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Abstract: Optimal placement and sizing of distributed renewable energy resources (DER) 

in distribution networks can remarkably influence voltage profile improvement, amending 

of congestions, increasing the reliability and emission reduction.  However, there is a 

challenge with renewable resources due to the intermittent nature of their output power. 

This paper presents a new viewpoint at the uncertainties associated with output powers of 

wind turbines and load demands by considering the correlation between them. In the 

proposed method, considering the simultaneous occurrence of real load demands and wind 

generation data, they are clustered by use of the k-means method. At first, the wind 

generation data are clustered in some levels, and then the associated load data of each 

generation level are clustered in several levels. The number of load levels in each 

generation level may differ from each other. By doing so the unrealistic generation-load 

scenarios are omitted from the process of wind turbine sizing and placement. Then, the 

optimum sizing and placement of distributed generation units aiming at loss reduction are 

carried out using the obtained generation-load scenarios. Integer-based Particle Swarm 

Optimization (IPSO) is used to solve the problem. The simulation result, which is carried 

out using MATLAB 2016 software, shows that the proposed approach causes to reduce 

annual energy losses more than the one in other methods. Moreover, the computational 

burden of the problem is decreased due to ignore some unrealistic scenarios of wind and 

load combinations. 
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Nomenclature1 

Indices: 

i, j Index of wind clusters 

p, q Index of cluster data 

f Index of lines 

g Index of generation-load scenarios 

b Index of buses 
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w Index of wind power clusters 

kw Index of load clusters associated with w-th 

wind power clusters 

Functions: 

d(.) Distance between two data points 

U(.) Unit step function 

max(.) Maximum-value function 

min(.) Minimum-value function 

Constants: 

Nb Total Number of buses 

Nf Total Number of feeders 

NC Total Number of generation-load scenarios 

vci Cut-in speed of wind turbine 

vco Cut-out speed of wind turbine 

vr Rated speed of wind turbine 

Prated Rated power of wind turbine 

gp DG penetration factor 
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W Number of wind power clusters 

itmax Maximum number of iterations 

Npop Number of population 

Pbest The best position ever visited by a particle  

Gbest The global best position in the entire swarm 

ω The inertia weight 

c1, c2 Acceleration constants 

Vmax Upper limit of bus voltage magnitude 

Vmin Lower limit of bus voltage magnitude 

If
max Upper limit of current magnitude of feeder f 

Variables: 

v Wind speed 

Vb Voltage magnitude of bus b 

If Current magnitude of feeder f 

x A data in a cluster 

dp
max Maximum distance between data of point p 

and other points of the same cluster 

Ci The cluster number i 

Ni Number of data at cluster i 

icd  Average of maximum distance of all data at 

cluster i 

mi Center point of cluster i 
min

icd  Minimum distance between two cluster 

centers related to an IPSO particle. 

Vg,b Voltage of bus b at scenario g 

Vb
E Expected voltage of bus b 

Pr(Cg) Probability of scenario g 

glossP  Annual network energy loss at scenario g 

P(v) Output power of wind turbine at wind speed v 

PD,b Load demand at bus b 

PDG,b DG installed capacity at bus b 

NDG,b Number of DG units installed at bus b 

 

1 Introduction 

UE to the increasing use of electricity in 

distribution networks, the utilization of distributed 

generations (DGs) has increased. The use of DGs brings 

generation resources closer to the load points resulting 

in power quality improvement, enabling the 

management of lines’ congestion, and reducing the 

energy losses by optimum power scheduling [1]. To 

achieve the aforementioned targets, the optimum sizing 

and placement of DGs in distribution networks are 

essential. 

   Generally, DGs can be divided into two groups. The 

first one is dispatchable units such as conventional fossil 

fuel DGs with schedulable output powers. The second 

group is renewable DGs with non-dispatchable output 

powers, which depend on the stochastic behavior of 

wind speed or solar irradiance. 

 

1.1 Background and Motivation 

   The placement issues of dispatchable DGs have been 

investigated in many types of research. Dynamic 

programming [2] and simulated annealing algorithm [3] 

have been used to find the optimum placement and 

sizing of gas-fired DGs aiming at loss reduction, 

reliability and voltage profile improvement. Mixed-

integer linear programming [4] and genetic 

algorithm [5] have also been used for dispatchable DGs’ 

sizing and allocation in a distribution system to 

maximize the total system benefit. However, in the 

mentioned researches, the maximum capacities of DG 

units and the peak demand value have been considered 

as the output power of DG units and the distribution 

system load, respectively. Considering the peak level of 

demand for entire periods of planning leads to 

calculating the power loss more than the actual one. 

