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Abstract: Fast Fourier Transform (FFT) processors employed with pipeline architecture 

consist of series of Processing Elements (PE) or Butterfly Units (BU). BU or PE of FFT 

performs multiplication and addition on complex numbers. This paper proposes a single BU 

to compute radix-2, 8 point FFT in the time domain as well as frequency domain by 

replacing a series of PEs. This BU comprises of fused floating point (FP) addition-

subtraction (FFAS) and modified booth algorithm based floating point 

multiplier (FMULT). BU performs all arithmetic operations in floating pointform to 

overcome the nonlinearities available in fixed word length (FWL). FP arithmetic is slower 

as compared with FWL. To improve the speed of operation, symmetrical property of 

twiddle constant is used and they are embedded in the BU. BU outputs two halves of 

computation simultaneously with a single FFAS and two FMULT. BU design is 

synthesized, placed and routed for 45nm technology of nangate open cell library. 

Synthesized results show that proposed BU consumes 23910µm2 area with latency of 

3.44ns which are 5.05% smaller in area, 7.02% faster and replaces a set of two five operand 

adder and two multipliers by a single FFAS as compared with previously reported smallest 

work. 
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1 Introduction1 

AST Fourier Transform (FFT) processors are widely 

used in wireless communications, entertainment 

devices, biomedical field, image processing, etc. In the 

past decade, FFT processors were implemented with 

pipeline architectures. They consist of a series of 

processing elements (PE). PE has computational and 

data storing element. 

   Computational elements known as the butterfly 

unit (BU) are responsible for performing arithmetic 

operations. 
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   In most cases, memory is used as a storing element. In 

N point FFT, log2N computational stages, N load, and N 

store operations are available. Therefore total 2N× log2N 

data access for entire dataflow is associated and 

degrades the performance of FFT computation. 

   The performance of large Point FFT was improved by 

splitting into small independent computation [1]. To 

implement the hardware of BU, it is important to select 

appropriate word length, data representation form, and 

arithmetic algorithm. Short word length results in less 

power consumption, smaller chip area, and faster 

computation [2]. Fixed point form or finite word length 

(FWL) is the popular choice to represent the data for its 

simplicity but introduces the nonlinearities in terms of 

overflow rounding, aliasing, and coefficient errors [2]. 

Data represented in floating point number, overcomes 

these nonlinearities but slows down the processing time. 

In spite of the sluggish nature of floating point numbers, 

various BUs were proposed with improved speed and 

reduced area of consumption in application specific 

integrated circuit (ASIC) designs. Area reduction by 

sharing common logic is suggested in [3]. Dual path 
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pipeline [4], merging of the operand/multi operand 

adder [5], and carry limited addition [6] was mostly 

suggested in BU architectures. Carry limited addition 

uses the redundant arithmetic algorithm. To perform the 

arithmetic operation in the redundant algorithm, non-

redundant binary numbers are converted into redundant 

form. This conversion of non-redundant form to 

redundant form is free from carry propagation, but 

redundant to the non-redundant conversion of binary 

numbers introduces carry propagation. However carry 

free/carry limited addition [7] increases interconnecting 

wires by increasing the number of input-output lines of 

the arithmetic module. These lines also contribute to the 

latency in design. The multi operand adder introduces 

the carry propagation. 

   This paper proposes a BU for radix-2, 8 point small 

independent computation in time domain as well in the 

frequency domain. The novelty of this BU is that it 

replaces a series of PEs and computes two halves of the 

computation simultaneously. This paper demonstrates 

architecture of BU based on redundant, non-redundant 

algorithm and combination of them. The redundant 

algorithm is used to perform carry free addition. Here 

the non-redundant operand is converted into redundant 

form before addition. The sum of this adder is again 

converted into the non-redundant form before applying 

to the next logic. This conversion saves the width of the 

internal data bus and also helps to reduce the width of 

the storing element. 

   This paper compares BU design based on the 

redundant and non-redundant algorithms and proposes a 

BU suitable to compute radix-2, 8 point FFT. All 

floating-point arithmetic operations described here are 

based on the algorithm stated in [8]. 16 bit simple 2’s 

complement form is used to represent the data as stated 

in [9]. The paper briefs on the following: 

1. Floating point addition-subtraction (FFAS) using 

the non-redundant and redundant approach. 

