
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 19, No. 1, 2023 1 

 

Iranian Journal of Electrical and Electronic Engineering 01 (2023) 2165 

 

Multiple Target Tracking in Wireless Sensor Networks Based 

on Sensor Grouping and Hybrid Iterative-Heuristic 

Optimization 
 

M. H. Adhami* and R. Ghazizadeh*(C.A.) 

 

 
Abstract: A novel hybrid method for tracking multiple indistinguishable maneuvering 

targets using a wireless sensor network is introduced in this paper. The problem of tracking 

the location of targets is formulated as a Maximum Likelihood Estimation. We propose a 

hybrid optimization method, which consists of an iterative and a heuristic search method, 

for finding the location of targets simultaneously. The Levenberg-Marquardt (LM) 

algorithm is used for iterative search, while the Particle Swarm Optimization (PSO) is used 

for the heuristic search. We use the maximum sensors separating distance-grouping 

algorithm (G-MSSD), which was introduced in our previous work, to generate initial 

guesses for search algorithms. The estimates of both methods are compared and the best 

one is selected as the final estimation. We demonstrate the accuracy and performance of our 

new tracking method via simulations and compare our results with the Gauss-Newton (GN) 

method. 
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1 Introduction1 

N the last two decades, significant advances have 

been made in telecommunication, microprocessors, 

battery-operated devices, and computer networks. Such 

advances have enabled us to design large-scale 

networks containing a lot of sensors, capable of 

communicating wirelessly. These networks are called 

wireless sensor networks (WSN). WSNs have 

interesting potential in diverse applications including 

industry, healthcare, military, home automation, 

environmental monitoring, and surveillance, which 

makes them a hot research topic in recent years. 

   Among the various applications of WSNs, tracking 

(localization) of targets is one of the most important and 

strategic ones. Tracking is the instantaneous 
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determination of some pre-specified states (e.g., 

velocity, location) of moving targets. Two main 

approaches have been adopted for estimating the 

location of targets within a sensor network: Range-

Based and Range-Free. In a range-free approach, the 

distance between the source node and the destination is 

estimated by the number of hops and size of the 

hops [1]. Different range-based measurement 

techniques have been used for tracking the location of 

targets, e.g. time of arrival (TOA) [2, 3], time difference 

of arrival (TDOA) [4], angle of arrival (AOA) [5, 6], 

and received signal strength indicator (RSSI) [7-9]. 

Some mixed measurements are also used in the 

literature [10, 11]. Time-based techniques, TOA/TDOA, 

require strict time measurements and synchronizations. 

TOA may impose an additional cost on the nodes, by 

demanding an extremely precise clock or impose 

complexity on the network by requiring a complicated 

synchronization process. Moreover, TDOA-based 

techniques dissipate the energy or time of the nodes by 

requiring two types of transceivers [13]. Sophisticated 

array antennas which are extremely sensitive to the 

fluctuation of signal strength and the multipath effect 

I 

mailto:mohamad.ad@birjand.ac.ir
mailto:rghazizade@birjand.ac.ir
https://doi.org/10.22068/IJEEE.19.1.2165


Multiple Target Tracking in Wireless Sensor Networks Based on 

 
… M. H. Adhami and R. Ghazizadeh 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 19, No. 1, 2023 2 

 

are required for angle-based measurement 

techniques [14]. Hence, the RSSI measurement is the 

simplest (cheapest) method among these measurement 

methods. Utilizing RSSI requires less time /energy, and 

reduces the complexity of nodes in both software and 

hardware. Accordingly, we use RSSI in our work 

because of its competitive advantages. 

 

1.1 Literature Review 

   Tracking several moving targets, because of its 

amazing potential, has been attracting enormous 

attention, recently. 

   A wide range of studies conducted in the field of 

target tracking only discuss tracking a single target over 

a specified area. These types of studies are categorized 

under the single-target tracking (STT) problem [7], [14-

18]. Nevertheless, most practical applications require 

tracking more than one target at the same time; hence 

our focus is on tracking multiple targets, and 

categorized under the multi-target tracking (MTT) 

problem. MTT is a complex multi-faceted problem that 

should not be considered as a simple extension of the 

STT problem. Different critical issues must be 

addressed in an MTT scenario. Hence, different aspects 

of the MTT e.g., deployment of sensors, selection of 

sensors, data association,  energy consumption, 

movement model of targets, state estimation, utilizing 

filters, identifying different targets, and movement of 

the network or agents have been investigated in the 

literature. Energy consumption is a critical issue in most 

applications of WSN, including tracking that much 

research has been made to manage it. In [19] and [20], 

controlling the activation periods (sleeping-awakening) 

of the nodes, using different methods, is proposed to 

manage the energy. The information about the targets’ 

movement is used to control the activation schedule of 

the nodes. In [21], adaptive dynamic programming 

scheduling is used for sensors to decrease the energy 

consumption during the tracking process. In [22] an 

artificial bee colony-inspired algorithm is used to 

manage the clustering process and save more energy to 

prolong the lifetime of the network. Although energy 

management has an impressive role in WSNs, it is not 

the key issue in tracking applications, and there are 

other important issues like accuracy of estimation, the 

number of targets, simultaneity of the tracking process, 

and being real-time. 