Since electricity consumptions are not fixed at peak 

value in all periods, the network losses are lower than 

the calculated one and as a result, placement and sizing 

of DGs are not optimally carried out. 

   In [6], the network load has been divided into three 

levels: low, intermediate and high; then, the problem of 

locating and sizing fossil fuels DGs has been solved to 

reduce losses and increase the voltage stability. 

Although the use of three-level load provides a more 

accurate calculation of network losses, in practice, due 

to the different levels of network consumptions, the 

estimated losses and costs are higher than the actual 

value. In [7], a multilevel load duration curve (LDC) 

has been considered. Then, the problem of location and 

sizing of fixed DGs has been carried out by the 

triangular fuzzy number method aiming at reducing 

losses and improving the voltage profile. 

   Among the various types of DGs, renewable DGs are 

considered by many countries in terms of numerous 

benefits if compared to fossil fuels ones. Renewable 

energy such as wind and solar is not just a short-term 

solution to energy needs, but a continuous and endless 

energy source with few environmental impacts. 

   Unlike fossil-fuelled DGs, the available capacity of 

renewable DGs is variable. In addition to the high cost 

of investment, the issue of the uncertain nature of 

primary resources is a challenge to use renewable DGs. 

An intermittent generation goes back to the random 

nature of wind speed and solar irradiance which causes 

the inability of renewable DGs to supply a stable 

output [8]. 

   Problems of determining the type, size, and location 

of renewable DGs aiming at the capital cost [9, 10], 

minimizing losses [11, 12], and expected energy not 

served [13] are addressed by researchers. 

   To consider the stochastic nature of renewable 

energies, the uncertainty associated with their output 

powers and available capacities should be modeled with 

DG placement and sizing problems. 

   In [9], the problem of DGs placement and sizing in a 

microgrid has been formulated by modeling wind speed, 

solar irradiance, and load demand by Weibull, beta, and 

normal distribution functions, respectively. The problem 

has been solved by the imperialist competitive 

algorithm and obtained results have been compared with 

the Monte Carlo simulation method. 

D 
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   In [10], an optimal location and sizing of renewable 

DGs aiming at minimizing total cost has been modeled 

by the Monte Carlo method in which the wind speed 

and load demand are respectively presented by Weibull 

and normal distribution functions. 

   In [14], a stochastic distribution feeder reconfiguration 

problem for systems with wind turbines and fuel cells 

has been presented. An interactive fuzzy satisfying 

optimization algorithm based on adaptive particle 

swarm optimization (APSO) has been employed to 

solve the problem with multi-objective functions 

including the total electrical energy losses, the cost of 

electrical energy generated, the total emissions 

produced, and the bus voltage deviation. A probabilistic 

power flow based on the point estimate method has 

been used to include uncertainty in the wind power 

output and load demand, concurrently. 

   In [15], the uncertainty of renewable generations 

within the distribution reconfiguration problem has been 

modeled by Monte Carlo simulation. In [16], an optimal 

location and sizing of renewable DGs aiming at 

minimizing total power losses has been solved by the 

ant lion optimization algorithm. Using loss sensitivity 

factors, the most candidate buses for installing DG has 

been firstly introduced and the optimization algorithm 

has been used to deduce the locations and sizing of DG 

from the elected buses. 

   The aforementioned references also considered one 

level (i.e. peak load) or three-level LDC that potentially 

leads to calculating the loss value much higher than the 

real one. Also, in a real case that the load demand is low 

and the renewable generation is high, the 

aforementioned methods may lead to violation of the 

thermal limits of lines and/or voltage magnitude limits 

of buses. 

   The wind turbine placement problem considering 

optimal power flow has been presented in [17] in which 

the total energy losses have been minimized and the net 

present value associated with the wind turbine 

investment has been minimized. 

   In [11, 12], the problem of DG placement and sizing 

has been formulated as mixed-integer nonlinear 

programming aiming to minimize the annual energy 

losses. The proposed method of [11, 12] is based on 

producing a probabilistic generation-load model that 

combines all possible operating conditions of the 

renewable DG units with their probabilities. In [11], the 

probability of the wind speed states and the load 

demand states are calculated while they have been 

assumed to be independent (uncorrelated). In other 

words, the diurnal and seasonal components of the wind 

speed and the load demand are neglected. Based on this 

assumption, the probability of any combination of wind 

power and load demand can be obtained by multiplying 

the two related probabilities. In this method, for each 

wind generation state, all load states are considered to 

have the same probability while in practice some load 

states cannot occur for a given amount of wind capacity. 