2. Floating point multiplier (FMULT) using the non-

redundant and redundant approach. 

3. BU designs for radix-2, 8 point FFT computation 

based on the non-redundant algorithm, redundant 

algorithm, and combination of them. 

 

2 Fused Floating Point Addition-Subtraction Using 

Redundant and Non-Redundant Algorithm 

   To perform the addition on two floating numbers, the 

following steps are followed. 

1. Exponent comparator logic compares exponent 

of two floating point numbers, X and Y. XEXP, 

YEXP represents exponents and  XMAN, 

YMAN represents the mantissa of X and Y 

respectively. Comparator takes the difference of 

two exponents and records the difference in 

terms of shift count. Comparator also asserts the 

BIGX to indicate that XEXP is greater than 

YEXP. Greater exponent is assigned as exponent 

of sum in case of inequality of the exponents. 

2. Mantissa multiplexer (mux) insert the implied bit 

(~sign bit) next to the leading sign bit of 

mantissa. The implied bit is zero when the 

floating point number is zero. Mantissa mux 

passes the mantissa of the number having smaller 

exponent to right barrel shifter and mantissa of 

number having greater exponent to the binary 

adder. 

3. Right barrel shifter, shifts the mantissa of 

number having smaller exponent to right by shift 

count provided by exponent comparator. 

4. The binary adder adds the two mantissas and 

outputs the sum. 

5. The leadsign logic checks the sign of sum. It also 

counts the numbers of leading sign bits.  

6. Left barrel shifter aligns the sum by shifting it to 

left equal to the count of leading sign bits.  

7. Adjust logic, normalizes the result by verifying 

underflow, overflow, and zero conditions. In 

case of overflow of sum, the sum is set to the 

most positive/negative value.  The underflow of 

the sum is set to zero. Adjust logic packs the 

exponent and mantissa to result the sum of 

floating point number. 

   Similarly the subtraction of two floating point number 

is performed by using 2’s complement. The decoder 

logic separates the minuend and subtrahend. 2’s 

complement of subtrahend is obtained before the 

addition. 

   In order to save area, common logic i.e. exponent 

comparator, mantissa mux and right barrel shifter are 

shared in FFAS. Authors have used the non-redundant 

and redundant algorithms to perform the addition only. 

Fig. 1(a) shows FFAS based on the non-redundant 

algorithm and Fig. 1(b) shows the redundant algorithm 

used for addition in FFAS. The redundant algorithm 

performs the carry free addition using binary signed 

digit (BSD) adder as stated in [6]. Each binary bit in 

non-redundant form is encoded into redundant 

form (BSD) before the addition. Binary to BSD 

converter entity encodes non-redundant number into 

redundant number using neg-pos encoding similar to [7, 

10]. The BSD adder results the sum in redundant form. 

This sum is again converted into non-redundant form 

using the same neg-pos decoding as stated in [7, 10]. 

This conversion process restricts the number of 

interconnecting wires (internal bus width) to carry the 

redundant number in the entire flow. The redundant to 

non-redundant converter is shown in Fig. 2. Radix-2 

binary number X is represented by (1). 
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where X+ and X– are the bits of redundant number and
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(a) (b) 

Fig. 1 FFAS using a) non-redundant algorithm and b) redundant algorithm. 
 

 

Table 1 Comparative statistics of floating point addition and subtraction. 

Parameter Discrete addition–subtraction FFAS FFAS 

Algorithm Non-redundant Non-redundant Redundant 

Technology Nangate open cell library 45nm Nangate open cell 

library 45nm 

Nangate open cell 

library 45nm 

Area (A) [µm2] 11422 10330 11944 

Delay (T) [ns] 1.47 1.56 1.57 

AT2 [mm2   ns2] 0.024 0.025 0.029 
 

Fig. 2 Redundant to non-

redundant converter. 