   In [23], a network with mobile sensor nodes is 

assumed for tracking multiple moving targets. The 

authors propose a controlling algorithm which specifies 

the activation cycle and location of the network nodes. 

Also, there are a number of studies assume moving 

agents with the ability of tracking particular targets. 

These agents pursue the specified targets in order to 

track their state [9]. A marine environment is considered 

in [24] where the multi-target tracking problem is 

formulated in MLE format. The security issue is also 

addressed by Byzantine attack. Such moveable 

nodes/agents increase the flexibility and accuracy of the 

system at the cost of increment in complexity and 

expense of the equipment, so we ignore them. 

   In some rare studies, algorithms are proposed for 

recovering the signal of each distinct target from the 

received signal. For example, authors in [25] have 

introduced the blind source separation algorithm to 

estimate the location of targets using the recovered 

signals. Information about the shape (type) of the 

signals must be available in advance. In [9], each agent 

uses the data of the previous step of tracking to cancel 

the effect of far targets on its received signal. When 

targets are far apart from one another, each agent can 

estimate the power received from its nearby target and 

run a separate tracking process. Limiting requirements 

like information about signal shapes, moving agents, 

and complicated signal recovering algorithms, are 

serious obstacles for practical implementation of such 

studies. 

   Authors in [26] have considered a highly dense 

network of sensor nodes; in [27], and [28] authors have 

considered a grid deployment for the network as well, in 

which each node has an equal distance to its four closest 

neighbors. Such considerations are not realistic in 

practical tracking applications, especially for randomly 

deployed networks. In contrast, we assume a network 

with normal density and random arrangement of nodes. 

   There are studies that have tried to model the motion 

pattern of the targets, and then estimate the parameters 

of that model. In [29], targets can be distinguished from 

each other, and groups of sensors are dynamically 

selected to track the targets. A discrete Markov process 

used as the basic model for the movement of targets. 

Authors in [30] choose a Gauss-Markov mobility model 

and try to determine its parameters in a way to properly 

match the movement pattern of the targets. Sensor 

nodes have the ability to measure the velocity vector of 

the targets, whenever targets enter the detection zone of 

them. Approaches for tracking multiple targets, using 

binary or quantized data, are proposed in the 

literature [26, 31]. 

   Data association with the help of magnetic sensors has 

been discussed in [32]. The main focus of these studies 

is on managing the gathered data and adjusting the 

quantization level during the tracking process. 

   The main subject of some studies can be summarized 

in estimating the state (location) of targets. The 

algorithm of [33], uses the collected RSSI 

measurements to run an ML-based estimator. The 

tracking problem is formulated in a matrix form for 

better scalability. Three methods: exhaustive search, 

Multi-Resolution (MR) search, and Expectation-

Maximization (EM) have been proposed to solve the 

problem. In [34], correlated noise is considered as well, 

and an algorithm is introduced for localizing a single 

acoustic source in the monitoring area. The authors 
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derive the likelihood function in the free space 

environment, and they use the MR-search find the 

optimum of that function. In [35] a modified least 

squares algorithm is used to estimate the state of the 

moving targets. The authors assumed sensors capable of 

obtaining both the distance and angle from the targets. 

   Some works apply different filters on the movement 

model of mobile targets and try to determine the current 

or estimate the next state of them [36-39]. A 

combination of the Kalman filter and particle swarm 

optimization is proposed in [40] for tracking. Although 

filters improve the accuracy of tracking, they increase 

the complexity and delay of the tracking procedure. 

 

1.2 Motivation 

   By investigating several studies, we found some 

critical limitations in the related existing works, the 

most important ones are: 

 Researchers usually consider sensor nodes that can 

sense signals coming from anywhere in the 

surveillance area, which cannot be justified for 

large-scale networks. 

 Accuracy is usually improved at the expense of 

increased complexity and cost arising from complex 

measurement techniques such as AOA or DOA. 

 A pre-specified model is considered for targets’ 

movement and filters are applied to find the current 

or next location of targets. 

 Targets or at least their signals are assumed to be 

distinguishable. 

 Only one type of optimization method (heuristic or 

non-heuristic) to estimate the desired states of the 

moving targets, which suffer from ‘local minimum’ 

traps. 

   Considering all the above points, we design a new 

hybrid-tracking algorithm, which enables estimating the 

location of multiple indistinguishable mobile targets 

simultaneously, based only on their power 

measurements (RSSI values). Our new algorithm is the 

same as our previous method [41] but it takes the 

advantage of a heuristic search algorithm when it is 

possible. 

   This work uses RSSI measurements reported by nodes 

and formulates a matrix-form maximum likelihood 

estimation (MLE) for tracking targets. As stated in [41], 

a closed-form solution is not accessible for the MLE 

problem of multiple target tracking. Therefore, an 

approximate solution must be found using numerical 

methods. Hence, in the previous work, we used a 

modified version of the Gauss-Newton (GN) algorithm 

to find the optimum solution but in the current work, we 

use the Levenberg-Marquardt algorithm. In section 4, 

we will show that using the LM can slightly improve the 

accuracy of the estimation in comparison to GN. The 

LM has two essential advantages: 1) it is more robust 

than the GN, 2) it finds a better solution even if it starts 

far from the global minimum [43]. 