As a result, ignoring the correlation between the wind 

generation states and the load states will increase the 

computational burden and so not provide the optimal 

solution. 

   In [18], an optimal sizing and placement method of a 

wind farm in a radial distribution network has been 

presented in which the impacts of forced outages of 

wind turbines have been considered. To assess this 

reliability criterion, a sequential Monte Carlo 

simulation-based technique has been implemented to 

evaluate the performance of the wind turbines with 

varying capacities at different locations in the 

distribution network. However, the uncertainty 

associated with wind power generation has not been 

taken into account. A planning method for wind 

turbines and photovoltaic units based on improved 

Harris Hawks optimizer using Particle swarm 

optimization has been presented in [19]. The 

uncertainties corresponding to the intermittent behavior 

of photovoltaics and wind turbines power generations 

have been taken into consideration using probability 

distribution functions. The objective functions included 

power loss reduction, voltage improvement, system 

stability, and yearly economic saving. However, the 

correlation between renewable generation and load 

demand has not been considered. In [20], multi-

objective particle swarm optimization along with 

preference order ranking-based approach for placement 

and sizing of wind and solar-based generation units has 

been proposed. Uncertainty in solar irradiance, wind 

speed, and load have been modeled using Monte Carlo 

simulation where different scenarios have been 

generated. A priority vector has been implemented for 

distributed generations and capacitor placement using 

the analytic hierarchy process to reduce the search space 

and computational time. 

   In [21], a method for optimal sizing and placement of 

battery energy storage systems in the distribution 

network aiming at minimizing total cost and 

maximizing reliability index has been proposed. Also, 

Monte Carlo simulation has been implemented to model 

the uncertainties associated with load demand as well as 

the output power of the wind turbines and photovoltaic 

units. In [22], a two-stage coordinated method for 

placement of distributed generators such as wind 

turbines in a microgrid considering the uncertainties 

corresponding to renewable energy distributed resources 

has been proposed. The placeman problem has been 

modeled as a two-stage coordinated stochastic 

optimization model, where the long-term distributed 

generator investment has been determined at the first 

stage and operation decisions have been assigned at the 

second stage. In [23], a probabilistic method for optimal 

placement and sizing of wind turbines in distribution 

networks has been assessed. The objective functions 

were to reduce loss and improve voltage profile and 

stability index were the uncertainty of wind generation 

and the network demand has been modeled based on 
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Monte Carlo simulation. The result evidenced that the 

probabilistic method was more realistic and accurate 

than the deterministic method due to consideration of 

load and wind generation intrinsic changes with all 

possible probabilities. 

   In [24], an optimal wind turbine placement method 

based on the generation of pseudo-random numbers has 

been presented. However, the uncertainty corresponding 

to wind speed and load demand has not been modeled. 
   In all previous studies of wind turbine placement, no 

attention has been paid to the correlation between wind 

power generation and load demand. But as it turns out, 

there is a significant correlation between these two 

parameters that can help make the placement problem 

results more realistic. In [25], a security-constrained 

unit commitment method considering load and wind 

uncertainties has been presented. Also, load and wind 

variability correlations in constructing uncertain 

intervals aiming at eliminating unlike-to-happen 

scenarios have been taken into account. 
   On the other hand, considering all possible states of 

wind generation and load demand without considering 

their correlation, the volume of input data in the form of 

scenarios is very high. It leads to the burden of the 

computation process where its convergence becomes 

more difficult. 

 

1.2 Contributions 

   In this paper, a new approach for modeling the 

uncertainty associated with the load demand and wind 

generations, considering their correlation is presented. 

In the proposed method, the clustering of wind 

generations and load demands is carried out by the k-

means method and the planning optimization is solved 

by particle swarm optimization (PSO). To this end, a 

software has been developed in MATLAB 2016 

programming environment. In the first step of the 

software, wind generation data are clustered and in the 

second step, all load data associated with each wind 

generation group are clustered. Since considering the 

correlation between wind generations and load demands 

significantly reduces the number of clusters, the size 

and computation burden of the problem will be 

decreased. Then, by a contribution of different clusters, 

the optimal placement of DGs with the aim of reducing 

annual energy losses is achieved. The main 

contributions of the paper are listed as follows: 

 To propose a new method to model the correlation 

between wind generation data and demand data by 

creating realistic scenarios. 

