

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 1

Iranian Journal of Electrical and Electronic Engineering 01 (2021) 1809

ASIC Design of Butterfly Unit Based on Non-Redundant and

Redundant Algorithm

P. Kulkarni*(C.A.), B. Hogade*, and V. Kulkarni**

Abstract: Fast Fourier Transform (FFT) processors employed with pipeline architecture

consist of series of Processing Elements (PE) or Butterfly Units (BU). BU or PE of FFT

performs multiplication and addition on complex numbers. This paper proposes a single BU

to compute radix-2, 8 point FFT in the time domain as well as frequency domain by

replacing a series of PEs. This BU comprises of fused floating point (FP) addition-

subtraction (FFAS) and modified booth algorithm based floating point

multiplier (FMULT). BU performs all arithmetic operations in floating pointform to

overcome the nonlinearities available in fixed word length (FWL). FP arithmetic is slower

as compared with FWL. To improve the speed of operation, symmetrical property of

twiddle constant is used and they are embedded in the BU. BU outputs two halves of

computation simultaneously with a single FFAS and two FMULT. BU design is

synthesized, placed and routed for 45nm technology of nangate open cell library.

Synthesized results show that proposed BU consumes 23910µm2 area with latency of

3.44ns which are 5.05% smaller in area, 7.02% faster and replaces a set of two five operand

adder and two multipliers by a single FFAS as compared with previously reported smallest

work.

Keywords: Binary Signed Digit, Butterfly Unit, Carry Free Addition, Fast Fourier

Transform, Fused Floating Point Addition-Subtraction.

1 Introduction1

AST Fourier Transform (FFT) processors are widely

used in wireless communications, entertainment

devices, biomedical field, image processing, etc. In the

past decade, FFT processors were implemented with

pipeline architectures. They consist of a series of

processing elements (PE). PE has computational and

data storing element.

 Computational elements known as the butterfly

unit (BU) are responsible for performing arithmetic

operations.

Iranian Journal of Electrical and Electronic Engineering, 2021.
Paper first received 14 February 2020, revised 06 April 2020, and

accepted 10 April 2020.

* The author is with the Department of Electronics Engineering, Terna
Engineering College, Nerul, Navi Mumbai, India.

E-mail: prasad26276@gmail.com and bghogade@gmail.com.

** The author is with the IT Department, Sanpada College of
Commerce and Technology, Sanpada, Navi Mumbai, India.

E-mail: 2vidula@gmail.com.

Corresponding Author: P. Kulkarni.
https://doi.org/10.22068/IJEEE.17.1.1809

 In most cases, memory is used as a storing element. In

N point FFT, log2N computational stages, N load, and N

store operations are available. Therefore total 2N× log2N

data access for entire dataflow is associated and

degrades the performance of FFT computation.

 The performance of large Point FFT was improved by

splitting into small independent computation [1]. To

implement the hardware of BU, it is important to select

appropriate word length, data representation form, and

arithmetic algorithm. Short word length results in less

power consumption, smaller chip area, and faster

computation [2]. Fixed point form or finite word length

(FWL) is the popular choice to represent the data for its

simplicity but introduces the nonlinearities in terms of

overflow rounding, aliasing, and coefficient errors [2].

Data represented in floating point number, overcomes

these nonlinearities but slows down the processing time.

In spite of the sluggish nature of floating point numbers,

various BUs were proposed with improved speed and

reduced area of consumption in application specific

integrated circuit (ASIC) designs. Area reduction by

sharing common logic is suggested in [3]. Dual path

F

mailto:prasad26276@gmail.com
mailto:bghogade@gmail.com
mailto:2vidula@gmail.com
https://doi.org/10.22068/IJEEE.17.1.1809

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 2

pipeline [4], merging of the operand/multi operand

adder [5], and carry limited addition [6] was mostly

suggested in BU architectures. Carry limited addition

uses the redundant arithmetic algorithm. To perform the

arithmetic operation in the redundant algorithm, non-

redundant binary numbers are converted into redundant

form. This conversion of non-redundant form to

redundant form is free from carry propagation, but

redundant to the non-redundant conversion of binary

numbers introduces carry propagation. However carry

free/carry limited addition [7] increases interconnecting

wires by increasing the number of input-output lines of

the arithmetic module. These lines also contribute to the

latency in design. The multi operand adder introduces

the carry propagation.

