Semi-Analytical Modeling of Electromagnetic Performances in Magnet Segmented Spoke-Type Permanent Magnet Machine Considering Infinite and Finite Soft-Magnetic Material Permeability

A. Jabbari

Abstract: In this paper, we present a semi-analytical model for determining the magnetic and electromagnetic characteristics of spoke-type permanent magnet (STPM) machine considering magnet segmentation and finite soft-material relative permeability. The proposed model is based on the solution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative permeability effect of iron core in a subdomain model. Two different magnet-segmented STPM machine was studied analytically and numerically. The effect of the iron core relative permeability on the STPM machine performances was investigated at no-load and on-load conditions with respect to certain values of iron core relative permeability by comparing cogging torque, electromagnetic torque ripple, and reluctance torque ripple waveforms. In order to validate the results of the proposed analytical model, the analytical and numerical results were compared. It can be seen that the analytical modeling results are consistent with the results of numerical analysis.

Keywords: Semi-Analytical Model, Spoke-Type Permanent Magnet Machine, Magnet Segmentation, Finite Iron Core Relative Permeability, Quasi-Cartesian Coordinates, Subdomain Technique.

1 Introduction

A segmented pole consists of two or more PM pieces located beside each other with a certain gap between each piece. Researchers have identified the spoke-type permanent magnet machine as one of the most suitable machines for high-speed applications as a good alternative to surface mounted PM machines. Magnet segmentation is used as one of the effective methods for reducing pulsating torque components in permanent magnet machines [1-3].

An analytical method that minimizes the cogging torque in rotor surface mounted permanent-magnet motors presented in [2]. The main idea in this work is to set the distribution of the air-gap flux density by segmenting the permanent magnet into several primitive magnet blocks. The analytical approach uses Fourier-Maxwell expansion to estimate the cogging torque harmonics, and finite-element computations.

An accurate analytical model of a double-sided air-core linear permanent-magnet machine with segmented permanent-magnet poles has been presented in [3]. The average thrust as well as thrust ripple was precisely calculated by this model. Back-electromotive force and flux density distribution of the motor are also determined by this method. This model provides the analytical framework for design optimization of double-sided air-core permanent-magnet linear synchronous motors with segmented poles regarding more motor parameters and objectives.

The flux weakening mechanism of interior permanent magnet synchronous machines with segmented
permanent magnets (PMs) in the rotor was studied in [4]. Air gap flux density with and without segments are analyzed and compared, based on both analytical and finite element methods. Frozen permeability technique is used to separate the PM component flux density in iron bridges at load condition, to find out the effect of demagnetizing current on flux variation. A novel explanation is proposed to explain the improvement effect of the flux weakening capability by magnet segmentation.

A novel interior permanent magnet machines used for spindle drive where wide constant power speed range is necessary [5]. To obtain wide constant power speed range, segmented permanent magnet was adopted. Besides, in order to check the influences of segmented permanent magnet on cogging torque, it was also analyzed by finite element analysis.

The effect of segmentation on the losses was estimated by a 3-D time-harmonic finite element model for sinusoidal waveforms [6]. It is shown that more segmentation of the magnets in axial and circumferential direction results in much lower losses in the magnets, but more losses in the massive rotor yoke. In [7], the lumped magnetic circuit models are used for interior permanent magnet (IPM) machines with multi-segment and multilayer permanent magnets. The open-circuit air gap field distribution, average air gap flux density and leakage fluxes are derived analytically.

The impacts of the stator slot with skew and segment magnet rotor on the performance of interior permanent magnet (IPM) machine for an electric traction was studied in [8]. Comparisons of the average torque, torque ripples, cogging torque and no-load back EMF with skew and un-skew are given and how suitable a segmented rotor IPM machine and its torque characteristic and the field weakening capability are investigated. From the FEA results, it shows that the IPM synchronous machine with two-teeth stator slots skewed and two-segmented magnet rotor has better performance than the conventional IPM synchronous machine.

In another work, the effect of eddy current loss reduction by segmented rare-earth magnets that are used in synchronous motors driven by inverters was investigated in [9]. First, the difference in the loss-reduction effect due to the rotor shape is estimated by the 3-D finite-element analysis that considers the carrier harmonics of the inverter. The results are compared to the theoretical solution. Next, a basic experiment using magnet specimens is carried out in order to confirm the calculated results.