 To implement the modified k-means clustering 

method by adopting an integer-based PSO (IPSO) 

algorithm with the k-means algorithm to achieve the 

optimum number of data clusters. 

 

1.3 Paper Organization 

   The rest of the paper is organized as follows: 

Section 2 describes the proposed hybrid wind 

generation and load demand modeling approach. 

Section 3 explains the objective function and constraints 

of the DG planning problem. Section 4 presents and 

discusses the results of the case study carried out by 

using real data to analyze the applicability of the 

proposed framework. Finally, Section 5 concludes the 

paper. 

 

2 The proposed Hybrid Wind and Load Modeling 

Approach 

   Usually, the capacity outage probability table (COPT) 

is used to model the available capacity of wind power 

plants. COPT contains the capacity levels of wind 

generations along with the probability of each level. To 

specify the number and consequently the probability of 

wind generation levels, data clustering algorithms are 

commonly used. Since there is a huge number of load 

data, load data clustering should be accomplished too. 

   In previous works, wind and load data clustering have 

been performed separately, assuming independent 

behavior of them [11, 12]. In this way, the probability of 

each wind capacity level is the same for all load levels. 

Since in practice some load levels do not occur for a 

given wind generation level, the accuracy of these 

methods is challengeable. To address this challenge, in 

this paper, at first the wind generation data are clustered 

to specify generation levels and related probabilities. 

Then associated load data of each generation level (i.e. 

the load data synchronized with the wind data of the 

cluster) are clustered. Using this method, the correlation 

between load and wind generation data is taken into 

consideration. In this approach, since all impracticable 

set of generation-load pairs are omitted, the number of 

generation-load pairs will be decreased. Also, the 

numbers of load levels associated with various 

generation levels will not be equal. 

   The proposed clustering approach of wind capacity 
 

Wind and 

load data

1
st
 Wind cluster 

and related load 

data

2
nd

 Wind cluster 

and related load 

data

Wth
 Wind 

cluster and 

related load data

.

.

.

.

.

1st  load 

cluster

k1
th  load 

cluster

1
st
  load 

cluster

kw
th  

load 

cluster

First step:

Wind data clustering

Second step:

Load data clustering

k2
th  

load 

cluster

1
st
  load 

cluster

. 

.
. 
.

. 

.
. 
.

. 

.
. 
.

L
o

ad
 c

lu
st

er
s 

re
la

te
d

 t
o

 t
h

e 
 1

st
 

w
in

d
 c

lu
st

er

L
o

ad
 c

lu
st

er
s 

re
la

te
d

 t
o

 t
h

e 
2

n
d
 

w
in

d
 c

lu
st

er

L
o

ad
 c

lu
st

er
s 

re
la

te
d

 t
o

 t
h

e 
W

th
 

w
in

d
 c

lu
st

er

 
Fig. 1 Wind and load data clustering approach. 
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and load data is depicted in Fig. 1. 

   In the first step of Fig. 1, the wind generation data are 

clustered in W levels, and then the associated load data 

of w-th generation level are clustered in kw levels. It is 

important to mention that kw (for w=1, 2, …, W), may 

have up to W different values while in previous works 

all kw were the same. 

 

2.1 Wind Power Clustering 

   The output power of a wind turbine can be formulated 

based on wind speed as described in (1) [11]. 
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   Regarding wind speed data, the associated turbine 

output powers are calculated and clustered. After 

calculating, the wind-generated powers are clustered in 

several clusters to decrease the computational burden. In 

this paper, the k-means clustering approach is used for 

data clustering [18]. In the k-means clustering 

algorithm, the number of clusters should be defined in 

advance. It is noted that the lower number of clusters 

may lead to loss of accuracy and on the other hand, the 

higher number of clusters may increase the 

computational burden and decreases the clustering 

advantages. Thus, to find the optimum number of data 

clusters, the IPSO method is used. 