 This paper proposes a BU for radix-2, 8 point small

independent computation in time domain as well in the

frequency domain. The novelty of this BU is that it

replaces a series of PEs and computes two halves of the

computation simultaneously. This paper demonstrates

architecture of BU based on redundant, non-redundant

algorithm and combination of them. The redundant

algorithm is used to perform carry free addition. Here

the non-redundant operand is converted into redundant

form before addition. The sum of this adder is again

converted into the non-redundant form before applying

to the next logic. This conversion saves the width of the

internal data bus and also helps to reduce the width of

the storing element.

 This paper compares BU design based on the

redundant and non-redundant algorithms and proposes a

BU suitable to compute radix-2, 8 point FFT. All

floating-point arithmetic operations described here are

based on the algorithm stated in [8]. 16 bit simple 2’s

complement form is used to represent the data as stated

in [9]. The paper briefs on the following:

1. Floating point addition-subtraction (FFAS) using

the non-redundant and redundant approach.

2. Floating point multiplier (FMULT) using the non-

redundant and redundant approach.

3. BU designs for radix-2, 8 point FFT computation

based on the non-redundant algorithm, redundant

algorithm, and combination of them.

2 Fused Floating Point Addition-Subtraction Using

Redundant and Non-Redundant Algorithm

 To perform the addition on two floating numbers, the

following steps are followed.

1. Exponent comparator logic compares exponent

of two floating point numbers, X and Y. XEXP,

YEXP represents exponents and XMAN,

YMAN represents the mantissa of X and Y

respectively. Comparator takes the difference of

two exponents and records the difference in

terms of shift count. Comparator also asserts the

BIGX to indicate that XEXP is greater than

YEXP. Greater exponent is assigned as exponent

of sum in case of inequality of the exponents.

2. Mantissa multiplexer (mux) insert the implied bit

(~sign bit) next to the leading sign bit of

mantissa. The implied bit is zero when the

floating point number is zero. Mantissa mux

passes the mantissa of the number having smaller

exponent to right barrel shifter and mantissa of

number having greater exponent to the binary

adder.

3. Right barrel shifter, shifts the mantissa of

number having smaller exponent to right by shift

count provided by exponent comparator.

4. The binary adder adds the two mantissas and

outputs the sum.

5. The leadsign logic checks the sign of sum. It also

counts the numbers of leading sign bits.

6. Left barrel shifter aligns the sum by shifting it to

left equal to the count of leading sign bits.

7. Adjust logic, normalizes the result by verifying

underflow, overflow, and zero conditions. In

case of overflow of sum, the sum is set to the

most positive/negative value. The underflow of

the sum is set to zero. Adjust logic packs the

exponent and mantissa to result the sum of

floating point number.

 Similarly the subtraction of two floating point number

is performed by using 2’s complement. The decoder

logic separates the minuend and subtrahend. 2’s

complement of subtrahend is obtained before the

addition.

 In order to save area, common logic i.e. exponent

comparator, mantissa mux and right barrel shifter are

shared in FFAS. Authors have used the non-redundant

and redundant algorithms to perform the addition only.

Fig. 1(a) shows FFAS based on the non-redundant

algorithm and Fig. 1(b) shows the redundant algorithm

used for addition in FFAS. The redundant algorithm

performs the carry free addition using binary signed

digit (BSD) adder as stated in [6]. Each binary bit in

non-redundant form is encoded into redundant

form (BSD) before the addition. Binary to BSD

converter entity encodes non-redundant number into

redundant number using neg-pos encoding similar to [7,

10]. The BSD adder results the sum in redundant form.

This sum is again converted into non-redundant form

using the same neg-pos decoding as stated in [7, 10].

This conversion process restricts the number of

interconnecting wires (internal bus width) to carry the

redundant number in the entire flow. The redundant to

non-redundant converter is shown in Fig. 2. Radix-2

binary number X is represented by (1).

1

0

2 1, 0, 1
i

i

i i

i

X d d

 (1)

where X+ and X– are the bits of redundant number and

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 3

(a) (b)

Fig. 1 FFAS using a) non-redundant algorithm and b) redundant algorithm.

Table 1 Comparative statistics of floating point addition and subtraction.