 

its equivalent non-redundant binary X is represented 

by (2), where Cin is the previous carry. This converter 

propagates the carry CO for the next leading bit 

conversion. This contributes the overhead of O(log n). 
 

  inX X X C     (2) 
 

   Verilog code of FFAS using non-redundant and 

redundant algorithm is synthesized and placed using 

Mentor-Graphics-Oasys for 45nm technology of 

nangate open cell library. Authors have also synthesized 

the verilog code of the discrete design of floating point 

addition and subtraction using non-redundant algorithm. 

In discrete logic, common logic i.e. exponent 

comparator, mantissa mux, and right barrel shifter are 

not shared. Operating conditions are set to typical 

values. Table 1 shows the synthesized results of 

comparative statistics of non-redundant and redundant 

algorithms of floating point addition and subtraction. 

Discrete addition-subtraction design consumes 

11422µm2 area with a delay of 1.47ns. Similarly FFAS 

design using non-redundant and redundant algorithm 

contributes area 10330µm2 and 11944µm2 respectively. 

FFAS design using non-redundant algorithm causes a 

delay of 1.56ns and FFAS in redundant algorithm 

contributes a delay of 1.57ns. FFAS design using non-

redundant algorithm saves the area by 9.56% as 

compared with discrete addition-subtraction performed 

in the non-redundant algorithm. However FFAS adds a 

penalty of 5.76% in latency. The FFAS design using the 

redundant algorithm contributes an additional 13.5% 

area as compared to the non-redundant algorithm. 

 

3 Floating Point Multiplier Using Redundant and 

Non-Redundant Algorithm 

   Multiplication of two floating point numbers is 

performed as per the steps mentioned below. The signed 

multiplication of mantissas is performed using the 

modified booth algorithm. 

1. Unpack logic separates the exponents and 

mantissas of floating point numbers. Exponents of 

these numbers are added separately. Also, implied 

bit is inserted in mantissas as described in FFAS. 

2. Booth encoder, booth decoders, and partial product 

formations are similar to [11]. 

3. Partial products are aligned to performed addition 
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on them. 

4. All bits of partial products are not contributing in 

generation of the final product. Hence they are 

ignored while performing addition of partial 

product. Only leading 16 bits out of 26 bits of the 

sum of the partial product are necessary. 

5. Product shift logic performs XOR operation on the 

16th and 15th bit of product as well as on the 15th 

and 14th bit of product to determine the number of 

bit position of the product to be shifted right. 

6. Normalization logic checks the overflow, 

underflow, and zero conditions similar to FFAS. It 

also packs the exponent and mantissa to give the 

final product of two floating point numbers. 

   Figs. 3(a) and 3(b) show the FMULT using the non-

redundant and redundant algorithm. The alignment of 

partial products and their addition are shown in Fig. 4 

and Fig. 5 respectively. The addition is performed using 

Wallace tree method. The adders are also tailored to 

ignore bits which are not contributing to the final 

product. 

   Verilog codes of FMULT using non-redundant and 

redundant algorithms are synthesized and placed using 

Mentor-Graphics-Oasys for 45nm technology of 

nangate open cell library. Table 2 shows the synthesized 

results comparative statistics of non-redundant and 

redundant algorithms of FMULT. 

   FMULT design using non-redundant and redundant 

algorithms contributes 13904µm2 and 18631µm2 area, 

respectively. FMULT design using the non-redundant 

algorithm causes a delay of 1.94ns and FMULT in 

redundant algorithm causes a delay of 0.40 ns. In 

FMULT partial products are added using seven adders. 

Adder based on non-redundant algorithm contributes 

carry propagation delay, whereas adder based on 

redundant algorithm performs the carry free addition to 

save the delay. Hence the FMULT design using the 

redundant algorithm saves the delay by 79.38% as 

compared with FMULT based on the non-redundant 

algorithm with 25.37% additional area. The area 

increases due to the conversion process of non-

redundant to redundant and vice-versa. Power analysis 

is also performed on both designs. FMULT using the 

redundant algorithm dissipates 2.734mW power 

whereas FMULT using the non-redundant algorithm 

dissipates 0.592mW power. 
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(a) (b) 
Fig. 3 FMULT using a) non-redundant algorithm and b) redundant algorithm. 

 

 
Fig. 4 Partial products. 
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Table 2 Comparative statistics of FMULT. 

