPSO Algorithm 

   One of the powerful algorithms used in MOPs is the 

MOPSO. This algorithm was first proposed by Coello in 

2004 [42]. In the multi-objective problems, the word 

“best” does not have a specific meaning, because it 

looks for a set of solutions that are not dominated by 

any other solution [2]. 

   In this paper, with improvements made to MOPSO 

algorithm, an improved MOPSO algorithm with a 

suitable accuracy and high response speed is obtained 
that converts it into a very powerful and efficient multi-

objective algorithm known as Improved MOPSO 

(IMOPSO) to solve various optimization problems. The 

IMOPSO finds a set of the dominated solutions (Pareto 

solutions) during the process and stores them in a 

repository. For many MOPs, the number of Pareto 

optimal solutions might be high and perhaps unlimited. 

Therefore, in this paper for improving MOPSO, a 

crowding distance operator is used to control the size of 

the repository and its most diversity (spread). Therefore, 

after the end of the optimization process, a set of 
dominated solutions is achieved. One of the other 

improvements is to select the best compromise solution 

among Pareto solutions using fuzzy technique by 

combining objective function belongs to each solution 

based on priorities, finally a fuzzy fitness function 

belongs to each solution is obtained. In this paper, the 

“maximum geometric mean “ operator is used to 

determine the value of the fitness function, which seems 

more suitable than other operators [3]. Table 1 shows 

the steps of the proposed IMOPSO algorithm. 

 

4.2.3 Choosing Best Personal Experience (Pbest) 

In the proposed algorithm, a method based on the 

concept of superior classification is used for choosing 

new Pbests. Fig. 4 shows the principles of this method. 

With this approach, firstly,  all Pbests and all solutions 

generated in the k-th iteration are combined, and a 

partial 2N population is formed, then, the concept of 

superior classification is applied. 

   Followed by implementing superior classification, the 

partial 2N population is divided into different 

fronts (classes). The first front is the most dominated 

front in the current population that dominates the second 
front. The next step is to choose the best-experienced 

location for each solution (new Pbest), which is randomly 

selected from the upper part of the first front. Finally, N 

members should be selected based on the value of 

fitness. The selected N members play the role of Pbests 

in the next generation [23]. 
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Table 1 The steps of implementation of IMOPSO algorithm. 

1. Importing the input parameters of the algorithm; 
2. Making the initial population and initial velocity of each particle; 
3. Evaluating each particle based on objective functions; 
4. Separating non-dominated members of the population based on the concept of dominance and their storage in the ¬external 
repository; 
5. Selecting a leader among the ¬members of the repository for each particle and starts moving; 
6. Generating a new solution and updating the best personal memory of each particle based on the concept of non-dominated 

sorting; 
7. Selecting the dominated solutions and upgrading the repository; 
8. Non-dominated members of the current population are added to the repository and the dominant members of the repository are 
removed; 
9. Using a crowding distance operator to control the size of the repository and diversity; 
10. If the termination conditions are not met, go back to step 5, otherwise, go to step 11; 
11. Selecting the best-compromised solution among Pareto solutions. 

 

n

nXn

Pbest
 k

Non-dominated 

sorting

Front 1

Front 2

Front 3

Front 4

.

.

.

n

Crowding 

distance

Pbest
 k+1

 

Fig. 4 Pbest selection. 

 

4.2.4 Non-Dominated Sorting Method 

   In this method, for each member of the population, 

two parameters of np and Sp are defined. np or 

dominance counter refers the number of population 

members that are superior to p-th member, and Sp is a 

set of members to which the p-th member is superior. 

Since all these quantities have been calculated for all 
existing solutions in the population, these solutions 

should be classified in such a way that is based on np. 

This process continues in the same way for the next 

fronts until the solutions are eventually classified in 

different fronts. 

 

4.2.5 Crowding Distance Operator 

   This operator acts based on concept of population 

density around a solution known as the “crowding 

distance”. This operator provides the possibility of 

choosing more varied solutions from solutions located 
on a front. This distance is equal to the average distance 

between two solutions j-1 and j+1 that are located on the 

sides of j-th solution. Calculating the crowding distance 

attributed to each solution on a given front requires 

covering the following steps.  

 Calculate the number of solutions located in n-th 

front and call it L(|Fn|=L). For each I in this set, the 

initial value of swarm distance is assumed to be 0. 

 Sort the existing solutions in the n-th front for each 

of the objective function m∈M that M refers 

number of objective functions. 

 Attribute a large swarm distance to the solutions 
located on the front border (initial and terminal 

solutions) for each objective function, m. 