Parameter Discrete addition–subtraction FFAS FFAS

Algorithm Non-redundant Non-redundant Redundant

Technology Nangate open cell library 45nm Nangate open cell

library 45nm

Nangate open cell

library 45nm

Area (A) [µm2] 11422 10330 11944

Delay (T) [ns] 1.47 1.56 1.57

AT2 [mm2 ns2] 0.024 0.025 0.029

Fig. 2 Redundant to non-

redundant converter.

its equivalent non-redundant binary X is represented

by (2), where Cin is the previous carry. This converter

propagates the carry CO for the next leading bit

conversion. This contributes the overhead of O(log n).

 inX X X C (2)

 Verilog code of FFAS using non-redundant and

redundant algorithm is synthesized and placed using

Mentor-Graphics-Oasys for 45nm technology of

nangate open cell library. Authors have also synthesized

the verilog code of the discrete design of floating point

addition and subtraction using non-redundant algorithm.

In discrete logic, common logic i.e. exponent

comparator, mantissa mux, and right barrel shifter are

not shared. Operating conditions are set to typical

values. Table 1 shows the synthesized results of

comparative statistics of non-redundant and redundant

algorithms of floating point addition and subtraction.

Discrete addition-subtraction design consumes

11422µm2 area with a delay of 1.47ns. Similarly FFAS

design using non-redundant and redundant algorithm

contributes area 10330µm2 and 11944µm2 respectively.

FFAS design using non-redundant algorithm causes a

delay of 1.56ns and FFAS in redundant algorithm

contributes a delay of 1.57ns. FFAS design using non-

redundant algorithm saves the area by 9.56% as

compared with discrete addition-subtraction performed

in the non-redundant algorithm. However FFAS adds a

penalty of 5.76% in latency. The FFAS design using the

redundant algorithm contributes an additional 13.5%

area as compared to the non-redundant algorithm.

3 Floating Point Multiplier Using Redundant and

Non-Redundant Algorithm

 Multiplication of two floating point numbers is

performed as per the steps mentioned below. The signed

multiplication of mantissas is performed using the

modified booth algorithm.

1. Unpack logic separates the exponents and

mantissas of floating point numbers. Exponents of

these numbers are added separately. Also, implied

bit is inserted in mantissas as described in FFAS.

2. Booth encoder, booth decoders, and partial product

formations are similar to [11].

3. Partial products are aligned to performed addition

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 4

on them.

4. All bits of partial products are not contributing in

generation of the final product. Hence they are

ignored while performing addition of partial

product. Only leading 16 bits out of 26 bits of the

sum of the partial product are necessary.

5. Product shift logic performs XOR operation on the

16th and 15th bit of product as well as on the 15th

and 14th bit of product to determine the number of

bit position of the product to be shifted right.

6. Normalization logic checks the overflow,

underflow, and zero conditions similar to FFAS. It

also packs the exponent and mantissa to give the

final product of two floating point numbers.

 Figs. 3(a) and 3(b) show the FMULT using the non-

redundant and redundant algorithm. The alignment of

partial products and their addition are shown in Fig. 4

and Fig. 5 respectively. The addition is performed using

Wallace tree method. The adders are also tailored to

ignore bits which are not contributing to the final

product.

 Verilog codes of FMULT using non-redundant and

redundant algorithms are synthesized and placed using

Mentor-Graphics-Oasys for 45nm technology of

nangate open cell library. Table 2 shows the synthesized

results comparative statistics of non-redundant and

redundant algorithms of FMULT.

 FMULT design using non-redundant and redundant

algorithms contributes 13904µm2 and 18631µm2 area,

respectively. FMULT design using the non-redundant

algorithm causes a delay of 1.94ns and FMULT in

redundant algorithm causes a delay of 0.40 ns. In

FMULT partial products are added using seven adders.

Adder based on non-redundant algorithm contributes

carry propagation delay, whereas adder based on

redundant algorithm performs the carry free addition to

save the delay. Hence the FMULT design using the

redundant algorithm saves the delay by 79.38% as

compared with FMULT based on the non-redundant

algorithm with 25.37% additional area. The area

increases due to the conversion process of non-

redundant to redundant and vice-versa. Power analysis

is also performed on both designs. FMULT using the

redundant algorithm dissipates 2.734mW power

whereas FMULT using the non-redundant algorithm

dissipates 0.592mW power.

