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Abstract: Optimal power flow is an essential tool in the study of power systems. 

Distributed generation sources increase network uncertainties due to their random behavior, 

so the optimal power flow is no longer responsive and the probabilistic optimal power flow 

must be used. This paper presents a probabilistic optimal power flow algorithm using the 

Taguchi method based on orthogonal arrays and genetic algorithms. This method can apply 

correlations and is validated by simulation experiments in the IEEE 30-bus network. The 

test results of this method are compared with the Monte Carlo simulation results and the 

two-point estimation method. The purpose of this paper is to reduce the losses of the entire 

IEEE 30-bus network. The accuracy and efficiency of the proposed Taguchi correlation 

method and the genetic algorithm are confirmed by comparison with the Monte Carlo 

simulation and the two-point estimation method. Finally, with this method, we see a 

reduction of 5.5 MW of losses. 
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Nomenclature 1 

Vi
min Minimum voltage in the bus i. 

Vi
max Maximum voltage in the bus i. 

Pi
min Minimum active power in the bus i. 

Pi
max Maximum active power in the bus i. 

Qi
min Minimum reactive power in the bus i. 

Qi
max Maximum reactive power in the bus i. 

sij
max Maximum apparent transmission power. 

θij Voltage angle between buses i, j. 

NB Number of buses. 

NL Number of transmission lines. 

fjψ The power passing through the ψ 

transmission line and experiment j. 
*f  The nominal power is the transmission 

line ψ. 
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σ Standard deviation. 

Yj Test performance index. 

μ Mean value. 

Pd Active demand power. 

jA  Average effects levels factor. 

Level The value of a random variable based on 

an orthogonal array. 

Delta The main effect of random variable on 

performance indicator. 

ρ The correlation coefficient. 

VMCS Voltage by Monte Carlo simulation [p.u]. 

VTM Voltage by Taguchi method [p.u]. 

MEMTC Mean error of Monte Carlo simulation and 

Taguchi method correlated. 

MEMT Mean error of Monte Carlo simulation and 

Taguchi method [%]. 

VC Voltage with correlation [%]. 

Rank Random variable class. 

PV Photovoltaic. 

WT Wind turbine. 

Nexp Number of experiments. 

GA Genetic algorithm. 

UT Unscented transformation method. 

PLF Probabilistic load flow. 

OA Orthogonal arrays. 

TM Taguchi method. 
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N Number of modules. 

FF Full factor. 

Voc Module open-circuit voltage. 

Kv Voltage temperature coefficient [V/°C]. 

Tc Photovoltaic temperature. 

Ta Ambiance temperature. 

KI Current temperature coefficient [A/°C]. 

NOT Nominal operating temperature. 

ISC Module short circuit current. 

VMPP Maximum power point voltage flow. 

IMPP Maximum power point current flow. 

 

1 Introduction 

PTIMAL Power Flow (OPF) problem was first 

formulated in 1962, but has proven to be a very 

difficult problem to solve. The OPF became a practical 

and powerful tool for systems in various fields. From 

the beginning, various methods have been proposed to 

solve the OPF problem. Over time, the formulation of 

OPF has become more accurate and new methods 

provide more accurate answers [1]. Classical methods of 

OPF including linear programming method [2], 

nonlinear programming [3], second-degree 

programming [4], gradient method [5], internal point 

method [6], Lagrange method [7], Newton-Raphson 

method [8] are precise methods used in objective 

functions that have the property of continuity and 

derivation. All of these optimization methods start from 

a starting point and reach by repetition and are suitable 

for a linear objective function [6, 8]. Due to the 

mathematical structure of the relationship between the 

problem of optimization, the classical and analytical 

methods cannot analyze and arrive at answers to these 

problems. To solve this problem, evolutionary 

algorithms are used in which nonlinearity and derivation 

do not slow down the problem analysis process. 

Intelligent methods have been created to overcome the 

obstacles and problems of classical optimization 

methods, which achieve the optimal response quickly 

with high accuracy [5-7]. These techniques using 

computers to solve power system optimization issues 

are; evolutionary programming [9], Genetic Algorithm 

(GA) [10], evolutionary differentiation [11], artificial 

neural network [12], ant colony [13] and particle 

aggregation algorithm [14]. These techniques can 

analyze optimization problems with uncertainty issues. 