The characteristics of the magnetic force acting on the segmented magnets was analyzed and the events they can possibly cause was predicted in [10].

The magnet segmentation effects on eddy current losses in magnets was studied in [11]. A 2D non-linear model based on finite element analysis is developed under MATLAB environment. The developed model is applied to a synchronous machine with surface mounted permanent magnets. An optimization process which consists to associate the finite element analysis to genetic algorithm in order to find the best parameters of magnets segmentation and avoid any segmentations anomaly that appears under some conditions such as skin effect, and which can lead to losses increases instead of their reduction.

To analyze the effect of the gap between segments on air-gap flux density, an analytical model of the Halbach array permanent magnet machine considering the gap between segments is established in [12]. The finite element model is adopted to validate the established analytical model. Furthermore, effects of the parameters of the segmented Halbach array, including gap between segments, segment number per pole, and pole pair number on the fundamental amplitude, and waveform distortion factor of the radial component of air-gap flux density are analyzed using the established analytical model.

In [13], a switched flux permanent magnet (SFPM) machine with radially segmented permanent magnets (PMs) is presented. The thickness of each segment is optimized to maximize the torque performance and reduce the total magnet material volume. The influence of the number of segments is studied by testing a different number of segments. Furthermore, a comparison between a conventional with non-segmented magnets (CSFPM) machine, an SFPM machine with trapezoidal-shaped magnets (TSFPM) and the proposed machine with segmented magnets (SSFPM) is presented. It is found that, the SSFPM has higher torque and higher torque per magnet volume than that of the CSFPM and TSFPM machines.

An analysis of using segmented permanent magnet instead of single pole units on a synchronous generator was presented in [14]. The main reason of using such solutions is the fact that smaller, simple shapes permanent magnets with standardized dimensions can easily be found on the market at low costs.

From the study of the literature survey, it can be concluded that the effect of magnet segmentation on the performance of spoke-type machine has not been investigated so far. Various methods such as numerical, analytical and experimental methods are used to determine the performance characteristics of electric machines. Generally, numerical methods can be used to estimate the magnetic field in STPM machines [15]. Although these methods are highly accurate, their main drawback is that they are time consuming. Therefore, researchers are trying to provide analytical models to accurately calculate the no-load/on-load performance of the electric machines in the initial and optimization stages.

Some reviews of analytical modeling techniques in electrical machines for magnetic field and performance computation were provided in [16-18]. A semi-analytical method for synchronous reluctance motor
analysis including finite soft-magnetic material permeability was presented in [19]. Djelloul et al. developed a nonlinear analytical model in order to calculate the magnetic field and electromagnetic performances in switched reluctance machines [20]. Roubache et al. provide a new subdomain technique for electromagnetic performance calculation in radial-flux electrical machines considering finite soft-magnetic material permeability [21]. Jabbari presented a Maxwell-Fourier based analytical method in order to calculate magnetic vector potential in surface mounted and surface inset permanent magnet machines in [22] and magnet segmented surface inset PM machines in [23]. The resolution of Laplace’s and Poisson’s equations was performed in a quasi-Cartesian coordinates system. He also presented an analytical model to estimate the magnetic field distribution in multiphase H-type stator core permanent magnet flux switching machines [24]. An analytical expression for magnet shape optimization in surface-mounted permanent magnet machines and iron pole shape optimization in interior permanent magnet machines was derived in [25] and [26], respectively.

Analytical solution of the no-load vector potential and flux density in permanent-magnet motors taking into account slotting effect was studied in [27]. Dubas et al. presented a new scientific contribution on the 2-D subdomain technique in Cartesian coordinates taking into account of iron parts [28]. An analytical computation of magnetic field in parallel double excitation and spoke-type permanent magnet machines accounting for tooth-tips and shape of polar pieces presented in [29]. Liang et al. provided an analytical model in order to estimate magnetic field distribution in spoke-type permanent-magnet synchronous machines accounting for bridge saturation and magnet shape [30]. Pourahmadi-Nakhli et al. presented an analytical method to model the slotted brushless machines with cubic spoke-type permanent magnets [31]. A new subdomain method for performances computation in interior permanent-magnet (IPM) machines considering iron core relative permeability was presented by Jabbari et al. [32].