Parameter FMULT FMULT 

Algorithm Non-redundant Redundant 

Technology Nangate Open cell library 45nm Nangate open cell library 45nm 

Area (A) [µm2] 13904 18631 
Delay (T) [ns] 1.94 0.40 

AT2 [mm2
.ns2] 0.052 0.002 

Power (Dp) [mW] 0.592 2.734 
 

Fig. 5 Addition of partial product. 
 

 

Table 3 Comparison of BU 

FMULT FFAS 
Delay 

[ns] 

Area 

[µm2] 

AT2 

[mm2.ns2] 

Power 

(Dp) [mW] 

AT2Dp 

[mm2.ns2.mW] 

Non-redundant Non-redundant 3.44 23910 0.282 2.80 0.792 
Non-redundant Redundant 3.46 25038 0.299 3.48 1.043 

Redundant Non-redundant 3.13 26669 0.261 4.71 1.230 

Redundant Redundant 3.06 27606 0.258 5.11 1.320 
 

Fig. 6 Radix-2 Butterfly Unit using 

FFAS and Modified Booth FMULT. 

 

4 Butterfly Unit 

   Authors had already presented BU design in [9]. 

Discrete addition, subtraction unit in [9] is replaced by 

FFAS. The complex multiplier in [9] is replaced by 

FMULT using the modified booth algorithm. With the 

same operational methodology as stated in [9], Fig. 6 

shows the proposed BU design. For stage 1 

computation, W8
0 is 1. Sample inputs are added and 

subtracted. This operation is initiated by T = 00. Sum is 

available at output R and difference at output I. 

    For stage 2 computation, W8
2 = (e–j2π/8)2 = –j input 

sample is subtracted from zero and multiplied with -1 to 

produce computation at output I. This multiplication is 

selected by asserting T = 01. Similarly at stage 3, 

computation with W8
1 = (e–j2π/8)1 = 0.707–j0.707 and 

W8
3 = (e–j2π/8)3 = –0.707–j0.707 is computed by asserting 

T=10 and T=11 respectively. The real part of the 

complex multiplication is available at output R and 

imaginary part of multiplication at output I.The 

combination of non-redundant and redundant algorithm 

based FFAS and FMULT are used in BU to gives the 

four design types. These BU designs are synthesized 

and placed using Mentor-Graphics-Oasys for 45nm 

technology of nangate open cell library. The area and 

delay comparison of these designs are tabulated in 

Table 3. 

   BU design based on redundant algorithm causes a 

delay of 3.06ns, an area of 27606µm2, and dissipates 

5.11mW power. BU design based on non-redundant 

algorithm causes a delay of 3.44ns, an area of 

23910µm2, and dissipates 2.80mW power. BU design 

comprising FMULT based on non-redundant and FFAS 

based on redundant algorithm cause the delay of 3.46ns, 

an area of 25038µm2, and dissipates 3.48mW power. BU 

design comprising FMULT based redundant and FFAS 

based on non-redundant algorithm causes the delay of 

3.13ns, an area of 26669µm2, and dissipate 4.71mW 

power. The hardware cost metric is represented by the 

product of AT2 and power Dp. The comparative table 

shows that the BU design based on the redundant 

algorithm gives the minimum latency whereas BU 

design based on the non-redundant algorithm exhibits 

minimum area. Also the power dissipation is lower in 

BU design based on the non-redundant algorithm with 

the lowest hardware cost metric of 0.792. 

 

5 Evaluation and Comparison 

   The proposed BU designs are verified for 

functionality using Xilinx 14.7. Table 4 shows the 

logical hierarchical details of placement in Oasys. BU 

Designs based on the non-redundant algorithm are 

reported in [3, 5, 9]. The work reported in [3] has a two 

fused dot product and two fused addition-subtraction 

unit. This work has 47489µm2 area and latency of 

4.00ns. Later on, the smallest BU based on the non-

redundant algorithm is presented in [5] with a five 

operand adder and a two dot products for one halve of 

computational element. Hence for entire BU 
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Table 4 Logical hierarchical details of BUs placement in Oasys Comparison of BU 

Module 

Non-redundant algorithm 
FMULT: Non-redundant 

FFAS: Redundant 

FMULT: Redundant 

FFAS: Non-redundant 
Redundant algorithm 

No. of cells  

Cell area 

[µm2] 

No. of cells 
Cell area 

[µm2] 
No. of cells 

Cell area 

[µm2] 
No. of cells 

Cell area 

[µm2] 

Top (BU) 3971 5373 4429 5791 7957 8538 8471 9015 

FFAS 915 1040 1373 1458 915 1040 1429 1518 

FMULT x 2 2712 4026 2712 4026 6698 7190 6698 7190 
Mux 4:1 x 4 344 308 344 308 344 308 344 308 

 
Table 5 Comparison of BU. 