   The initial guess for the LM algorithm is provided 

using the G-MSSD algorithm which is introduced in 

detail in [35]. The G-MSSD algorithm divides nodes 

into groups in a way that each group only tracks its 

closest target. The number of groups equals the number 

of existing targets. In each group, the location of the 

node with the largest measurement (MaxLoc) is selected 

as an initial location. Putting all initial locations into a 

vector, an initial guess for the LM algorithm is 

provided. 

 

1.3 Contribution 

   We have noticed that in our previous work, sometimes 

the final estimate is not accurate enough and is far from 

the optimal global solution. This happens especially 

when the number of node reports (triggered nodes) is 

low and subsequently a poor initial guess is provided. 

   When the number of reporting nodes is small, the 

optimization objective function (in the MLE problem) is 

very likely to fall into local minima traps, regardless of 

the type of optimization algorithm used. Therefore, the 

need for an auxiliary algorithm with a broader and more 

detailed search capability is felt next to the main 

algorithm. Non-heuristic algorithms (such as LM and 

GN) usually have a higher convergence speed, but they 

are very sensitive to the initial guess. Instead, heuristic 

algorithms usually have a larger search range and are 

less sensitive to the initial guess. The combination of 

these two types of optimization algorithms can 

impressively improve the accuracy of the final solution 

by utilizing the capabilities of both types. In our 

simulations, we will show that using a heuristic 

algorithm alone does not improve the tracking and 

increases the estimation error. 

   Therefore, we decided to utilize a heuristic 

optimization algorithm (PSO) as the auxiliary search 

algorithm in order to improve the accuracy of the final 

estimation. We use PSO because of its advantages [45], 

which are simple concept, easy implementation, 

robustness to control parameters, and computational 

efficiency when compared with other heuristic 

optimization techniques. 

   When the estimations of both algorithms are derived, 

we select the best one as the final estimation of the 

targets’ location. To select the best estimate a criterion 

is required and we use sum (or mean) of the squared 

residuals as the comparing criterion. The output of the 

method with the smallest criterion value is selected as 

the targets’ location estimate. 

   We also use the initial guess (MaxLoc) as a guide start 

point to determine the search area for the PSO 

algorithm. We define a search radius and draw a circle 

with this radius around each initial location; each circle 

is called a search region. Then the initial population of 

the PSO is generated inside these search regions. This 

helps to reduce the computational complexity of the 
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system since the PSO explores a much smaller area 

rather than the whole surveillance zone. On the other 

hand, by controlling the search radius of PSO we allow 

the algorithm to adjust the area of its search zone and, 

therefore, the chance of convergence to the global 

optimum increases. 

   Using LM and PSO at the same time increases the 

computational complexity. Nevertheless, it has an 

impressive performance, especially in terms of 

accuracy.  However, we should not worry about the 

excessive computational complexity since the algorithm 

is centralized and all the computations are done in the 

Sink node. No additional traffic is imposed on the 

network because all the computations are done using the 

same reported measurements initially sent by the 

triggered nodes and no new reports or measurements are 

required. Besides, LM and PSO can be implemented in 

parallel in order to reduce the delay of the tracking 

system. Therefore, the inherent features of the proposed 

algorithm solve all the disadvantages of excessive 

computational complexity like delay, battery depletion, 

network lifetime, traffic, cost overhead, and congestion. 

   The main contributions of the paper can be 

summarized as: 

 Tracking multiple indistinguishable maneuvering 

targets simultaneously. 

 Using only the cheap/simple RSSI measurements 

that do not require any extra equipment. 

 Combining the advantages of both heuristic (PSO) 

and non-heuristic (LM) optimization algorithms to 

increase the accuracy of tracking. 

 Limiting the search zone of the heuristic search 

algorithm, which in turn increases the convergence 

speed and decreases the computational complexity. 

 The ability of parallel implementation for better 

efficiency 

 

1.4 System Model and Assumptions 

   The inherent features and capabilities of this work 

make it suitable for outdoor applications e.g., battlefield 

surveillance, automotive Supervision, suburban traffic 

management, wildlife monitoring, and domestic animal 

farming. Therefore, we apply the exponential path loss 

model which is justified for such applications. We also 

consider the following assumptions and definitions (as 

in our previous work [41])  throughout this paper: 

a) Sensors only measure the received signal power, and 

if the measured power is greater than a threshold 

(receiver sensitivity), the sensor is called a 

“triggered sensor”. 

b) Sensor nodes send their collected measurements to 

the Sink, and they do not perform any extra 

processes. 

c) The maximum possible distance between the sensor 

and a target (when there is only one target in the 

surveillance area), while the sensor can detect that 

target’s signal is called the sensing range. 

d) The signals of different targets cannot be 

distinguished from each other. 

e) The total number of targets existing within the 

surveillance area is fixed and known in advance. 

f) Each sensor knows: 1) its location, 2) all other 

sensors’ locations, and 3) the distance between each 

pair of sensors. This information is provided during 

the initialization (localization) phase. 

g) Sensor nodes have an activation-inactivation 

schedule with time step T to manage the energy 

consumption. 