   The crowding distance can be calculated as 

follows [43]: 
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(42) 
 

According to above, in the selection process of new 

Pbests among the 2N member set, the i-th solution is in 

priority compared to the j-th solution if at least one of 

the two below conditions is met: 

I. i-th solution has a better ranking. 

II. The ranking of both solutions is equal, but the 

crowding distance of i-th solution is greater than 

the j-th solution. 

 

4.2.6 Selecting a Leader for Each Particle 

   Here, where the MOP is solved, there is no unique 

optimal solution, but there will be a repository of 

optimal solutions in the entire search space. Any 

solution in the Pareto repository can be a guide for 

population members. Here, instead of a unique Gbest, a 

different Gbest can be found from the repository for 

each member of the population. 

   In this paper, the concept of dominance is used to 

select Gbest for each member of the population; as 

Gbest is selected for Xn solution among the solutions 

from the repository that dominates Xn. If 
AXn = {α ϵ A|α < Xn} shows a set of solutions in a 

repository that dominates Xn, then the relevant Gbest is 

randomly selected from this set, so that all members of 

this set have equal chances for being selected as guides. 

If Xn is not dominated by any member in the repository, 

if it is among the solutions of the repository, the set AXn 

will be empty, in which the relevant Gbest is randomly 

selected among all existing members in the 

repository [2]. The above expression can be formulated 

as follows: 
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4.2.7 Selecting the Dominated Solutions and 

Upgrading the Repository 

   As noted earlier, the concept of dominance is used in 

order to find dominated solutions. In each iteration of 

algorithms, the new Pbest are extracted and become a 

candidate to be present in Pareto repository. The 

following four states might occur for a solution which 

candidates for adding to the repository: 

1. If the repository of the dominated solutions is 

empty, then the new solution is added to the 

repository. 

2. If the candidate’s solution is not being dominated 
by any of the repository’s solutions and if not 

dominated on any of it, which then goes to the 

repository. 

3. If the candidate's solution dominates at least one of 

the archived solutions, then all dominant solutions 

are removed from the repository, and the new 

solution is added. 

4. If the candidate's solution is dominated by one of 

the repository’s solutions, then it is excluded. 

Since the capacity of the repository is limited, it is 

necessary to preserve the best and most varied 
solutions. Hence, the crowding distance operator is 

used here, and the solutions in low-density areas 

have a higher priority to remain in the repository to 

increase the variety of solutions in the repository. 

 

4.2.8 Choosing the Best Compromised Solution 

   Solving the MOP by Pareto-based methods does not 

lead to a unique optimal solution that take the objective 

functions to the most optimal possible states, but in 

some studies, the methods are used to determine the 

best-compromised solution. Since objective functions 

have different dimensions, a method must be adopted 
for scaling. This paper uses a Fuzzy operator for scaling 

as follows [25, 26]: 
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   To combine the scaled objective function, the “max 

geometric mean” operator is used as follows [25, 26]: 
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(45) 

 

   Therefore, through this method, a value of fitness 

function μ is obtained for each solution of the problem 

that it is used to select the best-compromised solution. 
 

Table 2 Parameters of the proposed algorithm for the case 
study. 

Population 

size 
ωmin ωmax C1, C2 

Max 

iterations 
TrialMax 

50 0.005 0.05 0.09, 0.1 100 35 

 

The solution archived as an optimal Pareto solution that 
has the largest value of μ is proposed as the best-

compromised solution. 

 

5 Applying the IMOPSO Algorithm to Proposed 

MOP 

   For the proposed problem, decision variables include 

the status of open switches in each loop that are integer 

variables and output electrical power of dispatchable 

DGs, output electrical power of non-dispatchable DGs, 

and exchanged power with an upstream grid that are 

continuous variables. Consequently, the vector of 
decision variables can be as follows: 
 

       , , ,

, ,

ND D

ND D

grid DG DG

Tie DG DG

Y Tie v P t P i P j

v N i N j N

   

     
 

 
 

(46) 

 

   Fig. 5 illustrates the flow chart of the implementation 

of IMOPSO algorithms to the proposed MOP. The 
termination criteria algorithm can be either when the 

maximum number of iterations is achieved or when the 

algorithms converge to an acceptable fitness value. 

 

6 Simulation results 

   This section is partitioned through numerous 

subsections. Firstly, the two-dimensional PDFs 

stochastic parameters is simulated by copula-based 

method. These parameters are wind and solar power, 

and electrical demand. Next, the proposed MOP is 

solved by the proposed algorithm for a 32-bus MG. 
Finally, the optimal Pareto fronts and the best-

compromised solution are derived. A trial and error 

process is used to tune the parameters of the proposed 

algorithm for the case study that is shown by Table 2. 