To the best of the author’s knowledge, in no reference, an analytical model has been presented to determine the electromagnetic performances of STPM machine considering magnet segmentation as well as the iron core relative permeability. The proposed model is obtained by solving the Maxwell equations by considering the appropriate boundary conditions in the Cartesian pseudo-coordinate system.

2 Magnet-Segmentation definition in Spoke Type Machine

In Fig. 1, two types of STPM machines are shown, as in type (a), two pieces of magnet with two air-gap regions and in type (b), two pieces of magnet with one air-gap region, both with tangential magnetization orientation are arranged and every combination defines a machine pole. The subdomain model of the investigated machine is shown in Fig. 2 with the region symbols described in Table 1. The machine regions can be defined as periodic or non-periodic regions. In Table 2, the periodic and non-periodic regions and the general PDE equations of each region are derived.

Analytical model in the Cartesian pseudo-coordinate system is formulated by the resolution of the Laplace’s and Poisson’s equations for determining the magnetic potential as \(A = \{0; 0; A_z\} \). In the solution of the Maxwell equations, we use the following simplifying

![Fig. 1](image-url)

Fig. 1 Two studied magnet-segmented STPM machines;
a) M1-design with two air-gap and b) M2-design with one air-gap.

Table 1 Representation of the machine regions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region I</td>
<td>Rotor shaft</td>
</tr>
<tr>
<td>Region II</td>
<td>Rotor yoke</td>
</tr>
<tr>
<td>Region III</td>
<td>Rotor teeth</td>
</tr>
<tr>
<td>Region IV</td>
<td>Rotor slot</td>
</tr>
<tr>
<td>Region V</td>
<td>Rotor teeth</td>
</tr>
<tr>
<td>Region VI</td>
<td>PMs</td>
</tr>
<tr>
<td>Region VII</td>
<td>Rotor slot</td>
</tr>
<tr>
<td>Region VIII</td>
<td>Rotor teeth</td>
</tr>
<tr>
<td>Region IX</td>
<td>Air-gap</td>
</tr>
<tr>
<td>Region X and XII</td>
<td>Stator teeth</td>
</tr>
<tr>
<td>Region XI</td>
<td>Stator slot-opening</td>
</tr>
<tr>
<td>Region XIII</td>
<td>Stator slot (on the left)</td>
</tr>
<tr>
<td>Region XIV</td>
<td>Stator slot (on the right)</td>
</tr>
<tr>
<td>Region XV</td>
<td>Stator yoke</td>
</tr>
</tbody>
</table>
Semi-Analytical Modeling of Electromagnetic Performances in...

A. Jabbari

Fig. 2 The investigated model; a) the rotor subdomains and b) the stator subdomains.

Table 2 Definition of periodic and non-periodic regions and their representative Laplace’s or Poisson’s equation.

<table>
<thead>
<tr>
<th>Category</th>
<th>Ω-Region</th>
<th>Laplace’s/ Poisson’s equation</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic region</td>
<td>I, II, XI, XV</td>
<td>((\mu_0) is the vacuum permeability; (M) is the magnetization of the PM; (J_z) is the current density in the stator slots)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III, IV, V, VIII, VII, XI, XII</td>
<td>(\nabla^2 A_t = \frac{\partial^2 A_{t(0)}}{\partial t^2} + \frac{\partial^2 A_{t(\theta)}}{\partial \theta^2} = 0)</td>
<td>(1)</td>
</tr>
<tr>
<td>Non-periodic region</td>
<td>VI</td>
<td>(\nabla^2 A_t = -\mu_0 \nabla \times M = \frac{\partial^2 A_{t(\theta)}}{\partial \theta^2} + \frac{\partial^2 A_{t(z)}}{\partial z^2} = -\mu_0 R_e e^{-i\omega t} M_p)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>XIII and XIV</td>
<td>(\nabla^2 A_t = -\mu_0 J_z = \frac{\partial^2 A_{t(\theta)}}{\partial \theta^2} + \frac{\partial^2 A_{t(z)}}{\partial z^2} = -\mu_0 R_e e^{-i\omega t} J_{z})</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Table 3 The magnetic material equation for each subdomain.