   The remainder of this paper is organized as follows: In 

Section 2, we formulate the measurement model and the 

ML estimator, the LM algorithm is presented in this 

section as well. The details of the hybrid tracking 

algorithm are expressed in Section 3, while the 

simulation results are presented in Section 4. 

 

2 Model Formulation 

   Sensor nodes are assumed to be randomly dropped 

across the whole surveillance area. Targets are assumed 

to be indistinguishable, hence, each sensor node 

measures a signal which is the sum of all targets’ signals 

plus a measurement noise. 

 

2.1 Measurement Model 

Let  
T

si si six yl ,  
T

tk tk tkx yl , 
t

l  

1

T
T T

t tK
  l l   represent the location vector of the i-th 

sensor, the k-th target, and all targets respectively ([.]T is 

the matrix or vector transpose). The total number of 

sensors is assumed to be Ns and there exist K targets 

within the surveillance area. Assume that the k-th (k = 1, 

2, …, K) target transmits a continuous zero-mean signal 

with average power pk. Since the path loss model is 

exponential [42] with path loss exponent η, the signal 

power received from the k-th target at the location of 

i-th sensor node, 
r

ikp , can be derived as 

 

 0 /r

ik k ikp p d d   (1) 

 

where d0 is a reference distance (usually set to 1m). 

Assuming targets with indistinguishable signals, the 

received signal by the i-th sensor is the sum of received 

signal from all targets. Therefore, assuming d0 = 1 

meter, the received signal power at the i-th sensor 

location, 
r

ip , can be expressed as 

 

1 1

/
K K

r r

i ik k ik

k k

p p p d

 

    (2) 

 

where 
ik si tkd  l l  is the Euclidian distance between 

target k and sensor i, and ||.|| is the 2-norm of a vector. 

The sensing range of a sensor node is defined as 
max

ikd . 
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Now using (2), the measurement of the i-th sensor node, 

yi, can be modeled as 
 

r

i i iy p v   (3) 
 

where  2~ ,i i iv    is the measurement noise of the 

i-th sensor node. All nodes are assumed to have the 

same sensitivity pmin, hence if yi ≥ pmin node i considered 

a triggered node otherwise it does not participate in 

tracking. Let the number of triggered nodes be N. 

   To have a simpler notation we use vector/matrix 

notation and formulation. We also use standardized 

measurements; hence the standardized measurement of 

the i-th sensor node, zi, is defined as 
 

  /i i i iz y    (4) 

 

where μi and σi are the mean and standard deviation of 

the measurement noise respectively. The standardized 

noise of the i-th sensor is defined as 
 

   / ~ 0,1i i i i iw v w    (5) 

 

   Let’s define the following operator, which places a 

series of M related scalars/vectors xj on the 

elements/columns of an arbitrary vector/matrix. 
 

   1 2, ,
T

j Mvect j M x x x x  (6) 

 

   Using (6), we can define the distance vector of the i-th 

sensor and the transmitting power vector of all targets as 
 

   1/ , , , , ,i ik kvect d k K vect p k K
d p  (7) 

 

   Using (4)-(7), the standardized measurement of the i-

th sensor in (4) can be written as 
 

/T

i i i iz w d p  (8) 
 

   The vector of all standardized measurements can be 

expressed as 
 

 ΣDp wz  (9) 
 

where z = vect(zi, i, N), w = vect(wi, i, N), D = vect(di, i, 

N), and ΣN×N = diag[1/σ1 … 1/σN]. 

   Now, to find the location of the targets we explain two 

methods based on the likelihood maximization in the 

following parts. Then the Hybrid tracking algorithm is 

introduced in the next section. 

 

2.2 Maximum Likelihood Estimation 

   Assuming that the measurement noise of nodes is 

uncorrelated, the likelihood function of lt can be derived 

as 
 

     2/2
2 exp / 2

N
L 


  ΣDp

t
l z  (10) 

   Maximizing the likelihood function (10), after 

discarding constant terms, leads to minimizing the 

following cost (fitness) function 
 

 
2 2

/ 2 / 2l   ΣDp rtl z  (11) 

 

   According to [41], a closed-form solution for the 

minimization of (11) cannot be found and the problem 

must be solved using numerical methods. 

Minimizing (11) can be considered as a standard non-

linear least-squares problem [44] and appropriate 

methods can be applied to obtain an approximate 

solution. We prefer to use the Levenberg-Marquardt 

[47, 48] algorithm which is more robust than the Gauss-

Newton [43] method. The LM usually finds a better 

solution even if it starts far from the global minimum of 

the function. The LM tends to be a bit slower than the 

GN but it obtains more accurate solutions. The LM 

interpolates between the GN and the method of 

gradient-descent. The LM, like the GN, does not use the 

second-order derivatives, which reduces the complexity 

and computational load of the algorithm. 