Due to the existence of random operators and for the 

sake of statistical analysis, the proposed algorithm is run 

several times. The maximum number of trials is 

displayed in Table 2. It should be noted that the 

simulations performed in this paper were implemented 

using the MATLAB (R2014b) software on a computer 

with Intel Core i7, 2.50GHz memory. 

 

6.1 Modeling of Stochastic Parameters by Copula 

Function 

   Regarding Section 3, the copula function method 

needs the actual and predicted amounts of the stochastic 

parameters for time duration equal to one year. The real-

time data that are solar irradiance, wind speed, and 

electrical demand is derived from our previous 

work [44]. An MLP neural network is used to obtain the  
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start

Define the input data, including 

network data, DGs data, electricity 

price

Generate the initial population

Check the radiality of network using 

graph theory

Is there any no 

radial configuration?

Run the load flow and 

calculate the objective functions 

No

Is there any violating 

of the constraints?

No

Selection of Pbests

Update the archive

Archive members are

 more than capacity?

No

Selection of gbests

Is termination condition met?

Yes

Selecting the best compromised  solution 

End 

Set fitness value to zero

Yes

Yes

Crowding distance 

operator

Yes

Generate 

new solutions 

No

1) Gathering the hourly historical data for the 
stochastic parameters such as wind generation, 
solar generation, and electricity demand for 1 

year.

 2) Predicting the hourly values of the stochastic 
parameters for one week by the gathered 

historical data.

 3) Consider the predicted hourly values and the 
real-time amounts for the proportional time 

period as the random variables 

4) Fiting the data with copula function and 
generate conditional distribution function for 
real-time and predicted values of uncertain 

parameter

 5) Generating joint conditional distribution 
estimation for prediction error 

6) Generating specific number of scenarios using 
the method presented in Section 3.6.

 7) Performing scenario reduction using the 
method presented in Section 3.7.

Uncertainty modeling 

Reporting the Pareto solutions set  

 

Fig. 5 Implementation of the IMOPSO algorithm on the proposed MOP problem. 
 

predicted values of the stochastic parameters. Details of 

the implementation of the neural network have been 

described by [44]. Figs. 6-8 show the probabilistic 

relationship between the actual and the predicted data of 
solar power, wind power, and electrical demand. 

   To model multivariate PDFs, one of the most suitable 

copula functions is the Gaussian copula [45]. Therefore, 

in this paper, the Gaussian copula is used. The joint 

conditional distribution function of actual and predicted 

values of the stochastic parameters is displayed by 

Figs. 9-11 

   Figs. 9-11 confirm the PDFs assumed in Section 3 are 

very close to PDFs obtained from the actual stochastic 

data. It can be observed that the Fig. 9-11 approximately 
show the Beta, Weibull, and Normal PDF, respectively. 

   Firstly, the scenario generation is carried out by the 

algorithm proposed by Subsection 3.6. Then, the 

infeasible scenarios are reduced by the scenario 

reduction technique proposed by Subsection 3.8. 

Finally, the ASO index presented by the same  
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Fig. 6 The joint distribution of the actual and forecasted PV 

power. 
Fig. 7 The joint distribution of the actual and forecasted wind 

power. 

  
Fig. 8 The joint distribution of the actual and forecasted 

electrical demand. 
Fig. 9 The joint conditional distribution estimation of the actual 

and forecasted PV power. 

  
Fig. 10 The joint conditional distribution estimation of the actual 

and forecasted wind power. 
Fig. 11 The joint conditional distribution estimation of the actual 

and forecasted electrical demand. 

 

subsection is applied to reduce the computational 

burden and to simplify the optimization process. 

 

6.2 Thirty Two-Bus MG 

   To evaluate the IMOPSO algorithm to solve the 

proposed MOP, the simulation is performed on the case 

study of 33-bus MG [46]. The voltage level, the active 

and reactive power consumption of the understudy 

network is 12.66kV, 3715kW and 2300kVAr, 

respectively. The number of the tie (normally open) and 
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sectionalizer (normally closed) switches in this radial 

distribution network is 5 and 32, respectively [2]. In 

Fig. 12, a single-line diagram of balance 32-bus MG is 

shown. Two combined energy systems, including PV, 

WT, and FC are installed on buses 4, and 14. In the 

basic configuration of the 33-bus distribution network 

without DFR and energy management (base case), the 

power loss, VSI, operational cost and emissions 

objective functions are 202.67kW, 0.6969, 219.38$/h 

and 22272 tons, respectively. 

   The details of the characteristics of combined energy 
system are represented in Table 3. 

   In this section, three case studies are taken into 

account to evaluate the proposed model. These case 

studies are as follows: 

Case study 1: only optimal DFR without considering 

the combined energy systems. 