<table>
<thead>
<tr>
<th>Region</th>
<th>Equation</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, IV, VII, XI, and XI</td>
<td>(B = \mu_0 H)</td>
<td>(4)</td>
</tr>
<tr>
<td>VI</td>
<td>(B = \mu_0 \mu_m H + \mu_0 M)</td>
<td>(5)</td>
</tr>
<tr>
<td>II, III, V, VIII, X, XII and XV</td>
<td>(B = \mu_0 \mu_m H)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Assumptions.
1) The axial length of the machine is assumed to be infinitely and the magnetic variables independent of \(z\).
2) Stator teeth/slots, the rotor regions have radial sides.
3) The current density, \(J_z\), is along the \(z\)-axis.
4) It is assumed that the electrical conductivity of the material is zero.

Field vectors \(B = \{B_t; B_\theta; 0\}\) and \(H = \{H_t; H_\theta; 0\}\) are coupled in different regions by means of magnetic material equation as shown in Table 3.

Using \(B = \nabla \times A\) the components of \(B\) can be deduced by

\[B_t = \frac{e^i}{R_i} \frac{\partial A_{t(\theta)}}{\partial \theta}\]

\[B_\theta = \frac{e^i}{R_i} \frac{\partial A_{t(z)}}{\partial z}\]

3 Magnetic Vector Potential Calculation

First, periodic and non-periodic areas are determined in this section, and then the corresponding Laplace's or Poisson's equation is solved by the method of separation of the variables. In order to determine the constants of integration, the boundary conditions and the interface conditions are considered.

The general solution of Laplace’s equation for I, II, XI and XV regions by using the separation of variables method and a quasi-Cartesian coordinate system [22] can be described as

Downloaded from ijeee.iust.ac.ir at 2018 IRDT on Friday May 7th 2021 [DOI: 10.22068/IJEEE.17.1.1711]
where n is a positive integer, and

- \(G = Sh \), \(t \in [t_i, t_j] \), and \(b_n^a = a_n^a = 0 \) for (\(\Omega = I \)),

- \(G = Sh \), \(t \in [t_i, t_j] \), for (\(\Omega = II \)),

- \(G = Sh \), \(t \in [t_i, t_j] \), and \(b_n^a = a_n^a = 0 \) for (\(\Omega = XV \)),

- \(G = Sh \), \(t \in [t_i, t_j] \), for (\(\Omega = XI \)).

By using the separation of variables method, the general solution of Laplace’s equation for III, IV, V, VIII, VII, X, XI, and XII regions can be as

\[
A_{-\Omega}(t, \theta) = a_n^{\Omega} + b_n^{\Omega} \sin(n \theta) \]

\[
+ \sum_{n=1}^{\infty} \left[a_n^{\Omega} G_{i-j}^{\Omega} + b_n^{\Omega} G_{j-i}^{\Omega} \right] \cos(n \theta) \]

\[
+ \sum_{n=1}^{\infty} \left[a_n^{\Omega} G_{i-j}^{\Omega} + b_n^{\Omega} G_{j-i}^{\Omega} \right] \sin(n \theta) \]

\[
\left\{ \begin{array}{l}
\theta \in [\theta_1, \theta_2] \\
H_{i-j} = Sh \left(n(t_i - t_j)\right) \\
G_i = G \left(n(t_i - t_j)\right) \\
G_j = G \left(n(t_i - t_j)\right) \\
H_0 = H \left(v_{i,\Omega}(t)\right) \\
\end{array} \right.
\]

- \(t \in [t_i, t_f] \), \(\theta = \beta, \theta \in [\theta_1, \theta_2] = [\theta_1 + \alpha, \theta_1 + \alpha + \beta] \), \(\Omega(g) = XII(m) \) and \(G = Ch \) for \(m \)-th stator tooth,

- \(t \in [t_i, t_f] \), \(\theta = \delta, \theta \in [\theta_1 + \gamma, \theta_1 + \gamma + \delta] \), \(\Omega(g) = XI(l) \) and \(F = Ch \) for \(l \)-th stator tooth,

- \(t \in [t_i, t_f] \), \(\theta = \gamma, \theta \in [\theta_1, \theta_1 + \gamma] \), \(G = Sh, \Omega(g) = XI(l) \) and \(a_k^{\Omega} = b_k^{\Omega} = 0 \) for \(l \)-th stator slot-opening,