   Each IPSO particle is a candidate solution for the 

number of data clusters. As the initial particles of the 

IPSO algorithm, several natural numbers in the closed 

interval between two and the maximum number of wind 

power data are randomly produced. These particles are 

candidate numbers for wind capacity clusters. For each 

particle, the same numbers of wind power data are 

randomly selected as the cluster centers. In each 

iteration of the k-means clustering algorithm, each wind 

power data is assigned to a cluster that has the minimum 

distance to the cluster center. After assigning all wind 

power data to clusters and for the next iteration of the k-

means algorithm, the average value of data in each 

cluster is selected as the new cluster center and again, 

the data assigning procedure is performed. Data 

clustering for each IPSO particle is stopped when there 

are no changes in cluster centers between two 

consecutive iterations. After stopping the k-means 

algorithm, the CS index is calculated for each IPSO 

particle as bellows [19]: 
 

 max

 

   

max ,     
q i

q p

p p q p i
x c

x x

d d x x x c




    

(2) 

max1
i

p i

c p

x ci

d d
N 

   (3) 

 min

 
min ,  

ic i j
j i

d d m m


  (4) 

min

i

i

ci

ci

d
CS

d




 (5) 

 

In (2) to (4), dp
max is the maximum distance between 

point p and other points of the same cluster. 

Additionally, 
icd  is the average value of dp

max of all 

points belonging to the i-th cluster. This value shows the 

diversity of the data of i-th cluster. Moreover, 
min

icd  is 

the minimum distance between the i-th cluster center 

and all other clusters’ center related to an IPSO particle. 

The index CS in Eq. (5) shows the ratio between the 

sum of 
icd  to the sum of 

min

icd  all related to an IPSO 

particle. The lower value of CS means the lower 

diversity of the clusters’ data and the higher distance of 

clusters’ centers at the same time. Therefore, the 

objective function of IPSO algorithm, as presented 

in (6), is to minimize the CS value as the minimum CS 

value particle is the most desirable particle. 
 

min
: min i

i

ci

ci

d
OF CS

d

 
 

 
 




 (6) 

 

   After calculating CS values for all particles in each 

IPSO iteration, the next position of particles is 

calculated based on particles personal and global best 

position and for the new particle set, the wind power 

data clustering is accomplished. Finally, when the 

stopping criterion of IPSO is achieved, the wind 

capacity data are clustered in an optimum number of 

clusters. It is noted that during the IPSO procedure and 

after updating particles’ position in each iteration, the 

non-integer particles are rounded to the nearest integer 

number. 

 

2.2 Load Demand Clustering 

   For each wind capacity cluster, the associated load 

data are clustered using the k-means clustering 

algorithm and IPSO optimization algorithm, as 

previously described, to produce the generation-load 

pairs. The probability of each generation-load pair is 

equal to the multiplication of their own probabilities. 

The flowchart of the combined wind generation-load 

data clustering is presented in Fig. 2. 

   As shown in Fig. 2, two subsections have been 

marked in two rectangles. The left subsection, 

surrounded by a dash-dotted rectangle, shows the wind 

generation clustering procedure and the right side one, 

surrounded by a dotted rectangle, shows the clustering 

procedure of load data related to each wind cluster.
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Fig. 2 Wind and load data clustering flowchart. 

 

3 Problem Formulation and Optimization 

Technique 

   In this paper, the objective function of the optimal 

allocation of wind turbines in distribution systems is to 

minimize the annual energy loss. In the following, the 

objective function (OF) and constraints are described. 

 

3.1 Objective Function 

   In order to compare the result of this study with 

previously published work, the same objective function 

as considered in [11, 12] is considered in this paper. 

Therefore the objective function of this paper is to 

minimize the annual energy loss that is formulated 

in (7): 
 

 
1

: min Pr 8760
cN

loss g g

g

OF P C


  
   
 





  (7) 

 

   The average value of power loss is equal to the sum of 

all generation–load scenarios’ power loss multiplied by 

their own probability. To achieve the annual energy loss 

in (7), the average value of power loss is multiplied 

by 8760. 

 

3.2 Constraints 

The constraints of each solution candidate are DG 

penetration limit, voltage magnitude limit of busses, and 

the current limit of lines. For each candidate solution, 

load flow is performed to obtain the voltage of buses 

and currents of lines in all scenarios. 

 

3.2.1 DG Penetration Limit 

   To avoid the difficulties raised by high DG 

penetration in distribution networks, such as protection 

problems, maximum DG installed capacity should be 

lower than a predefined value (gp) percentage of the 

maximum load of the network [20]. DG penetration 

limit is formulated as below: 
 

, ,

1 1

b bN N

DG b D b

b b

P gp P
 

    (8) 

 

3.2.2 Buses Voltage Magnitudes Limits 

   The voltage magnitude limit of buses is described 
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by (9). This constraint ensures that the voltage 

magnitudes remain within their permissible ranges. 
 

min max          b bV V V b N     (9) 

 

3.2.3 Lines Current Limits 

   Lines current in all situations should be less than the 

cable’s maximum allowable current (i.e. cable’s thermal 

limit). The Line's current limit is presented in (10). 
 

max              f f fI I f N    (10) 

 

3.3 Optimization Technique 

   In this paper, the application of the proposed 

uncertainty modeling approach, designated for the wind 

generation and load demand, is evaluated through 

determining the optimum size and location of the wind 

turbines within the distribution system in terms of an 

IPSO optimization problem. 