Case study 2: only optimal energy scheduling the 

combined energy systems without DFR. 

Case study 3: optimal energy scheduling the combined 

energy systems and DFR simultaneously. 

 

6.2.1 Case Study 1 

   Table 4 lists the results of optimal DFR and values of 

the four objective functions as a set of Pareto optimal 

solutions. In this table, the optimal values of each 

objective function are colored. In this case study, the 

electrical demand and power losses are supplied by the 

upstream maim grid. Regarding Table 4, it is seen that 
solution numbers 14, 23, 25, and 28 have the best values 

for objective functions, including power loss, VSI, 

operation cost, and emission, respectively. It can be 

observed that the IMPSO cannot find a global optimum 

solution, while it obtains a set of the Pareto solutions 

which all of them are suitable for MGO. The selection
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Fig. 12 The 33-bus MG. 

 

Table 3 Data of combined energy system. 

FC [3] PV [32] WT [32] 

Parameter Value Parameter Value Parameter Value 

D

min

DG
P  0 

 

DG

Capital
Cost  6675 

 

DG

Capital
Cost  1500 

D

max

DG
P  400 DG

Capacity
P  400 DG

Capacity
P  400 

 

DG

Capital
Cost  3674 Gr 0.136 Gr 0.136 

DG

Capacity
P  400 CFDG 0.25 CFDG 0.2 

Gr 0.136 TLife 20 TLife 20 
CFDG 0.2 &

D

O M

DG
Cost  0.05 &

D

O M

DG
Cost  0.05 

TLife 10 ηpv 18.6 Prated 400 
&

D

O M

DG
Cost  0.0039 Spv 40 vr 12 

ER 14.447  vco 25 

Grid [3] vct 3.5 

Vmin 0.90 
* Units of quantities have been expressed in nomenclature. Vmax 1.05 

ERgrid 27.34 
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of the final solution depends on the preferences of the 

MGO. Nonetheless, the fuzzy technique presented by 

Subsection 4.2 is used for deriving the best-

compromised solution. In this case study, this solution 

that is solution number 28 is bolded in Table 4. Fig. 13 

shows the 3D plots of the objective functions. 

   Fig. 13 shows the optimal Pareto solution by star sign. 

Regarding the preferences of the MGO for optimizing a 

special objective function, the arrow sign shows the best 

solutions. Fig. 13 (a) displays the three objective 

functions such as power loss, operation cost, and 
emission which are plotted versus each other, and the 

VSI is not taken into account. It is seen that the optimal 

solution with coordinates (132.752kW (power loss), 

220.084$/h (operation cost), and 22.14×103 ton 

(emission)) has the best solution for power loss 

objective functions, although it is not appropriate for the 

other objective functions. The other optimal solution 

with coordinates (133.02kW (power loss), 211.27$/h 

(operation cost), and 20.71×103 ton (emission)) is 

suitable for MGO whose priority is to minimize 

emissions. Also, if the preference of MGO is to reduce 
the operational cost, it is satisfied with the other optimal 

solution presented in Fig. 13 (a). Figs. 13 (b)-(d) 

illustrate that the best solution for VSI objective is 

0.7969 (solution number 23), while this optimal solution 

has no suitable solutions for the other objectives that are 

162.455kW (power loss), 226.258$/h (cost) and 

24.823×103 ton (emission), respectively. The simulation 

results delineate that the goals of the proposed MOP are 

contradictory, so that an enhancement in one of them 

deteriorates the others. The red circles in Fig. 13 show 

the best-compromised solution, i.e. the solution number 

28 in Table 3. It has coordinates (134.197 kW (power 

loss), 203.124$/h (operation cost), 20.723×103 tons 

(emission), 0.7736 (VSI)) that represents an appropriate 

compromise among the objectives. 

 

6.2.2 Case Study 2 

   Table 5 represents the results of the optimal 

generation scheduling of the combined energy systems. 

This case study does not consider the DFR, therefore the 
statue of tie switches is like in the base case of 33-bus 

MG (Fig. 12). In this case study, the electrical demand 

and power losses are provided by the combined energy 

systems and the upstream main grid. The best solution 

for power loss, VSI, operation cost, and emission are 

related to solution number 25, 30, 28, and 1, 

respectively. However, the best-compromised solution 

obtained by the fuzzy decision maker corresponds to 

solution number 1. As regards Table 5, the FC-based 

generation units have a tendency to decrease the output 

power due to high emission rate. However, the PV and 
WT generation units in the combined energy system 

number 2 have tended to increase the power generation 

to the maximum capacity limit. This is due to the fact 

that renewable generation units have the low emission 

rate and operational cost compared to FC units and 

upstream generation units. Fig. 14 illustrates the 3D 

plots of the objective functions. 