Borkowska was first to propose the Probabilistic Load 

Flow (PLF) with uncertainties in 1970 [15]. The 

literature review is reviewed below: the Monte Carlo 

Simulation (MCS) is used for the problem of OPF in the 

presence of uncertainty in load modeling [16]. Using a 

new method in optimal load distribution problems 

bound to transient stability the method of path 

sensitivity rotor angle is discussed and shown it is time 

to simulate to check the transient stability of the system 

with this method greatly reduces. Also, the proposed 

method of accuracy has a system for detecting 

instability [17]. Correlated addressing based on Point 

Estimation Method (PEM) has been used to select the 

best value for entering random parameters into the 

optimal load flow problem [18]. An algorithm is 

proposed to solve the problem of Probabilistic Optimal 

Power Flow (POPF) by considering the network load 

changes. To solve the problem in this reference, the 

optimal nonlinear complementary problem method is 

used [19]. The combined Monte Carlo method and 

multi-line OPF are used to model uncertainties [20]. 

MCS is a method that provides accurate results, but its 

drawbacks include the need for a large memory to store 

information and a large number of steps to achieve the 

final convergent response reduction [2-4]. Two-Point 

Estimation Method (2PEM) is used to solve MCS 

problems, which has a low computational load and 

requires only the initial statistical torques of the 

Random Variables (RVs) to analyze the problems [13, 

16]. A cumulant method is used for PLF study where 

the basis of this method is to generate new or unknown 

distributions of RVs using existing statistical 

information from predefined or known distributions. In 

this case, the information is mapped through a statistical 

measurement known as cumulative method. This 

method relies on the behavior of RVs when they are 

linearly combined [21]. In [22] a comparison between 

the cumulant and 2PEM methods is presented, which 

investigates the effect of uncertainty in the supply and 

distribution of loads on the market and the Local 

Margin Cost (LMP) index for solving the PLF. The 

second-order torque method is used to study the PLF, 

which uses the first-order Taylor series approximation 

to calculate the first-and second-order statistical 

information [23]. The Unscented Transformation (UT) 

method is used for the problem of OPF in the presence 

of uncertainties, which has less computational analysis 

than the MCS [24]. The improved 2PEM is used as a 

new evaluation method for modeling uncertainties by 

considering correlation [25]. Fuzzy sets are used to 

model uncertainties in [26]. It is proposed to consider 

the correlation between WT and PV in the distribution 

network using Taguchi Method (TM) [27]. In [27] the 

PLF problem has been studied using the TM for the 

IEEE standard 34-bus test system in which the three-

phase voltages are unbalanced by considering the 

correlation between the input RVs and the results by 

3PEM and the 2PEM and MCS are compared and it is 

concluded that the response of the TM for two levels 

and three levels of RVs are equal to the results of 2PEM 

and 3PEM, respectively, and that objective function is 

to reduce the total cost. In this paper, the objective 

function is to reduce the losses of distribution networks 

by using Orthogonal Array (OA)-based TM to analyze 

POPF by considering the correlation of uncertainties 

caused by input RVs. Also, according to the optimal 

values of the input RVs, which are calculated using the 

TM, the optimal values of the control variables of the 

POPF problem are obtained to reduce system losses. In 

O 
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this case, the answer is the lowest value because the 

values of RVs are adjusted to the optimal values based 

on OAs using the TM, and the control variables of the 

POPF problem are adjusted to optimal values based on 

the optimal values of RVs using GA. Optimization 

ensures that the amount of losses is not stuck in the 

local optimal domain and is located in the global 

optimal domain and the global optimal is absolute and 

also the optimal output response is more reliable, 

because the losses are the least amount. The test results 

on IEEE 30-bus network show the OA and TM have 

excellent accuracy, high speed, and simplicity in the 

OPF. And the use of GA increases processing speed and 

accuracy. Compared to other methods, the TM can 

apply the correlation between uncertainties. In the 

following sections, OPF, OA, and TM are presented 

first. The TM is then applied to the test system and the 

results are compared with MCS and 2PEM. 

 

2 Problem Formulation 

   The goal of OPF is to assign a set of control variables 

to optimize the objective functions we have in mind. In 

power systems, the main part of the cost is related to the 

production of electrical power in power plants. 

Therefore, the share of each power plant in the 

production of electrical power to meet the system load 

demand is the main goal and should be determined so 

that the cost of the electricity production is minimum. 

The purpose of this paper is to optimally determine the 

share of the power output of each power plant by using 

the optimal load flow and also to reduce the excess 

power required for the system losses. Using the OPF, 

the control variables are set in their optimal states in 

order to optimize the objective function of the problem 

and satisfy the constraints at the same time. The 

objective function and the set of constraint equations 

(equalities and inequalities) are nonlinear functions of 

control variables and state variables. The OPF problem 

is then defined according to (1): 
 

 
 

 

  , 0 1,2, ,
min ,   .  