   It is noticeable that after updating the particles' 

position along with the IPSO procedure, non-integer 

particles are substituted by the nearest integer number. 

The flowchart of the wind turbines’ allocation is 

depicted in Fig. 3. 

 

4 Numerical Results 

   The presented problem of this paper aims to minimize 
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Fig. 3 Flowchart of the wind turbines’ allocation in the 
 

distribution system. 

the annual energy loss of the distribution system. 

Additionally, the results of the proposed method are 

compared with ones achieved by other methods in terms 

of accuracy as well as the computational burden. 

 

4.1 Simulation Data 

   To evaluate the effectiveness of the proposed method, 

the well-known IEEE 33-bus distribution test network, 

shown in Fig. 4, has been considered [21]. Since the 

hourly load data is needed for the studies of the paper 

and this data is not available for the IEEE 33-bus 

distribution test system, the real historical load data 

pertaining to a specific feeder of Iran's distribution 

network, located in Mazandaran province, has been 

used. Since the peak load of the mentioned feeder is 

8.73 MW and 5.40 MVAr, while the same data for the 

IEEE 33-bus distribution test system are 3.90 MW and 

2.30 MVAr [21], the maximum active and reactive 

powers of all nodes of the IEEE 33-bus test system are 

multiplied by 
8.73

3.90

 
 
 

 and 
5.40

2.30

 
 
 

, respectively. 

   Wind turbine characteristics are given in Table 1. 

   It is assumed that the wind turbines are operated under 

a unity power factor [11].  

   The IPSO parameters are given in Table 2. 

   In this case study, all busses are candidates for wind 

turbines installation. Thus, 33 decision variables are 

assigned to the candidate buses for DG installation. The 

structure of the IPSO candidate solution is presented in 

Fig. 5. 

 

01
02 03 04 05 06 07 08 09 10 11 12 13 1413 15 16 17 18

19 20 21

23 24 25

22

26 28 29 30 31 32 3327

 

Fig. 4 IEEE 33-bus test system. 

 

 
Table 1 Wind turbine characteristics. 

Parameter [unit] Value 

Rated power [MW] 0.66 

Cut-in speed [m/s] 4 

Rated speed [m/s] 14 

Cut-out speed m/s] 25 

 

 
Table 2 PSO algorithm parameters. 

Setting parameters Value 

Npop 100 

itmax 100 

c1, c2 1.4 
 0.72 
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... ...
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Fig. 5 Structure of the IPSO candidate solution. 

 

 
Fig. 6 Structure of the IPSO candidate solution. 

 
Table 3 Cluster data of available output power of each 
 

wind turbine. 

Cluster 

number 

The output power of the 

cluster center Probability [%] 

[kW] [pu] 

1 3.6 0.00548 41.21 

2 30.6 0.046 30.16 

3 78 0.11 6.54 

4 142.7 0.21 5.75 

5 210.8 0.32 6.06 

6 280.4 0.42 4.35 

7 352.48 0.53 2.93 

8 438.33 0.66 1.69 

9 543 0.82 0.78 

10 660 1 0.53 

 

   The maximum penetration of DG in the distribution 

system is set at 40% [22]. According to this limitation, 

the maximum installed capacity of the wind turbines in 

the network is 3.49 MW. As the nominated power of 

selected wind turbines is 660 kW, each variable in 

Fig. 5 can be an integer value in the range of [0, 5] 

while the sum of variables pertaining to a particle 

should not exceed 5. As a result, the maximum possible 

capacity for the wind turbine installation in each 

candidate bus, as well as the entire network, is obtained 

3.3 MW. 

 

4.2 Wind and Load Clustering 

   The wind speed data has been provided from wind 

speed measurements by 10-minutes intervals in a region 

of Iran. The wind speed is converted to the available 

power output based on the power-speed curve of the 

wind turbine, which is graphically depicted in Fig. 6. 

   As previously mentioned, the k-means clustering 

method is used to cluster the wind power data. The 
 

 
Fig. 7 Hourly load demand data in a year. 