 Proposed BU Proposed BU [3] [5] [6] [9] 

Technology 
Nangate open 

cell 45nm lib. 

Nangate open 

cell 45nm lib. 

45nm Bulk CMOS 

standard lib. 

Nangate open 

cell 45nm lib. 

STM CMOS 90nm 

lib.and scaled to 45nm 

Nangate open 

cell 45nm lib. 

Algorithm Non-redundant Redundant Non-redundant Non-redundant Redundant Non-redundant 

Area (A) [µm2] 23910 27606 47489 25182 93836 22364 

Delay (T) [ns] 3.44 3.06 4.00 3.70 2.59# 4.56 
AT2 [mm2.ns2] 0.282 0.261 0.759 0.344 0.629 0.465 

Power (Dp) [mW] 2.80 5.11 – – – 2.43 

AT2Dp [mm2.ns2.mW] 0.792 1.32 – – – 1.13 

# Extra logic is required to convert non-redundant form into redundant form and vice versa. The delay of this logic is not included in 

design. 

– Power not given. 

 

computational flow two sets of five operand adder and 

two multipliers are required. This work consumes 

25182µm2 area with the latency of 3.70ns. Authors have 

reported the BU design in [9] with two floating point 

adder and three floating point multiplier. This BU 

design is also synthesized and placed using Mentor-

Graphics–Oasys for 45nm technology of nangate open 

cell library. This design has delay of 4.56ns, consumes 

22364µm2 area, and dissipates 2.43mW power. The 

proposed BU design reduces the latency by 24.56% at 

the additional cost of 6.46% in area and dissipates 

13.21% more power as compared with the authors’ 

previous work [9]. However it is worth mentioning that 

the proposed BU design has lower hardware cost metric 

and AT2 complexity. The redundant algorithm based BU 

is reported in [6] with three operand adder and a two dot 

products for one halve of computational element. Hence 

for the entire BU computational flow two sets of three 

operand adder and two multipliers are required. This 

work consumes 93836µm2 (scaled to 45nm) area with 

the latency of 2.59ns. The output of this work is in 

redundant form. Hence the redundant to non-redundant 

converter is required which propagates the carry and 

additional delay of O(log n). Also redundant logic 

doubles the space of the storing element. However the 

proposed BU design has single FFAS and two FMULT 

to compute two halves of computational stage. 

   Table 5 shows the comparison of proposed BU based 

on THE non-redundant and redundant algorithm with 

the previous reported BU designs [3, 5, 6, 9]. The 

proposed BU design based on non-redundant algorithm 

reduces area and delay by 5.05% and 7.02% 

respectively as compared with the previously reported 

work [5]. Similarly BU design based on redundant 

algorithm reduces delay by 17.29% with the additional 

cost of the increased area by 9.26%. However AT2 

complexity of both proposed BUs is lower as compared 

with previous work [3, 5, 6]. 

 

6 Conclusion 

   The BU design proposed in this paper is used to 

compute all stages of radix-2, 8 point FFT with the 

reduced arithmetic elements. Twiddle constants are 

embedded in the design and selected as per the 

computation stage which saves the loading time from 

the lookup table or the memory element. Sharing logic 

is used to save the area. The BU design based on the 

non-redundant algorithm consumes less area and 

dissipates less power as compared with BU design 

based on the redundant algorithm at additional latency. 

The BU design based on the non-redundant algorithm 

saves the area by 5.05% and reduces the latency by 

7.02% and BU design based on redundant algorithm 

reduces the latency by 17.29% at the cost of the 

additional area of 9.62% as compared with the previous 

fastest and smallest reported BU design. 
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