, 0 1,2, ,

i eq

j ineq

g x u i N
f x u s t

h x u j N

  


  
 (1) 

 

In (1), x and u represent the state and the control 

variables, respectively. Also, f (x, u) is the objective 

function, g(x, u) are the constraints of equality, and 

h(x, u) are the constraints of inequality of the problem. 

Neq is the number of equality constraints and Nineq is the 

number of unequal constraints. The control variables for 

OPF are as follows: 

 Pg: Except for PV slack, the active power produced 

in the bus. 

 Vg: Voltage amplitude in PV buses. 

 T: Transformers tap settings. 

 Qc: Compensation of parallel structures. 

   In the case of OPF, the mode variables are as follows: 

 PG1: Active power generated in the reference bus. 

 VL: Voltage range in buses PQ. 

 QG: Reactive power output of generators. 

 Sl: Loading of electric power in transmission lines. 

   The main objective function is expressed as (2). The 

total loss of electrical power is equal to the sum of the 

electrical losses of the transmission lines, according 

to (3). 

   The purpose of optimization is to divide the system 

loads between the generators to generate electrical 

power so that each generator operates at the highest 

efficiency, and the objective function is to minimize 

system-wide losses. In addition, equal and unequal 

constraints must be satisfied. Equivalent load flow 

constraints reflect the technical condition of the system 

as expressed by load flow relationships and are defined 

according to (4) and (8). 

   The technical constraints of generators are expressed 

in (5) to (7). 
 

 2 2

 

1

    2 cos
nl

Loss k i j i j

k

P g V V VV 


      (2) 

1

 
NL

T i

i

PLoss PLoss


  (3) 

1

cos sin  
B

i i

N

G D i j ij ij ij ij

j

P P V V G B 


      (4) 

1

sin cos  
B

i i

N

G D i j ij ij ij ij

j

Q Q V V G B 


       (5) 

min max ,     1, , Gi Gi Gi GV V V i N     (6) 
min max ,     1, , Gi Gi Gi GP P P i N     (7) 
min max ,     1, , Gi Gi Gi GQ Q Q i N     (8) 

 

2.1 Uncertainties Modeling 

   In probabilistic planning, it is important to state an 

appropriate statistical model for RVs. 

 

2.1.1 Load Modeling 

   Using normal distribution the density function of the 

corresponding probability distribution is given in (9) 

[28, 29]: 
 

 
2

2

( )1
exp

22

d

d

P
f P





 
  

 
 (9) 

 

   In this paper, a μ equal to the bus consumption and a σ 

equal to 5% of μ are considered. 

 
2.1.2 Wind Power Plant Modeling 

   To model a wind farm, first, the wind speed must be 

modeled. The wind speed has a random behavior. 

Proper modeling should be done to obtain the output 

power of the wind farm. The continuous Weibull 

probability distribution is the most suitable function for 

modeling the stochastic variable of wind speed 
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according to (10) [30]. 
 

 
1

  exp

h h
h v v

f v
c c c

     
          

 (10) 

 

   In this paper, h is considered equal to 8.78, and c is 

considered equal to 1.75. Also, v represents the wind 

speed, c represents the shape factor, and h represents the 

scale factor. In wind power plants, the output power of 

the turbine depends on the wind speed and other 

parameters of the wind turbine given by (11). 
 

1 2

0 0

0

0

rated rate

cut

in

cut

in

cut

out

cut

out

d

K V K
P

P V

V V

V V

V V

V V

 

 







 









 (11) 

 

where, K1 = Prated/(Vrated–Vin
cut), K2 = –K1Vin

cut, V is the 

wind speed in wind turbines in bus i, Prated is the 

nominal power of wind turbine, Vout
cut and Vin

cut are the 

minimum and maximum value of wind speed, and Vrated 

is the nominal speed. Power generation in the wind 

turbine starts at Vin
cut speed. The output power of the 

turbine at nominal speed Vrated reaches the nominal 

power Prated, then with increasing wind speed, the output 

power is constant. The power for the wind speed above 

the turbine Vout
cut is zero and the turbine stops operating 

and the electric power generated by the wind farm 

becomes zero, as shown in Fig. 1. 