 

 
Fig. 8 Wind-load clusters and their probability when their 
 

correlation is considered. 

 

resultant clusters pertaining to the available output 

power of each wind turbine are presented in Table 3. 

   The hourly load demand data of the mentioned region 

has been depicted in Fig. 7. 

   To cluster the load demand data, the load data 

corresponding to each wind cluster is firstly determined. 

Then, each group of load data is clustered via the k-

means method. The resultant wind-load clusters along 

with their occurrence probability are depicted in Fig. 8, 

in which the X-axis is related to the wind capacity with 

center of wind power clusters and the Y-axis is related 

to load demand; the probability of simultaneous 

occurrence of corresponding wind and load clusters are 

shown in Z-axis. 

   The wind-load clusters and their occurrence 

probability are also presented in Table 4. Regarding to 

Table 4 and Fig. 8, the total number of load and wind 

clusters are 43, in which 2 to 6 load cluster are 

designated to each wind cluster. The number of load 

clusters depends on the diversity of load demand data
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Table 4 Data of wind generation and their corresponding load demand clusters. 

Wind-load clusters probability [%] 
Load demand power Wind generation 

Cluster number 
Probability [%] Cluster center [kW] Probability [%] Cluster center [kW] 

0.25 0.4757 951.81 

41.2 3.6 

1 

24.26 58.80 1996.66 2 
12.66 30.68 3097.59 3 

4.14 10.04 5227.67 4 

0.13 0.46 953.5 

30 30.6 

5 

12.23 40.66 1843.36 6 
8.75 29.1 2494.438 7 

4.80 15.97 3271.06 8 

2.55 8.46 4426.84 9 
1.60 5.35 6067.78 10 

2.68 41.01 1887.73 

6.5 78 

11 

2.21 33.87 2742.44 12 
0.97 14.84 4197.15 13 

0.51 7.85 5959.64 14 

0.16 2.43 7662.84 15 

2.78 48.41 2063.43 

5.75 142.7 

16 
1.40 24.40 3001.09 17 

0.76 13.30 4307.07 18 

0.57 9.92 5939.83 19 
0.23 3.97 7561.96 20 

0.01 0.19 935.30 

6 210.8 

21 

2.07 34.27 1919.60 22 
2.20 36.35 2730.16 23 

1.24 20.53 4424.55 24 

0.52 8.66 6794.53 25 

0.05 0.53 935.30 

4 280.4 

26 

1.80 40.94 1959.95 27 

1.51 34.90 2706.06 28 
0.73 16.8 4303.87 29 

0.29 6.83 6806.16 30 

1.42 48.64 1875.60 

2.9 352.48 

31 

1.19 40.85 2530.67 32 
0.14 4.67 4089.37 33 

0.15 5.06 5031.47 34 

0.02 0.78 7264.22 35 

0.90 53.38 1854.43 

1.69 438.33 

36 

0.74 43.91 2437.55 37 

0.04 2.71 4785.656 38 

0.47 59.42 1833.35 
0.78 543 

39 
0.33 40.58 2349.40 40 

0.38 70.21 1861.16 

0.537 660 

41 

0.14 25.53 2312.29 42 
0.02 4.26 2712.39 43 

 

corresponding to the wind data in each wind cluster. 

   The difference of load clusters number in various 

wind clusters shows that the best number of generation–

load pair scenarios is not achieved by multiplying their 

own states number. Also the same for scenarios' 

probabilities. 

   The advantage of the proposed method is considering 

the correlation between the wind output power and load 

demand, resulting in realistic scenarios, that reduces the 

number of the scenarios and also the burden of 

computation. 

   To compare the result of the proposed method with 

the one in other clustering methods in which the wind 

output power and load demand are separately clustered, 

the hourly load demand has been separately clustered 

and the results have been given in Table 5. 

   According to Tables 3 and 5, if the correlation 

between wind power and load demand are 

neglected [11], the results are 80 clusters, which are 

depicted in Fig. 9 along with their occurrence 

probability. 

   In Fig. 9, the center of clusters and their probabilities 

are not the same as the ones given in Fig. 8 (or Table 4). 

By comparison, it can be concluded that: 1) the 

probability of each load cluster is not a constant value 

for all wind clusters; 2) some of the clusters created 

based on [11] has a zero probability of occurrence in 

practice. In addition, there are some clusters that have 

been neglected while they have a considerable 

probability of occurrence. For example, let consider the 

state of Fig. 9, in which wind power and load demand 

are 660 kW (i.e. 1 pu) and 6962.12 kW (i.e. 0.8 pu), 

respectively, with the probability of 1.31%. However, 

according to Table 4, the probability of this state is zero. 