Unpack sign extended mantissa

(Sign, -Sign, Man [10:0]) and

exponent adder

Booth Encoder

Neg, One, Two, Zero

Booth Decoder

Partial Products

formation

Partial Product shift and

alignment for sign (P0 ... P7)

Addition

16 bit Product mantissa

Product Shift, Sign

logic Shift Zexp

Zero Zman(11 bit)

Normalization

Z = (Zexp, Zman)

Xexp

Yexp

Xsign

Ysign

Z

Zexp = Xexp + Yexp

4 bit Exp, Sign, 11 bit Mantissa

X Y
13 bit

YMAN

13 bit

XMAN

Booth Encoder

Neg, One, Two, ZeroUnpack sign extended mantissa

(Sign, -Sign, Man [10:0]) and

exponent adder

Booth Decoder

Partial Products

formation

Partial Product shift and

alignment for sign (P0 ... P7)

Product Shift, Sign

logic Shift Zexp

Zero Zman(11 bit)

Normalization

Z = (Zexp, Zman)

Xexp

Yexp

Xsign

Ysign

Z

Zexp = Xexp + Yexp

4 bit Exp, Sign, 11 bit Mantissa

X Y
13 bit

YMAN

13 bit

XMAN

Binary to BSD

conversion

Binary to BSD

conversion

BSD Adder

BSD to binary conversion

16 bit Product

(a) (b)
Fig. 3 FMULT using a) non-redundant algorithm and b) redundant algorithm.

Fig. 4 Partial products.

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 5

Table 2 Comparative statistics of FMULT.

Parameter FMULT FMULT

Algorithm Non-redundant Redundant

Technology Nangate Open cell library 45nm Nangate open cell library 45nm

Area (A) [µm2] 13904 18631
Delay (T) [ns] 1.94 0.40

AT2 [mm2
.ns2] 0.052 0.002

Power (Dp) [mW] 0.592 2.734

Fig. 5 Addition of partial product.

Table 3 Comparison of BU

FMULT FFAS
Delay

[ns]

Area

[µm2]

AT2

[mm2.ns2]

Power

(Dp) [mW]

AT2Dp

[mm2.ns2.mW]

Non-redundant Non-redundant 3.44 23910 0.282 2.80 0.792
Non-redundant Redundant 3.46 25038 0.299 3.48 1.043

Redundant Non-redundant 3.13 26669 0.261 4.71 1.230

Redundant Redundant 3.06 27606 0.258 5.11 1.320

Fig. 6 Radix-2 Butterfly Unit using

FFAS and Modified Booth FMULT.

4 Butterfly Unit

 Authors had already presented BU design in [9].

Discrete addition, subtraction unit in [9] is replaced by

FFAS. The complex multiplier in [9] is replaced by

FMULT using the modified booth algorithm. With the

same operational methodology as stated in [9], Fig. 6

shows the proposed BU design. For stage 1

computation, W8
0 is 1. Sample inputs are added and

subtracted. This operation is initiated by T = 00. Sum is

available at output R and difference at output I.

 For stage 2 computation, W8
2 = (e–j2π/8)2 = –j input

sample is subtracted from zero and multiplied with -1 to

produce computation at output I. This multiplication is

selected by asserting T = 01. Similarly at stage 3,

computation with W8
1 = (e–j2π/8)1 = 0.707–j0.707 and

W8
3 = (e–j2π/8)3 = –0.707–j0.707 is computed by asserting

T=10 and T=11 respectively. The real part of the

complex multiplication is available at output R and

imaginary part of multiplication at output I.The

combination of non-redundant and redundant algorithm

based FFAS and FMULT are used in BU to gives the

four design types. These BU designs are synthesized

and placed using Mentor-Graphics-Oasys for 45nm

technology of nangate open cell library. The area and

delay comparison of these designs are tabulated in

Table 3.

 BU design based on redundant algorithm causes a

delay of 3.06ns, an area of 27606µm2, and dissipates

5.11mW power. BU design based on non-redundant

algorithm causes a delay of 3.44ns, an area of

23910µm2, and dissipates 2.80mW power. BU design

comprising FMULT based on non-redundant and FFAS

based on redundant algorithm cause the delay of 3.46ns,

an area of 25038µm2, and dissipates 3.48mW power. BU

design comprising FMULT based redundant and FFAS

based on non-redundant algorithm causes the delay of

3.13ns, an area of 26669µm2, and dissipate 4.71mW

power. The hardware cost metric is represented by the

product of AT2 and power Dp. The comparative table

shows that the BU design based on the redundant

algorithm gives the minimum latency whereas BU

design based on the non-redundant algorithm exhibits

minimum area. Also the power dissipation is lower in

BU design based on the non-redundant algorithm with

the lowest hardware cost metric of 0.792.