- \(t \in [t_0, t_{10}] \), \(\theta = \zeta, \theta \in [\theta_1 + \zeta, \theta_1 + \zeta + \gamma] \), \(a_0^{\Omega} = b_0^{\Omega} = 0 \), \(G = Sh \) and \(\Omega(g) = VII(k) \) for \(k \)-th rotor outer slot,

- \(t \in [t_0, t_{10}] \), \(\theta = \varphi, \theta \in [\theta_1 + \zeta, \theta_1 + \zeta + \varphi] \), \(G = Ch \) and \(\Omega(g) = VIII(k) \) for \(k \)-th rotor tooth,

- \(t \in [t_r, t_{16}] \), \(\theta = \psi, \theta \in [\theta_0 + \psi, \theta_0 + \psi + \zeta] \), \(G = Ch \) and \(\Omega(g) = IX(j) \) for \(j \)-th rotor tooth.

The general solution of Poisson’s equation for VI region by using the separation of variables method can be described as

\[
A_{-\Omega}(t, \theta) = a_n^{\Omega} + b_n^{\Omega} \sin(n \theta) \]

\[
+ \sum_{n=1}^{\infty} \left[a_n^{\Omega} G_{i-j}^{\Omega} + b_n^{\Omega} G_{j-i}^{\Omega} \right] \cos \left(v_{i,\Omega}(t) \sin(n \theta)\right)
\]

\[
= \sum_{n=1}^{\infty} \left[a_n^{\Omega} H_{i-j}^{\Omega} + b_n^{\Omega} H_{j-i}^{\Omega} \right] \sin \left(v_{i,\Omega}(t) \sin(n \theta)\right)
\]

\[
\left\{ \begin{array}{l}
\theta \in [\theta_1, \theta_2] \\
v_{i,\Omega}(t) = \pi / \Gamma \\
v_{i,\Omega}(t) = k \pi / t_j \\
H_{i-j} = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_i = G \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_j = G \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
H_0 = H \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
\end{array} \right.
\]

\[
\left\{ \begin{array}{l}
h_{i,j}(t) = R e^{-\gamma \delta} (\theta - \theta_0) \\
\theta \in [\theta_1, \theta_2] = [\theta_1 + \alpha, \theta_1 + \alpha + \beta] \\
y_j = \frac{\theta - \theta_0}{\Gamma} \\
v_{i,\Omega}(t) = \frac{h_{i,j}(t)}{\Gamma} \\
v_{i,\Omega}(t) = k \pi / t_j \\
H_{i-j} = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
H_0 = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_i = Ch \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_j = Ch \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
\end{array} \right.
\]

\[
\left\{ \begin{array}{l}
\Omega(g) = VI(j) \\
H_{i-j} = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
H_{i-j} = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
H_0 = Sh \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_i = Ch \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
G_j = Ch \left(v_{i,\Omega}(t) \sin(n \theta)\right) \\
\end{array} \right.
\]
By using the separation of variables method, the general solution of Poisson’s equation XIII and XIV regions can be as

\[A_{i}(t, \theta) = a_{i}^{(i)}e^{j \omega t} + b_{i}^{(i)}e^{-j \omega t} \]

\[+ \sum_{i=1}^{2} \left(a_{i}^{(i)} \frac{G_{i}}{H_{i-1}} \cos(v_{i} \theta) - b_{i}^{(i)} \frac{G_{i}}{H_{i-1}} \sin(v_{i} \theta) \right) \]

\[+ \sum_{i=1}^{2} \left(a_{i}^{(i)} \frac{H_{i}}{H_{0}} + b_{i}^{(i)} \frac{H_{i}}{H_{0}} \right) \sin(v_{i} \theta) \]

where

- \(\theta \in [\theta_{i}, \theta_{i} + \alpha/2] \) and \(\Omega(g) = \text{XIII(m)} \) for \(m \)-th stator slot-right side and
- \(\theta \in [\theta_{i} + \alpha/2, \theta_{i} + \alpha] \) and \(\Omega(g) = \text{XIV(m)} \) for \(m \)-th stator slot-left side.

To determine the integration constants in (9)-(12); the boundary conditions at the interface between different regions should be introduced. In non-homogeneous regions, we consider the interface conditions in two edges (i.e., \(t- \) and \(\theta- \)edges) as listed in the Appendix.