   Similar to the previous case study, Fig. 14 (a)-(d)  

 
Table 4 Set of the Pareto solutions (case study 1). 

Solution number Power losses [kW] VSI Cost [$/h] Emission [tons] Open switches in the best solution 

1 133.197 0.7730 210.294 20.8036 7, 10, 14, 37, 31 

2 134.082 0.7736 212.171 21.0379 7, 11, 14, 37, 31 

3 157.427 0.7814 214.048 22.1775 6, 10, 14, 37, 34 

4 132.952 0.7657 217.488 20.8238 7, 10, 13, 37, 31 

5 157.617 0.7829 213.280 21.9049 6, 10, 14, 37, 34 

6 155.348 0.7803 222.276 22.8813 7, 10, 14, 37, 34 

7 132.977 0.7685 218.181 21.1688 7, 9, 13, 37, 31 

8 134.748 0.7753 211.894 21.3043 7, 9, 14, 37, 31 

9 162.138 0.7959 225.981 24.5476 6, 10, 14, 37, 34 

10 135.758 0.7796 216.820 23.5373 6, 9, 14, 37, 31 

11 158.563 0.7865 221.508 22.3223 6, 10, 14, 37, 34 

12 158.841 0.7880 224.859 24.0471 6, 9, 14, 37, 34 

13 159.227 0.7891 222.201 22.7766 6, 10, 14, 37, 34 

14 132.752 0.7725 220.084 22.1405 7, 9, 13, 37, 31 

15 160.907 0.7935 225.451 24.3751 6, 10, 14, 37, 34 

16 135.398 0.7791 215.523 23.2632 6, 9, 14, 37, 31 

17 156.684 0.7823 226.497 24.6800 7, 11, 14, 37, 34 

18 132.904 0.7703 218.899 21.5153 7, 9, 13, 37, 31 

19 159.631 0.7900 222.755 22.9644 6, 10, 14, 37, 34 

20 135.275 0.7779 222.024 23.0568 6, 9, 14, 37, 31 

21 160.534 0.7915 224.632 23.5620 6, 10, 14, 37, 34 

22 135.590 0.7792 223.486 23.4495 6, 9, 14, 37, 31 

23 162.544 0.7969 226.258 24.8232 6, 10, 14, 37, 34 

24 155.686 0.7764 221.810 22.6226 7, 8, 14, 37, 34 

25 133.021 0.7676 211.276 20.7149 7, 10, 13, 37, 31 

26 160.657 0.7927 224.506 23.854 6, 10, 14, 37, 34 

27 132.945 0.7712 219.353 21.6647 7, 9, 13, 37, 31 

28 134.197 0.7736 203.124 20.7237 7, 9, 14, 37, 31 

29 156.947 0.7830 227.115 24.9510 7, 10, 14, 37, 34 

30 162.495 0.7969 226.774 25.0958 6, 10, 14, 37, 34 
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(a) (b) 

  

(c) (d) 
Fig. 13 The Pareto optimal solutions (case study 1). 

 

indicates the three objective functions which are plotted 

versus each other without taking into consideration the 

fourth objective function. Given the priority of MGO, 

the arrow sign solutions represent the optimal solutions. 

The red circles in Fig. 14 depicts the best-compromised 

solution that is solution number 1 in Table 5. It has 

coordinates (106.908kW (power loss), 161.144$/h 
(operation cost), 13.229×103 tons (emission), 0.7562 

(VSI)) that denote a suitable compromise among the 

objectives. 

 

6.2.3 Case study 3 

   This case study considers the DFR and generation 

scheduling of combined energy systems simultaneously. 

Table 6 denotes the Pareto solutions of the optimal DFR 

and generation scheduling of the combined energy 

systems and values of objective functions at each 

solution. In this case study, the best optimal solution for 

power loss, VSI are related to solution numbers 12, and 
13, respectively, while the solution number 6 has the 

best solution for operation cost and emission. 

Nevertheless, the best compromised solution 

corresponds to solution number 10. Similar to the 

previous case study, the FCs reduce the output power. 

Fig. 15 exemplifies the 3D plots of the objective 

functions. 

 

6.2.4 Comparative Studies 

   To assess the proposed model and comparison the 

case studies, a comparative analysis is carried out in this 

subsection. Regarding the four objective functions 

proposed by this paper, Table 7 compares the results of 

case studies with respect to its best-compromised 
solution. In order to show the efficacy of the proposed 

algorithm in comparison to another algorithm, the 

simulation of Case study 3 is repeated by the HBB-BC 

algorithm proposed by [2]. The last row of the Table 7 

displays the results of the HBB-BC algorithm. 