   Like other Newton-based optimization methods, the 

LM finds the final solution through an iterative process 
 

1 α ,   0n n LM

n n n   
t t

l l h  (12) 
 

where hn
LM is the search direction at the n-th iteration 

and αn is a controlling parameter called step size. The 

search direction of the LM algorithm [49] at the n-th 

iteration is 
 

 
1

,   0LM T T

n n n n n n


   J J I J rh  (13) 

 

where Jn is the Jacobean matrix of the residuals vector r 

with respect to the vector of unknown parameters ltn, 

and according to [41] calculated as 
 

T

n n d J ΣΔ P  (14) 
 

where  , ,ivect i NΔ δ ,  2/ , ,T

i ik ikvect d k Kδ δ , 

 ik si tk δ l l ,  1

1 k, ,d diag p p P , 1

d d q P P I , ⊗ 

is the tensor product, Iq is the q×q identity matrix, and q 

is the dimension of the problem space. For a 3D space q 

= 3, and for a 2D space q = 2. 

Remark: It should be mentioned that to be able to 

estimate the location of K targets uniquely in a space 

with q dimensions using least squares (11), the number 

of triggered sensors (measurements) must satisfy 

N ≥ K(q+1). For example to locate a single target in a 

2D space, at least 3 triggered nodes are required [51]. 

   In (13), λ is the damping factor that should be adjusted 

at each iteration [42]. When the reduction of function is 

fast smaller values can be used and vice versa. Larger λ 

values bring the algorithm closer to the GN while 

smaller ones bring it closer to the gradient descent. 

   We use the delayed gratification method [49] to adjust 
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the damping factor λ. First, select an initial guess 0ˆ
t

l , 

initial damping factor λ0 and two adjusting factors vu, 

vd ≥ 1. Using (11), compute the fitness value  ˆnl
t

l  after 

one step from the starting point firstly with the damping 

factor λ = λ0 and secondly with λ = λ0/vd. If both of these 

are worse than the initial guess (the fitness value is 

larger), then the damping factor is increased by vu as λ = 

λ0vu. Otherwise, the damping factor λ = λ0/vd is selected. 

The procedure is continued and at each step, if the step 

is uphill ( 1( ) ( )ˆ ˆn nl l 
t t

l l ) the current value of damping 

factor λ is decreased by vd and if the step is downhill 

( 1( ) ( )ˆ ˆn nl l 
t t

l l ) the current damping factor  is 

increased by vu. 

   Using ( )T

n n J J I  in LM algorithm has the 

disadvantage that if λ is large, inverting T

n n J J I  is 

not used at all. Therefore, a more reliable version of the 

LM algorithm is used which replaces the identity matrix 

with diagonal elements of T

n nJ J . In this version of the 

LM [49], the search direction is derived as 
 

  
1

,   0LM T T T

n n n n n n ndiag n


   J J J J J rh  (15) 

 

   Due to the iterative nature of the PSO algorithm, 

conditions must be defined that will terminate the 

algorithm in a reasonable time if they are met. We adopt 

two stopping conditions as follows 

a) Total number of iterations: if the number of iterations 

reaches a maximum acceptable number nmax, the 

algorithm stops. 

b) Relative difference of two Sequential iterations: if 

||lt
n – lt

n–1||/lt
n becomes smaller than a threshold, the 

algorithm stops. 

 

2.3 PSO Algorithm 

   Although the LM can provide appropriate estimates of 

targets’ locations, in some critical situations it cannot 

provide estimates with the acceptable accuracy. 

Therefore, we decide to utilize an auxiliary method to 

increase the accuracy in these situations. Although using 

another search method can improve the accuracy, the 

computational load of the system will be increased. 

However, there is no need to worry about this because 

algorithms can be executed completely independently. 

In other words, the computational load of the system 

can be split among parallel computing agents and only 

the results are compared. 

   The PSO [46] starts with an initial population of 

particles {xj
0}, j = 1, …, Npop and then update the 

location of each target according to its velocity. 
 

1 1n n n

j j j

  x x v  (16) 

 

where vj
n is the velocity of the j-th particle a the n-th 

iteration and updated as 
 

   1

1 1 2 2

n n n best n best n

j j j j jc r c r     v v x xP G  (17) 

 

   The initial velocity of all particles is assumed to be 

zero. Pj
best is the best location of the j-th particle until 

the current iteration, while Gbest is the best location 

among all particles until the current iteration. r1 and r2 

are two independent random variables in the range of 0 

and 1. c1 and c2 denote the relative importance of the 

memory of the particle itself to the memory of the 

swarm. The value of c1 and c2 are usually assumed to be 

2. ωn is the inertia weight which dampens the velocities 

over time (iterations) and enabling the swarm to 

converge more efficiently. The inertia weight must be 

decreased over time and different strategies can be 

adopted but we prefer the linear one which updates the 

weight as ωn = ωmax – (ωmax – ωmin)n/nmax, where ωmax 

and ωmin are the initial and final weights respectively, 

and nmax is the maximum number of iterations. 

   The stopping criteria are the same as the LM 

algorithm. 

 

3 Hybrid Tracking Algorithm 

   The first step of our proposed hybrid-tracking 

algorithm is to group the triggered sensor nodes. 

Therefore, we first describe the grouping algorithm. 

Then we explain how the search regions are prepared 

for the PSO algorithm, and at last, we explain the whole 

procedure of the hybrid-tracking algorithm in details. 

Fig.  1 shows all steps of the proposed hybrid multiple 

target tracking algorithm. 