 

2.1.3 Photovoltaic Modeling 

     pvP s N FF V s I s     (12) 

    oc V CV s V K T    (13) 

     ( 25)SC I CI s s I K T      (14) 

20
 

0.8

OT

C a

N
T T s

 
   

 
 (15) 

FF MPP MPP

OC OC

V I

V I





 (16) 

 

2.2 Correlation in RVs 

   In power systems like other systems, the system RVs 

may be dependent on input uncertainties. If there is a 

dependency, this dependence may have a positive or 

negative effect from one variable to another. In general, 

the issue of correlation in RVs is expressed and 

determined by the covariance matrix or correlation 

coefficient matrix. Correlation coefficients are presented 

according to (17): 
 

    
،

cov ،
  

x y

x y

x y x y

E x yx y  


   

  
 

   
(17) 

 

   The coefficient of correlation can be –1, +1, or 

between them, or zero. If it is +1, it is in relation to the 

perfect linear relation and if it is negative, it is in 

relation to the complete linear relation, and in other 

relations, the values between the interval [-1, 1] indicate 

the degree of correlation. 

 

3 Orthogonal Arrays 

   An orthogonal array is a fractional factorial matrix 

whose rows represent factor levels in each run and its 

columns represent a specific factor whose levels change 

in each experiment. All traditional factorial designs and 

fraction arrays are orthogonal. In the past, OA was 

known as magic squares. Perhaps the effect of OA in 

experiments has led to such naming. Because a fraction 

of the experiments is selected in it, so that each 

combination is repeated in equal numbers. The reason 

they are called orthogonal is that all the columns are 

examined independently. The OAs are denoted by the 

letter L, which comes from the Latin word because the 

use of OA in experimental designs is related to Latin 

square designs. An OA is composed of a matrix (Table 

1) that consists of numbers that are arranged in rows and 

columns. Each row in the matrix is related to an 

experiment, and in the same way, each column 

corresponds to an RV; then, the dimension of the matrix 

is (Nexp×𝑁). Each element (i, j) of the matrix reports a

 

Table 1 Orthogonal array 
exp

( )
N

N L
OA N . 

Experiment number 
Level of each variable 

RV1 RV2 ⋯ RV3 

1 L11 L12 ⋯ L1N 

2 L21 L22 ⋯ L2N 

⋯ ⋯ ⋯ ⋯ ⋯ 
Nexp LNexp1 LNexp1 ⋯ LNexp1 

 

Table 2 Orthogonal array OA423. 

Experiment number 
Level of each variable 

RV1 RV2 RV3 

1 1 1 1 

2 1 2 2 

3 2 1 2 
4 2 2 1 

 

Fig. 1 Wind turbine production capacity. 
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number. Lij (frequently 1 and 2 or 1, 2, and 3 in case of 

two and three levels, respectively) that corresponds to 

the level to be appointed to the i-th variable in the j-th 

experiment. OAs are sorted with the symbol 

exp
( )N

N LOA N . For example, Table 2 indicates the array 

OA423, i.e., an OA with four experiments, three 

variables, and two levels. The two levels allotted to each 

variable are denoted by the numbers 1 and 2. If we want 

to utilize the full factorial method, 23 experiments (Nexp 

= 8) are demanded, whereas the use of the OA in 

Table 2 lessens the required experiments to just four. for 

more clarification, in the array OA16215, i.e., an OA with 

16 experiments, 15 variables, and two levels, 215 

experiments (Nexp = 32,768) are demanded using the full 

factorial method, but only 16 experiments are required 

using the OA. 

 

4 POPF With TM 

   In general, the relationship between input and output 

RVs in a distribution network according to (18): 
 

 in outY f X  (18) 

 

   The input and output RVs vectors are Yin and Xout, 

respectively, and 𝑓 is a nonlinear relation that 

establishes the relationship between Xout and Yin. In 

POPF, the factors are the same as RVs. In POPF, the 

number of factors is expressed in m and the number of 

levels in n, and then the next mn test must be performed. 

In this paper, a POPF of a distribution system including 

PV and WT distributed generations is investigated and 

analyzed by TM based on OA. In the POPF: 

I. The structure and information of the power 

system equipment is important and practical. 

II. The input RVs is the vector Yin according to (18). 

III. “Level” means the value below the curve is a 

function of the probability density of incoming 

RVs. 

IV. Each experiment refers to a load flow, and on the 

other hand, because the distribution networks are 

three-phase, for each phase, if we have a number 

of RVs for a three-phase distribution network, 

their number will increase, so in this case the 

number of tests Also, the number of load flows 

will increase and as a result, the final answer will 

be obtained after a long time and many 

calculations. OAs can be used to dramatically 

reduce the number of experiments to get the 

answer instead of all the tests, so that these OAs 

get the same answer by performing a very small 

number of tests in less time and calculations than 

all experiments can be achieved. The first step in 

deploying TM is to determine the levels of each 

RV. Selecting two levels and three levels for 

each factor requires the least and most time and 

calculations, respectively. Relevant possible 

distributions should be provided to determine 

invoice levels. As in this paper, the normal 

distribution is used for load modeling because it 

is a symmetric continuous distribution and the 

Weibull continuous distribution is used to model 

wind speed. In this paper, levels 1 and 2 using 

the stated distributions are, respectively μ - σ and 

μ+σ. In the TM, the final optimal answer was 

reached using an optimal experiment based on 

the optimal levels of RVs instead of all 

experiments based on OAs. To use this optimal 

experiment, one must first express an index 

according to (19): 
 

           * ,    1,2,  
NL

j jY f f j 



     (19) 

 

   The second step is to determine the average effect of 

the factors based on (15) to (20). 