5 Evaluation and Comparison

 The proposed BU designs are verified for

functionality using Xilinx 14.7. Table 4 shows the

logical hierarchical details of placement in Oasys. BU

Designs based on the non-redundant algorithm are

reported in [3, 5, 9]. The work reported in [3] has a two

fused dot product and two fused addition-subtraction

unit. This work has 47489µm2 area and latency of

4.00ns. Later on, the smallest BU based on the non-

redundant algorithm is presented in [5] with a five

operand adder and a two dot products for one halve of

computational element. Hence for entire BU

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 6

Table 4 Logical hierarchical details of BUs placement in Oasys Comparison of BU

Module

Non-redundant algorithm
FMULT: Non-redundant

FFAS: Redundant

FMULT: Redundant

FFAS: Non-redundant
Redundant algorithm

No. of cells

Cell area

[µm2]

No. of cells
Cell area

[µm2]
No. of cells

Cell area

[µm2]
No. of cells

Cell area

[µm2]

Top (BU) 3971 5373 4429 5791 7957 8538 8471 9015

FFAS 915 1040 1373 1458 915 1040 1429 1518

FMULT x 2 2712 4026 2712 4026 6698 7190 6698 7190
Mux 4:1 x 4 344 308 344 308 344 308 344 308

Table 5 Comparison of BU.

 Proposed BU Proposed BU [3] [5] [6] [9]

Technology
Nangate open

cell 45nm lib.

Nangate open

cell 45nm lib.

45nm Bulk CMOS

standard lib.

Nangate open

cell 45nm lib.

STM CMOS 90nm

lib.and scaled to 45nm

Nangate open

cell 45nm lib.

Algorithm Non-redundant Redundant Non-redundant Non-redundant Redundant Non-redundant

Area (A) [µm2] 23910 27606 47489 25182 93836 22364

Delay (T) [ns] 3.44 3.06 4.00 3.70 2.59# 4.56
AT2 [mm2.ns2] 0.282 0.261 0.759 0.344 0.629 0.465

Power (Dp) [mW] 2.80 5.11 – – – 2.43

AT2Dp [mm2.ns2.mW] 0.792 1.32 – – – 1.13

Extra logic is required to convert non-redundant form into redundant form and vice versa. The delay of this logic is not included in

design.

– Power not given.

computational flow two sets of five operand adder and

two multipliers are required. This work consumes

25182µm2 area with the latency of 3.70ns. Authors have

reported the BU design in [9] with two floating point

adder and three floating point multiplier. This BU

design is also synthesized and placed using Mentor-

Graphics–Oasys for 45nm technology of nangate open

cell library. This design has delay of 4.56ns, consumes

22364µm2 area, and dissipates 2.43mW power. The

proposed BU design reduces the latency by 24.56% at

the additional cost of 6.46% in area and dissipates

13.21% more power as compared with the authors’

previous work [9]. However it is worth mentioning that

the proposed BU design has lower hardware cost metric

and AT2 complexity. The redundant algorithm based BU

is reported in [6] with three operand adder and a two dot

products for one halve of computational element. Hence

for the entire BU computational flow two sets of three

operand adder and two multipliers are required. This

work consumes 93836µm2 (scaled to 45nm) area with

the latency of 2.59ns. The output of this work is in

redundant form. Hence the redundant to non-redundant

converter is required which propagates the carry and

additional delay of O(log n). Also redundant logic

doubles the space of the storing element. However the

proposed BU design has single FFAS and two FMULT

to compute two halves of computational stage.

 Table 5 shows the comparison of proposed BU based

on THE non-redundant and redundant algorithm with

the previous reported BU designs [3, 5, 6, 9]. The

proposed BU design based on non-redundant algorithm

reduces area and delay by 5.05% and 7.02%

respectively as compared with the previously reported

work [5]. Similarly BU design based on redundant

algorithm reduces delay by 17.29% with the additional

cost of the increased area by 9.26%. However AT2

complexity of both proposed BUs is lower as compared

with previous work [3, 5, 6].