   Despite the lack of combined energy systems in the 

Case study 1, the results display that all objective 

functions of power losses, VSI, operation cost, and 

emissions are enhanced in comparison to the base case. 

This is due to the fact that the solving proposed MOP 

leads to the determination of the optimal open switches 

(7, 9, 14, 28, 31) in which all objective functions 
improve. Again, comparing the results of Case study 2 

and Case study 1 shows that utilizing the optimal 

combined energy systems instead of optimal DFR 

improves all of the objective functions except the VSI. 

In Case study 3, all objective functions are enhanced in 

comparison to the other case studies. These results show 

that a better solution is obtained, whenever the optimal  
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Table 5 Set of the Pareto solutions (case study 2). 

Solution 

number 
Power losses [kW] VSI Cost [$/h] Emission [tons] 

DG power for the best solution [kW] 

P1
WT P1

FC P1
PV P2

WT P2
FC P2

PV 

1 106.908 0.7562 161.144 13.2296 311.96 0 369.05 400.00 06.38 400.00 

2 107.618 0.7568 162.583 13.4391 298.55 0 383.95 369.84 04.59 400.00 

3 126.356 0.7644 164.022 14.1671 282.20 19.36 362.45 391.68 00.00 387.83 

4 106.712 0.7490 166.657 13.3024 322.00 00.66 357.231 400.00 05.23 400.00 

5 126.509 0.7659 163.433 13.9930 283.00 15.96 363.068 388.10 00.00 405.77 

6 124.687 0.7633 170.326 14.6167 244.45 06.53 363.170 400.00 92.70 397.01 

7 106.731 0.7518 167.189 13.5227 319.13 02.53 356.722 395.36 17.49 400.00 

8 108.153 0.7585 162.371 13.6093 353.42 07.40 362.760 341.05 00.00 384.22 

9 130.137 0.7786 173.165 15.6811 191.43 12.23 339.826 400.00 161.27 400.00 

10 108.964 0.7626 166.146 15.0358 282.20 00.00 258.608 399.36 149.52 400.00 

11 127.268 0.7694 169.737 14.2596 269.22 08.13 379.245 400.00 51.58 374.84 

12 127.491 0.7709 172.306 15.3614 241.56 20.51 338.187 386.73 102.53 378.86 

13 127.801 0.7720 170.269 14.5498 246.06 07.83 374.023 400.00 80.57 386.80 

14 106.551 0.7557 168.646 14.1435 294.66 01.21 338.085 394.11 77.89 393.50 

15 129.149 0.7762 172.76 15.5709 225.45 14.92 343.204 400.00 143.27 370.20 

16 108.675 0.7622 165.151 14.8607 286.30 00.00 273.273 400.00 141.86 405.97 

17 125.761 0.7653 173.561 15.7657 182.54 10.86 354.979 396.52 171.10 384.74 

18 106.673 0.7535 167.739 13.7441 312.16 04.63 343.297 390.10 28.73 400.00 

19 128.125 0.7729 170.693 14.6698 237.50 08.53 368.996 400.00 86.70 390.01 

20 108.576 0.7610 170.133 14.7288 292.69 00.36 284.543 400.00 131.77 400.00 

21 128.850 0.7743 172.132 15.0515 224.50 10.16 345.457 400.00 107.00 387.21 

22 108.828 0.7623 171.253 14.9797 285.88 01.83 267.335 400.00 141.22 400.00 

23 130.463 0.7796 173.377 15.8572 186.46 10.11 342.078 400.00 187.96 394.32 

24 124.958 0.7596 169.969 14.4514 260.77 10.43 372.385 400.00 62.56 380.82 

25 106.223 0.7509 161.897 13.5011 305.34 00.00 347.812 400.00 21.70 408.96 

26 128.949 0.7755 172.035 15.2384 226.88 14.71 337.573 400.00 113.64 394.84 

27 106.706 0.7544 168.086 13.8395 312.23 02.96 340.337 392.31 42.01 400.00 

28 107.711 0.7568 155.651 13.2384 315.51 00.00 368.494 400.00 00.00 398.04 

29 125.971 0.7659 174.034 15.9389 172.73 12.33 352.010 396.10 180.04 385.97 

30 130.424 0.7801 173.773 16.0313 181.15 11.76 344.126 400.00 197.15 385.05 

 

  
(a) (b) 

  
(c) (d) 

Fig. 14 The Pareto optimal solutions (case study 2). 
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Table 6 Set of the non-dominated solutions (case study 3). 