4 Results and Evaluation

In order to study the effect of magnet segmentation on performance characteristics of STPM machine, an 8P-18S spoke type machine with two different topologies has been modeled analytically and numerically. The two-dimensional analytical representation for STPM, considering the magnet segmentation and distinct material permeability is applied to estimate the machine performances. The main dimensions and parameters of the investigated STPMs are given in Table 4. Fig. 3 shows the rotor geometrical lines, material shade and mesh density distribution of the investigated machines. 2-D geometrical model and magnetic flux density distribution in two investigated machines for infinite relative permeability model are presented in Fig. 4.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{rm}) Remanence flux density of PMs</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>(\mu_{rm}) Relative permeability of PMs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(N_{c}) Number of conductors per stator slot</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>(I_{w}) Peak phase current</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>(Q_{r}) Number of stator slots</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(c) Stator slot-opening</td>
<td>30</td>
<td>deg.</td>
</tr>
<tr>
<td>(a) PM opening</td>
<td>18</td>
<td>deg.</td>
</tr>
<tr>
<td>(p) Number of pole pairs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(R_{s}) Outer radius of stator slots</td>
<td>60.3</td>
<td>mm</td>
</tr>
<tr>
<td>(R_{t}) Radius of the stator inner surface</td>
<td>45.3</td>
<td>mm</td>
</tr>
<tr>
<td>(R_{o}) Radius of the rotor outer surface at the PM surface</td>
<td>44.8</td>
<td>mm</td>
</tr>
<tr>
<td>(R_{o}) Radius of the rotor inner surface at the PM bottom</td>
<td>18</td>
<td>mm</td>
</tr>
<tr>
<td>(g) Air-gap length</td>
<td>0.5</td>
<td>mm</td>
</tr>
<tr>
<td>(L_{a}) Axial length</td>
<td>57</td>
<td>mm</td>
</tr>
<tr>
<td>(n) Mechanical pulse of synchronism</td>
<td>10000</td>
<td>rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnet widths</th>
<th>up</th>
<th>down</th>
<th>up</th>
<th>down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.86</td>
<td>3.5</td>
<td>5.36</td>
<td>3.5</td>
</tr>
</tbody>
</table>
self-inductance, mutual inductance, and phase back electromotive force are shown for M1 and M2 machines in Fig. 7 and Fig. 8, respectively. The analytical and numerical results are compared for three distinct values of iron core relative permeability. It can be seen that the results of the analytical model are in a good agreement with the results of numerical method by an error percentage of about 4.3%. A comparison of cogging torque waveforms for M1- and M2-machines are shown in Fig. 9 in which, the peak value of the cogging torque in M1 and M2 machines are 0.374548 N.m and 0.02139 N.m, respectively.

The mean values of the electromagnetic torque, the electromagnetic torque ripple, the mean values of the reluctance torque, the reluctance torque ripple, the peak back-EMF, the self-inductance, and the mutual inductance for the three values of magnetic permeability for the M1- and M-2 designs are given in Table 5. In the case of M1-design, the electromagnetic torque ripple for the iron permeability of infinite and 800, respectively, is reduced from 1.4028751 N.m to 0.562386 N.m, and for iron permeability of 200, it decreases to 0.333679. From the results of the study, it can be seen that in the M1-machine, for iron permeability values of infinity and 200, the reluctance torque ripple reduced from 1.519755 N.m to 0.3149174 N.m.
Fig. 5 On-load flux distribution of M1-design at the middle of air-gap for three distinct values of iron core relative permeability; a) radial flux density, b) tangential flux density, c) x-component of flux density, d) y-component of flux density, e) Maxwell tensor of torque, f) Maxwell tensor of normal force, g) x-component of Maxwell tensor of force, and h) y-component of Maxwell tensor of force.
Semi-Analytical Modeling of Electromagnetic Performances in ... A. Jabbari

Fig. 6 On-load flux distribution of M2-design at the middle of air-gap for three distinct values of iron core relative permeability; a) radial flux density, b) tangential flux density, c) x-component of flux density, d) y-component of flux density, e) Maxwell tensor of torque, f) Maxwell tensor of normal force, g) x-component of Maxwell tensor of force, and h) y-component of Maxwell tensor of force.
Fig. 7 Performance characteristics of M1 machine at nominal speed for three distinct values of iron core relative permeability:
(a) electromagnetic torque, b) reluctance torque, c) phase A self-inductance, d) phase A-phase B mutual inductance, and e) phase A back-EMF.