 

3.1 Grouping Algorithm 

   As mentioned before, we want to group the triggered 

sensor nodes into K distinct groups. Every single group 

is expected to belong to a single distinct target. Hence, a 

candidate location can be derived from the location 

information of each distinct group. This candidate 

location can be an initial guess for the location of the 

corresponding target. 

   The G-MSSD algorithm introduced in [38], works 

based on the distance information of the triggered 

sensor nodes. The main idea is that when the nodes have 

limited sensing range, not all network nodes are 

triggered, and consequently, there will be a group of 

triggered nodes around each target. Therefore, the 

algorithm starts with the K farthest triggered nodes and 

put them in K distinct groups. Then the algorithm check 

all other ungrouped nodes. Each remained ungrouped 

triggered node is assigned to the group to whose first 

member it has the shortest distance. This means that the 

algorithm tries to group the nodes spatially, based on the 

maximum distances between them. 

   Two candidate locations were proposed, MaxLoc and 

MeanLoc. MaxLoc is the location of the group member 

whose measurement is the greatest among other group
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Fig. 2 The procedure of generating search regions for the PSO 

algorithm. Stars, and circles, respectively, show targets, and 

sensor nodes. Solid circle shows the node with greatest 
 

measurement of each group. Fig. 1 The flowchart of the hybrid-tracking algorithm. 

 

members, while MeanLoc is the mean location of all 

the group members. In this work, we use only the 

MaxLoc candidate as an initial guess for the LM and 

PSO algorithms. 

   If the initial location of target k is 0ˆ
tkl , the initial 

location vector of all targets is 0 0ˆ ˆ( , , )tkvect k K
t

l l . 

 

3.2 Search Region of PSO 

   The original PSO algorithm generates the initial 

population randomly in the whole possible range of the 

variables. This helps the algorithm to exploit the whole 

feasible area however if any initial information is 

available about the solution it decreases the 

computational load of the system. Therefore, we define 

a search region around the initial guess to reduce the 

searching area and accordingly decrease the 

computational complexity of the PSO. 

   A search distance ds is defined and a square cell is 

drawn around each initial location. Now K cells are 

obtained, and the PSO can search only inside these 

cells. This means that the possible range for each 

particle is 0 0,ˆ ˆ[ ]s sd d 
t t

l l . At each iteration, the 

algorithm checks the range of the updated particles and 

if any of them is out of the range, the algorithm returns 

it (randomly) to the acceptable range. The procedure of 

generating search regions is illustrated in Fig. 2. 

   The value of ds must be selected properly in order to 

increase the chance of searching the regions close to the 

true location of targets. If ds set too large, the 

computational load and the chance to fall into local 

traps increases. On the other hand, if ds set too small it 

is possible to miss the true location of the targets inside 

the search region; this means that the search region may 

not include the true location of a target and the 

algorithm cannot converge to the accurate estimate. 

Since the maximum distance between a single target and 

triggered sensor node is equal to the sensing range of 

that node, we set ds equal to max

ikd  with a confidence 

margin as ,  1max

s ikd d   . 

 

3.3 Hybrid Tracking 

   When the estimates of both LM and PSO are 

prepared, the tracking algorithm compares their fitness 

to select the best one. The estimate with the smaller 

fitness value is selected as the final estimate. Assume 

that the estimate of the LM is denoted by ˆLM

t
l , and the 

estimate of PSO is denoted by ˆPSO

t
l . The algorithm 

calculates the fitness of ˆLM

t
l  and ˆPSO

t
l  using (11). If 

( )ˆ )ˆ(PSO LMl l
t t

l l   the algorithm selects ˆPSO

t
l  as the final 

estimate and if ( )ˆ )ˆ(PSO LMl l
t t

l l , ˆLM

t
l  is selected as the 

final estimate. Fig.  1 shows the complete procedure of 

the hybrid multiple target tracking algorithm. 

   Although MaxLoc can provide an appropriate initial 

guess for the LM and PSO, during the tracking process 

the information of the previous time steps can be used to 

provide more suitable initial guesses. If there exists an 

appropriate estimate for the current time step of the 

tracking process, this estimate can be used as an initial 

guess for the subsequent time step. Even the mean of 
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the estimates of two or more previous steps can be 

utilized as the initial guess. However, we prefer to use 

only the estimate of the previous step which is called 

PriorLoc. It should be noted that PriorLoc can only be 

used in a tracking process where there exists an 

appropriate estimate for the current time step. For 

example, at the first time step of the tracking, it is not 

possible to use PriorLoc. On the other hand, during the 

tracking, there would be some consecutive steps that the 

algorithm cannot provide proper estimates (because of 

the low number of triggered sensor nodes or local 

minimum traps) and consequently, PriorLoc cannot be 

used to generate an initial guess. 

 

3.4 Computational Complexity 

   Three parameters affect the computational complexity 

of the proposed tracking algorithm: the number of 

targets (K), space dimensionality (q), and the number of 

triggered nodes (N). We consider the complexity in 

terms of number of mathematical operations. We only 

count the number of multiplications (MLPs) and ignore 

other operations for simplicity [52]. The required 

number of MLPs for the operations: (a) matrix 

inversion, (b) matrix product, and (c) exponentiation 

must be calculated. Although novel efficient methods 

are introduced to execute the mentioned operations, we 

check the traditional methods to consider the worst case. 