Also, the state in which the wind power and load 

demand are 660 kW (i.e. 0.216 pu) and 7561.96 kW (i.e. 

0.87 pu) respectively, has the occurrence probability of 

0.23% in Table 4. However, in the probability 

multiplying 
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Table 5 Cluster data of load demand. 

Cluster 

number 

The demand of load cluster center Probability 

[%] [kW] [pu] 

1 954.01 0.10 0.53 

2 1723.70 0.19 21.7 

3 2079.243 0.24 25.6 

4 2565.40 0.29 22.5 

5 3227.88 0.37 13.5 

6 4238.10 0.48 8.9 

7 5511.828 0.63 4.8 

8 6962.12 0.8 2.47 

 

 
Fig. 9 Wind-load clusters and their probability without 
 

considering their correlation. 

 

method, the occurrence of this state is neglected. 

   Both of the above-mentioned situations may result in 

inaccuracy and errors for the optimum solutions of DG 

sizing and placement problem. Nevertheless, in the 

proposed method, these situations are abandoned. 

 

4.3 Wind Turbines Sizing and Allocation 

   To evaluate the efficiency of the proposed method, the 

wind turbines sizing and placement problem aiming at 

annual energy loss minimization has been carried out 

using the proposed method and the one presented 

in [11]. The obtained comparative results are presented 

in Table 6. To better evaluate of two methods, the 

annual energy loss has been also calculated based on the 

data given in Table 5 while no DGs are installed. In the 

second state simulation, the results are based on the 

method and objective function of [11] while the 

required data is given from the combination of data in 

Tables 3 and 5. The value of annual energy losses in the 

second and third states have been calculated based on 

the data given in Table 4. 

   The obtained results illustrate that the objective 

function and the annual energy loss values obtained via 

the proposed method are 25.76% and 12.5% less than 

the ones calculated in [11], respectively. 

   The voltage profiles of the network resulted by two 

methods have been drawn in Fig. 10. The voltage 
 

Table 6 Simulation results. 

 

 
(a) 

 
(b) 

Fig. 10 Voltage profile of the network in a) maximum voltage 
 

drop state and b) maximum voltage rise state. 

 

profiles correspond to the two clusters in which the 

maximum voltage drops and voltage rise occur. 

   In Fig. 10 (a), maximum voltage drop happens when 

the wind output power and load demand are 3.6 kW and 

5227 kW, respectively. Regarding the Fig. 10 (b), the 

maximum voltage rise occurs when the wind output 

power and load demand are 660 kW and 1800 kW, 

respectively. As shown, the voltage magnitudes are kept 

within the allowable limits in both methods. 

   The expected value of the voltage at the system buses 

in the two states of before and after installing the wind 

turbines have been calculated based on (11) and 

graphically shown in Fig. 11. The result shows that by 

sitting and sizing of wind turbines based on the 

proposed method, the voltage profile is improved. 
 

  ,

1

Pr          
cN

E

b g g b b

g

V C V b N


     (11) 

 

Annual 

energy 
losses, 

[MWh] 

O.F. 

Value 

[MWh] 

DG Capacity (Bus 
No.) Description Case 

No. 

346 – 0 MW No DGs 1 

280 330 

2× 0.66 MW (18) 

1× 0.66 MW (31) 

2× 0.66 MW (32) 

By method 
of [11] 

2 

245 245 

1× 0.66 MW (18) 

2× 0.66 MW (31) 

2× 0.66 MW (32) 
This paper 3 
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Fig. 11 Expected voltage value profile of the network before 
 

and after wind turbines installation. 

 

5 Conclusion 

   This paper presented a new approach for simultaneous 

uncertainty modeling of wind power and load demand. 

Using k-means and IPSO algorithms, the real data of 

wind speed and load consumption have been clustered 

employing the proposed method. 

   Afterward, the results have been used to find the 

optimum sizing and placement of wind turbines in 

distribution networks. To evaluate the efficiency of the 

proposed method, the obtained results have been 

compared with ones achieved by one of the prevalent 

methods. 

   The comparison evidenced that the proposed method 

leads to a better solution with 12.5% lower annual 

energy losses. Also, the number of simulation states has 

been reduced by 46% leading to a considerable 

reduction in computation time. 
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