Fig. 8 Performance characteristics of M1 machine at nominal speed for three distinct values of iron core relative permeability:
(a) electromagnetic torque, b) reluctance torque, c) phase A self-inductance, d) phase A-phase B mutual inductance, and e) phase A back-EMF.

Fig. 9 A comparison of cogging torque waveforms for M1- and M2- machines.
5 Conclusion

In this paper, we present a semi-analytical method for calculating the no-load and on-load performance characteristics of magnet-segmented spoke-type machines. In addition, the effect of relative permeability of iron core on machine performance was studied, analytically and numerically. From the results of this study, it can be observed that the iron core relative permeability and magnet segmentation have a great effect on magnetic flux density distribution, radial force distribution, electromagnetic torque, reluctance torque, self/mutual inductance, and back-emf. For validation of the proposed analytical model, two different magnet-segmented spoke-type machines were investigated and numerical and analytical results were compared. Comparing these results, it can be seen that the proposed model is highly accurate.

Table 5

<table>
<thead>
<tr>
<th>Machine characteristic</th>
<th>M2 design</th>
<th>M1 design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = \infty$</td>
<td>$\mu = 800$</td>
</tr>
<tr>
<td>Average electromagnetic torque</td>
<td>0.657080</td>
<td>0.4106838</td>
</tr>
<tr>
<td>Electromagnet torque ripple</td>
<td>1.402875</td>
<td>0.562386</td>
</tr>
<tr>
<td>Average reluctance torque</td>
<td>0.549567</td>
<td>0.031160</td>
</tr>
<tr>
<td>Reluctance torque ripple</td>
<td>1.144424</td>
<td>0.559455</td>
</tr>
<tr>
<td>Back-emf</td>
<td>19.5668</td>
<td>16.665</td>
</tr>
<tr>
<td>Self-inductance</td>
<td>0.000678</td>
<td>0.000632</td>
</tr>
<tr>
<td>Mutual inductance</td>
<td>-0.000113</td>
<td>-0.0001061</td>
</tr>
</tbody>
</table>

Appendix

Table 6

<table>
<thead>
<tr>
<th>θ-edges interface conditions (ICs)</th>
<th>τ-edges interface conditions (ICs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\alpha_{\theta_{\theta}}} = A_{\gamma_{\theta_{\theta}}}$ and $H_{\alpha_{\gamma}} = H_{\gamma_{\theta}}$</td>
<td>$A_{\alpha_{\theta_{\theta}}} = A_{\gamma_{\theta_{\theta}}}$ and $H_{\alpha_{\gamma}} = H_{\gamma_{\theta}}$</td>
</tr>
<tr>
<td>$R = R_\alpha = \forall \theta \in [0, \theta_{0} + \zeta]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
<td>$R = R_\alpha = \forall \theta \in [0, \theta_{0} + \zeta]$ between Region II and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
</tr>
<tr>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
</tr>
<tr>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
</tr>
<tr>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
<td>$R = R_\alpha = \forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta]$ between Region I and Region III/Region IV at t_{θ} and $\forall \theta \in [\theta_{0}, \theta_{\theta} + \zeta + \phi]$ between Region V and Region X (Region X), $\forall t \in [t_{\theta}, t_{\theta}]$</td>
</tr>
</tbody>
</table>

References

A. Jabbari was born in Shazand, Iran, in 1980. He received the B.Sc. degree from Iran University of Science and Technology (IUST) in 2002 and his M.Sc. and Ph.D. degrees both in Mechanical Engineering from Mazandaran University in 2004 and 2009, respectively, with a focus on the design and the optimization of brushless DC permanent magnet machines for direct drive applications. He is currently an Assistant Professor with the Department of Mechanical Engineering, Arak University, Arak, Iran. Since 2014, he has been the Head of Gearless Wind Turbine Project team. His research interests include gearless wind turbine design, analytical modeling, pm machines, subdomain technique, friction stir welding, and metal forming.

© 2021 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).