6 Conclusion

 The BU design proposed in this paper is used to

compute all stages of radix-2, 8 point FFT with the

reduced arithmetic elements. Twiddle constants are

embedded in the design and selected as per the

computation stage which saves the loading time from

the lookup table or the memory element. Sharing logic

is used to save the area. The BU design based on the

non-redundant algorithm consumes less area and

dissipates less power as compared with BU design

based on the redundant algorithm at additional latency.

The BU design based on the non-redundant algorithm

saves the area by 5.05% and reduces the latency by

7.02% and BU design based on redundant algorithm

reduces the latency by 17.29% at the cost of the

additional area of 9.62% as compared with the previous

fastest and smallest reported BU design.

References

[1] X. Guan, Y. Fei, and H. Lin, “Hierarchical design

of an application-specific instruction set processor

for high-throughput and scalable FFT processing,”

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 20, No. 3, pp. 551–563, Mar.

2012.

[2] L. Wanhammar, DSP integrated circuits. San

Diego, CA, USA: Academic, 1999.

[3] E. E. Swartzlander and H. H. Saleh, “FFT

implementation with fused floating-point

operations,” IEEE Transactions on Computers,

Vol. 61, No. 2, pp. 284–288, Feb. 2012.

ASIC Design of Butterfly Unit Based on Non-Redundant and

… P. Kulkarni et al.

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 7

[4] J. Sohn and E. E. Swartzlander, “Improved

architectures for a fused floating-point add-subtract

unit,” IEEE Transactions on Circuits and Systems I:

Regular Papers, Vol. 59, No. 10, pp. 2285–2291,

Oct. 2012.

[5] A. Kaivani and S. B. Ko, “Area efficient floating-

point FFT butterfly architectures based on multi-

operand adders,” Electronics Letter, Vol. 51, No. 2,

pp. 895–897, Jun. 2015.

[6] A. Kaivani and S. B. Ko, “Floating-point butterfly

architecture based on binary signed-digit

representation,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 24, No.3,

pp. 1208–1211, Mar. 2016.

[7] K. Schneider and A. Willenbücher, “A new

algorithm for carry free addition of binary signed

digit numbers,” in IEEE 22nd Annual International

Symposium on Field-Programmable Custom

Computing Machines, pp. 44–51, 2014.

[8] K. C. Chang, Digital systems design with VHDL

and synthesis: An integrated approach. IEEE

Computer Society, 1999.

[9] P. Kulkarni, B. G. Hogade, and V. Kulkarni,

“Designing of radix-2 butterfly for digital signal

processor for FFT computation,” in Information and

Communication Technology for Intelligent Systems,

Springer, Singapore, pp 603–610.

[10] K. K. Parhi, VLSI digital signal processing systems:

Designs and implementation. John Wiley & Sons,

1999.

[11] S. R. Kang, J. P. Wang, and C. Y. Guo, “Modified

booth multipliers with regular partial product array,”

IEEE Transactions on Circuits and Systems-II:

Express Briefs, Vol. 56, No. 55, pp. 404–408, May

2009.

P. Kulkarni received B.E. (Electronics)

degree from NMU Jalgoan in 1997 and

completed his M.E. (Electrical with

Control System) degree from V.J.T.I

Mumbai, University of Mumbai in 2005.

He is currently working towards the Ph.D.

degree in Electronics at Terna

Engineering College affiliated to

University of Mumbai. His present

research interest is in VLSI to design DSP processors.

B. Hogade received the B.E.

(Electronics) degree from Marathwada

University in 1991, M.E. (Power

Electronics) degree from Gulbarga

University in 1999, and Ph.D. degree in

2014 from NMIMS, Mumbai. His Ph.D.

research focused on the smart antenna for

wideband wireless communication. He is

also the supervisor for research scholars

in the University of Mumbai. His present research interest is in

antennas, wireless communication, and power electronics.

V. Kulkarni received the B.E.

(Electronics) degree from NMU Jalgoan

in 2002 and completed M.E. (Electronics)

degree at Terna Engineering College

affiliated to the University of Mumbai.

Her present research interest is in the

embedded system.

© 2021 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

license (https://creativecommons.org/licenses/by-nc/4.0/).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Fused Floating Point Addition-Subtraction Using Redundant and Non-Redundant Algorithm
	3 Floating Point Multiplier Using Redundant and Non-Redundant Algorithm
	4 Butterfly Unit
	5 Evaluation and Comparison
	6 Conclusion
	References