   Let A and B be m×n and n×r matrices respectively, 

then the matrix product AB requires mnr MLPs. If A is a 

n×n square matrix, its inversion using Gauss-Jordan 

elimination requires 2n3–n2+1 MLPs. Calculation of ab, 

using Taylor series expansion approximation, requires 

(4nc–2) MLPs if only nc first terms of the series are used 

for approximation. 

   Assuming that nλ iterations are required to find the 

optimum λ, the total required number of MLPs for one 

iteration of the LM algorithm is calculated as: 
 

   

    

22

3

2 3 4 1

2 1 2 2 5,

cN Kq q n K N

n Kq n Kq q n  

    
 

      

 

 

 

(18) 

 

while, the required number of MLPs for each iteration 

of the PSO algorithm is Npop(2q+3). 

 

4 Simulations 

   In this part, we explain the simulation scenarios and 

present the simulation results. All simulations are done 

using MATLAB 2018b. A surveillance area with 

dimensions of 110(m)×110(m) is assumed and 65 sensor 

nodes are randomly deployed over it. All simulations 

use the simulation parameters listed in Table 1 except 

when mentioned. All simulations are performed using 

the Monte Carlo method and the results are averaged 

over 2000 iterations. Two different scenarios are 

considered to better demonstrate the performance of the 

proposed hybrid-tracking algorithm. The Levenberg-

Marquardt parameters are vu = 2.5, vd = 1.5, λ0 = 10–6, 

and the maximum number of iterations bounded to 500. 

The PSO population number is 15, ds = 0.4×dmax and 

nmax = 250. 

 

4.1 Uncorrelated Movement 

   In this section, it is assumed that each target has the 

same distance dtar to its closest target. Targets appear 

randomly on the perimeter of a circle whose radius is set 

in a way that the distance between every two adjacent 

target equals dtar. The location of the first target (at each 

time step) is randomly generated on the perimeter of the 

circle and the locations of other targets are generated at 

equal angles from the first target’s location. This means, 

targets are placed at 2π/K angle from each other on the 

perimeter of the circle and the distance between every 

two adjacent target is dtar. In this scenario, the current 

location of a target is completely uncorrelated from the 

previous time steps. 

   The estimation error of each target’s location is 

calculated as ˆ
k k kE  

t t
l l . Hence, the average error of 

all targets’ location estimates is AEE ≜ (1⁄K)∑kEk, and 

the least error of estimates is min k
k

LEE E . 

   At first, we calculate the average number of required

 

Table 1 Simulation parameters. 

Parameter Value 

Transmission power pk 0 dBm 

Receiver sensitivity pmin -27 dBm 

The standard deviation of noise σw -40 dBm 

Sensing range (free space) 
(1)

max
d  22 m 

Path loss exponent η 2.2 

Time step 0.5 sec 
 

 
Fig. 3 The average number of required iterations of the LM and 

PSO for the two and three target scenario. 
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Fig. 4 The AEE of two targets versus distance between targets. Fig. 5 The AEE and LEE for the three-target scenario. 

 

 

  

Fig. 6 The effect of noise variance on the 

performance of the proposed hybrid method 

(dtar = 40 m). 

(a) (b) 
Fig. 7 The effect of sensor density and the number of targets on the performance 

of the proposed method; a) AEE versus the number of sensor nodes and b) AEE 
 

versus the number of targets. 

 

iterations for both LM and PSO to converge. As shown 

in Fig. 3, by increasing the distance between targets, the 

iterations of slightly increased while the iterations of 

PSO decreased. For the 2 target scenario, in average, 

150 and 165 iterations are required for the LM and PSO 

respectively. For the three target scenario, 70 and 350 

iterations are required for the LM and PSO respectively. 

   Fig. 4 shows the average error (AEE) versus different 

distances between two targets. As illustrated, the 

proposed hybrid method can effectively outperform the 

GN and LM methods. The interesting point is that 

although the error of PSO is high, combining it with the 

LM method can significantly reduce the error. The error 

of estimation is decreasing with distance because when 

the distance between targets increases, the G-MSSD can 

better group the triggered nodes and subsequently the 

initial guess is closer to the true location of each target. 

   Fig. 5 shows the error for three-target scenario, and as 

can be observed, the AEE decreased by the distance 

between targets. Again, the hybrid method completely 

outperforms the GN method. Although the AEE is high 

for short distances between targets, the LEE is very 

small. 

   To see the effect of the measurement noise on the 

performance of the proposed method, we repeat the 

simulations for different σn and fixed distance of 40 

meters between targets. The results are shown in Fig. 6. 

As expected, increasing the noise variance increases the 

AEE. 

   The effect of the number of sensor nodes (network 

density) and the number of targets is illustrated in 

Fig. 7. Here, the distance between targets is 40 meters. 

As can be observed in Fig. 7(a), by decreasing 10 nodes 

from the network the AEE increases 25% (on average) 

when the hybrid method is used while for the GN 

method the incensement is about 31%. Therefore, the 

new hybrid method is less sensitive to the network node 

density on average. Fig. 7(b) shows that by increasing 

the number of targets the error increases, while using 

the hybrid method can at least decrease the error by 

30%. 