Solution 

number 

Power 

losses [kW] 
VSI Cost [$/h] 

Emission 

[tons] 

Open switches in 

the best solution 

DG power for the best solution [kW] 

P1
WT P1

FC P1
PV P2

WT P2
FC P2

PV 

1 91.206 0.7827 155.222 12.9085 7, 10, 13, 27, 30 309.60 00.00 396.38 375.59 00.00 400.00 

2 82.216 0.8508 160.721 12.9222 7, 10, 14, 37, 31 305.81 00.00 383.03 400.00 02.32 393.91 

3 99.648 0.8142 155.065 12.8909 33, 10, 13, 28, 34 325.80 00.00 398.31 374.40 00.00 386.20 

4 82.100 0.8405 160.906 12.9869 7, 10, 13, 37, 31 307.11 06.61 400.00 400.00 00.00 370.56 

5 82.774 0.8538 179.741 18.3720 7, 10, 14, 37, 30 160.82 31.30 200.01 350.32 348.42 377.00 

6 126.164 0.7534 155.055 12.8899 33, 10, 13, 28, 15 324.73 00.00 397.09 378.13 00.00 385.11 

7 97.465 0.8615 164.669 14.3638 6, 9, 14, 37, 8 234.41 00.00 382.83 358.35 97.93 396.28 

8 95.024 0.8519 168.089 13.470 7, 10, 14, 37, 34 300.01 13.01 374.71 373.90 22.71 387.43 

9 83.003 0.8513 157.368 13.1476 7, 10, 14, 37, 31 313.21 00.00 394.31 377.41 00.00 353.70 

10 82.758 0.8510 156.801 13.0839 7, 10, 14, 37, 31 307.23 00.00 389.30 386.60 00.00 366.90 

11 82.351 0.8523 178.556 18.1202 7, 10, 14, 37, 30 166.30 35.01 216.22 349.08 333.22 384.13 

12 81.400 0.8298 173.518 16.0043 7, 10, 14, 37, 30 156.80 36.11 365.39 350.34 183.81 393.42 

13 102.906 0.8779 178.379 17.8781 7, 9, 14, 37, 34 167.41 29.02 230.78 345.41 318.06 382.69 

14 95.447 0.8532 163.052 13.49362 7, 10, 14, 37, 34 285.20 00.00 373.03 368.38 32.12 399.68 

15 97.712 0.8634 170.608 14.5892 6, 9, 14, 37, 8 230.06 04.21 371.91 360.49 111.64 396.69 

16 81.407 0.8289 172.783 15.6917 7, 10, 14, 37, 30 179.41 29.81 355.42 365.34 168.13 387.92 

17 81.577 0.8223 171.059 14.9459 7, 10, 14, 37, 30 227.44 19.20 357.02 366.11 125.82 389.50 

18 101.322 0.8754 177.311 17.4381 7, 10, 14, 37, 34 186.20 32.30 240.81 348.12 284.10 382.79 

19 81.660 0.8203 170.343 14.6441 7, 10, 14, 37, 30 242.10 15.44 359.20 369.31 108.47 390.90 

20 82.036 0.8414 166.492 13.0046 7, 10, 13, 37, 31 305.32 06.00 397.60 400.00 02.23 374.13 

21 102.415 0.8776 178.036 17.738 7, 10, 14, 37, 34 174.61 31.72 226.11 351.13 305.62 384.67 

22 84.485 0.8589 174.773 15.3938 6, 9, 14, 37, 31 233.90 07.91 284.20 361.48 140.32 385.13 

23 96.451 0.8601 170.833 14.6794 7, 10, 14, 37, 34 235.62 16.18 361.73 374.59 105.84 380.50 

24 95.731 0.8571 169.020 13.9865 7, 10, 14, 37, 34 268.81 07.16 372.92 364.62 67.91 397.82 

25 83.814 0.8553 165.277 14.4491 6, 9, 14, 37, 31 236.33 00.00 357.90 367.37 99.69 397.65 

26 81.991 0.8440 167.080 13.1868 7, 10, 13, 37, 31 299.00 04.33 385.11 397.88 15.00 379.62 

27 100.992 0.8746 176.968 17.3097 7, 10, 14, 37, 34 188.40 36.00 244.09 351.55 271.83 383.62 

28 84.637 0.8581 174.655 15.1821 6, 9, 14, 37, 31 235.30 04.53 280.36 366.41 124.71 391.30 

29 81.631 0.8256 171.941 15.1586 7, 10, 14, 37, 30 198.21 12.73 362.00 363.10 143.20 395.42 

30 81.450 0.8315 174.283 16.2738 7, 10, 14, 37, 30 142.50 36.31 365.42 352.48 201.22 384.56 
 

  
(a) (b) 

  
(c) (d) 

Fig. 15 The Pareto optimal solutions (case study 3). 
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Table 7 The comparison of the best compromised solutions for different case studies. 

Case studies 
Power 

losses [kW] 
VSI Cost [$/h] 

Emission 

[tons] 

Minimum 

voltage [pu] 

Open switches in 

the best solution 

DG power for the best solution [kW] 

P1
WT P1

FC P1
PV P2

WT P2
FC P2

PV 

Base case 202.67 0.6969 219.38 22.272 0.9131 33, 34, 35, 36, 37 00.00 00.00 00.00 00.00 00.00 00.00 

Case study 1 134.197 0.7736 203.124 20.7237 0.9454 7, 9, 14, 37, 31 00.00 00.00 00.00 00.00 00.00 00.00 

Case study 2 106.908 0.7562 161.144 13.2296 0.9378 33, 34, 35, 36, 37 311.96 00.00 369.05 400.00 06.38 400.00 

Case study 3 82.758 0.8510 156.801 13.0839 0.9489 7, 10, 14, 37, 31 307.23 00.00 389.30 386.60 00.00 366.90 

Case study 3 

(HBB-BC) [2] 

83.456 0.8453 157.768 13.1834 0.9421 7, 10, 14, 37, 31 304.23 00.00 387.34 383.24 00.00 264.34 

 

energy management of the combined energy systems 

and optimal DFR are simultaneously carried out (as the 

proposed method), the highest enhancement in objective 

functions is acquired. The values achieved in Case 

study 3 for objective functions of power losses 

(82.75kW), VSI (0.8510), operation cost (156.801$/h), 

and emissions (13.08 tons) are the most optimal value of 

all case studies and base case. Regarding the last row of 

the Table 7, it is seen that although the HBB-BC 
algorithm has found the status of tie switches similar to 

proposed algorithm, however, due to fewer use of 

generations of renewable energies (WT, and PV), the 

objective functions are converged to unsuitable values 

compared to the results of the proposed algorithm in 

Case study 3. 

   As observed in Table 7, the last case study has also a 

better minimum voltage. To accurately observe resulted 

voltage status of MG, voltage profile for all case studies 

is illustrated by Fig. 16. 

   It is seen that Case study 2 results in a higher voltage 

for a number of buses in comparison to the proposed 
formulation of Case study 3. Yet, Case study 3 

improves the weakest bus voltage as motivated by VSI. 

It can be noted that the voltage instability and voltage 

collapse of an MG can be triggered by the weakest bus 

voltage, and subsequently, the reinforcement of the 

weakest voltage leads to the improvement of the whole 

power system voltage status. This fact occurs in the 

proposed MOP where the minimum voltage of 0.9489 

p.u. (at bus 31) is higher than other minimum voltages 

given by other case studies. It is important to also note 

that the voltage of bus 0 of the MG, which is connected 
to the upstream main grid, is kept at 1 (p.u.) as observed 

in Fig. 16. The voltage of combined energy systems 

connected to buses (4 and 14) cannot be fixed at 1 p.u. 

due to operating them with unity power factor. 

 

7 Conclusions 

   In this paper, the optimal DFR, and optimal 

generation scheduling of combined energy systems are 

simultaneously carried out by a combined algorithm 

named IMOPSO algorithm in an MG. Minimization of 

active power loss, VSI index, operational costs, and 

emissions are the objective functions. This MOP is 
optimized by the above-mentioned algorithm 

considering the uncertainties of WT generation, PV 

generation, and electrical demand. This paper proposes 

the copula-based stochastic energy management for the 

MG. The scenarios are generated by the scenario tree  

 

 

Fig. 16 The voltage profile for all case studies. 

 

algorithm and scenario reduction is carried out by a 

clustering algorithm based on the genetic algorithm. To 

consider all of the probable solutions, a new index 

named ASO is proposed to aggregate the solutions. 

   The main achievements of the proposed MOP model 

as follows: 

 The active power loss is reduced by 59.41%, 

47.52%, and 33.66% in Case study 3, 2, and 1, 

respectively compared to the base case. 

 The VSI index is increased by 23.18%, 8.63%, and 

11.59% in Case study 3, 2, and 1, respectively in 

comparison to the base case. 

 The total operational costs are elucidated by 28.76%, 

26.48% and 7.32% in Case study 3, 2, and 1, 

respectively in comparison to the base case. 

 The emissions are reduced by 41.23%, 40.60%, and 

9.09% in Case study 3, 2, and 1, respectively in 
comparison to the base case. 

   To improve the research work presented in this paper, 

the following future works can be considered as 

follows: 

 Presenting an optimal day-ahead scheduling and 

DFR considering uncertainties modeled by copula 

method. 

 Applying the proposed model on unbalanced MGs. 
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