 

4.2 Correlated Movement 

   In this section, we assume that targets are moving on 

arbitrary paths and the distance between them is not 

(necessarily) the same at each time step. The current 

location of a target is correlated to the previous time 

steps. Each target has a predefined but unknown 

movement path. Since targets have paths for their 

movement, PriorLoc can also be used for tracking. We 
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assume that targets are moving based on the coordinated 

turn (CT) model [50] with the following dynamic 

equation: 
 

 1 ,   1, ,n n n

j ct t j j j K    x x ωF  (19) 

 

where ω is the zero mean white Gaussian noise which 

models the perturbation of the trajectory from the ideal 

CT motion. φt is the known turn rate of movement and 

Fct(φt) is the transition matrix of the model calculated 

as: 
 

 

 

 

 

 
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 

 

 

 

   

sin 1 cos
1 0

0 cos 0 sin

1 cos sin
0 1
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t t

t t

t t
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t t

t t

t t

 

 

 


 

 

 

  
 

 
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 

 
 
 
 
 

F  (20) 

 

x = [x vx y vy]T is the state vector of each target which 

include the location coordinates [x y]T and the velocity 

along each coordinate axis [vx vy]T. 

   We assume a fixed turn rate φt = π/70 rad/sec. The 

initial location of targets are [30, 80], [60, 20], [80,70], 

and the initial velocity vectors are [1, -2], [-1, 2], and 

[-2, 1]. Fig. 8 shows one realization of the moving 

scenario. Dashed lines are the real trajectories of targets, 

and the asterisk lines are the estimated trajectories of the 

targets obtained by the proposed hybrid algorithm. 

   We compare the accuracy of our proposed hybrid 

tracking algorithm with the GN method and the results 

are shown in Fig. 9, as illustrated, our method can 

decrease the error about 62 percent whether PriorLoc is 

used or not. Fig. 8 shows that using PriorLoc can 

effectively decrease the error of tracking. 

   Additionally, to show the effectiveness of our 

proposed algorithm, we have compared our method with 

MR-search method [34] and Variational Bayesian 

Expectation-Maximization (VEM) method [53] in terms 

the AEE of tracking 3 targets moving according to the 

scenario of Fig.  8. The results are shown in Fig. 10. 

MR-search, initially, generates an n1×n1 grid covering 

the whole surveillance area, and assign each target one 

arbitrary point from this grid. Putting the coordinate 

vector of all targets in a single vector, it produces a 

candidate vector, which presents the estimated location 

of all targets. MR generates as many candidate vectors 

as possible (by assigning different points of the grid to 

targets), and search among the generated candidate 

vectors to reach the best one. At step i, MR makes a 

ni×ni grid around each location of the previous best 

candidate vector to increase the accuracy of the 

estimation. We choose a two-level MR-search with n1 = 

15 and n2 = 7. 

   VEM makes an ng×ng equi-spaced grid covering the 

surveillance area. Assuming an initial guess for targets’ 

location, it calculates the probable RSS measurement of 

each sensor node. Then at each iteration, the algorithm 

changes the grid lines using Expectation Maximization 

steps in order to reach the best estimate for the location 

of targets. Since the number of existing targets within 

the surveillance area is smaller than the total number of 

grid points, VEM can benefit from compressed sensing. 

We run the VEM with ng = 8 grid lines and set the 

maximum iterations of the EM steps to 100. 

   As depicted in Fig. 10, the proposed hybrid-tracking 

algorithm outperforms both MR and VEM methods. 

Our proposed hybrid method has approximately 80% 

and 70% less AEE in comparison to MR and VEM, 

respectively. 

 

5 Conclusion and Future Work 

   In this paper, a new hybrid multiple target tracking 

algorithm is introduced which uses a combination of the 

Levenberg-Marquardt method and the particle swarm 

optimization to find the maximum likelihood 

estimation. The new method can outperform the Gauss-

Newton method, Multi-Resolution search, and 

Variational Bayesian Expectation-Maximization method 

in accuracy and performance. Using a heuristic search 

 

  
Fig. 8 One realization of the tracking scenario for three targets, 

the movement model is coordinated turn rate with known fixed 
 

rate π⁄70 rad/sec. 

Fig. 9 The average error of tracking three moving targets with 
 

and without PriorLoc usage. 
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Fig. 10 The average error of tracking three targets with CT 

movement model, for MR search method, VEM method and 
 

the proposed hybrid method. 
 

algorithm along with iterative search helps the tracking 

system to get out of the local minimum traps and 

consequently improve the accuracy of the tracking. 

 

5.1 Future Work 

   Although the proposed hybrid tracking method 

prepares accurate estimates for the location of targets, 

there would be some time steps in which the number of 

triggered nodes is not enough and the algorithm may 

fail to achieve appropriate estimates. Hence, we suggest 

using a filter (e.g., particle filter, Kalman filter) to 

provide predictions for these time steps. Additionally, 

using a filter can provide a proper initial guess for the 

iterative search algorithm based on the prediction. Also, 

using the prediction of the filter, one can generate a new 

search region (around the predicted location of a target) 

for the heuristic search algorithm. 
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