   The third step is to define the main effect of each 

factor on Yj. These main effects of the factors are 

calculated according to (26) to (28): 
 

 1 1 2 / 2A Y Y   (20) 

 2 3 4 / 2A Y Y   (21) 

 1 1 3 / 2B Y Y   (22) 

 2 2 4 / 2B Y Y   (23) 

 1 1 4 / 2C Y Y   (24) 

 2 2 3 / 2C Y Y   (25) 

 2 1A A A    (26) 

 2 1B B B    (27) 

 2 1C C C    (28) 

 

   If the major effect is positive in RV or the same 

factor, the second level is considered otherwise. 

   It is now shown how to apply the OAs to the POPF by 

performing the following main steps: 

a) Determining the input RVs. 

b) Determine the number and values of the levels of 

variables. 

c) Determine the OA. 

d) Execute load flow. 

e) Analysis of results. 

   All the details of the above-mentioned steps are 

provided: 

a) RVs of the POPF input are active power and 

reactive power consumption, wind speed and 

intensity of sunlight, PV cell temperature. 

b) By selecting the variables, the levels of each 

variable should be determined and it was stated that 

the number of levels depends on the RV. In this 

paper, the analysis is performed in two levels using 

TM and 2PEM and the results are reviewed and 

compared in terms of accuracy and computational 

time. By selecting two levels for each random 
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variable, level 1 and level 2 are assumed to be 𝜇 – 𝜎 

and 𝜇 + 𝜎, respectively. 

c) After determining the number of random variables 

and the number of levels, it is necessary to select the 

appropriate OA that the types of OAs are available 

on the Internet. The number of variables was more 

or less than the standard OA, in which case we 

should choose the closest standard OA and not 

consider additional variables that are not related to 

our problem. 

d) After determining the OA, the values determined 

by the OA are performed for the levels of random 

variables and load distribution operations, and this 

process is repeated in a number 𝑁𝑒𝑥𝑝 proportional to 

the OA values. 

e) Once the load distribution output results are 

determined, statistical indicators such as mean and 

standard deviation are calculated using the following 

equations: 
 

        
 exp

exp

2

1

 

1exp exp

1
,

N
N

ji ii

j ji j

i

x
x

N N


 





 
 

   
 
 


  (29) 

 

where xji is the value of the j-th output RV for the i-th 

experiment. 

 

4.1 Correlation 

   Let be a CR = [r𝟏, r𝟐,….,rM]T matrix of M correlated 

vector variables characterized by a vector of mean value 

μCR = [𝜇1, 𝜇2, …., 𝜇𝑀]𝑇 and a variance-covariance 

matrix, (CCR). Applying the eigenvalue decomposition 

to CCR: 
 

T

CRC     (30) 
 

where φ is the matrix of the eigenvectors of CCR, and 𝛬 

is a diagonal matrix with the corresponding eigenvalues 

on the diagonal. The matrix D = φT constitutes an 

orthogonal transformation through which the set CR of 

correlated variables can be transformed into a set of 

uncorrelated variables UR = [b𝟏, b𝟐, …., bM]T, such that: 
 

  UR DCR  (31) 
 

The UR has CCR, which is equal to 𝛬. 

   In this paper, the correlation between two WTs at 29 

and 30 bus is equal to 0.3, the correlation between load 

and WT 29 is -0.2, the correlation between load and WT 

30 is -0.3, and the correlation It is 0.1 between loads 

with normal distribution according to (32). 
 

1.0 0.3 0.2 0.3

0.3 1.0 0.1 0.1

0.2 0.3 1.0 0.1

0.3 0.2 0.1 1.0



  
 
 
  
 
  

 (32) 

   Eventually, the following procedure is used to solve 

the POPF problem of an active power system in the 

presence of correlated input RVs: 

i. Given CCR, of the input RVs, obtain the matrix D 

= φT after (30). 

ii. Transform CR, into UR, according to (31). 

iii. Specify the number and values of the levels of 

the number of each UR. 

iv. Determine an appropriate OA. 

v. Formulate the experiments using the results of 

step (iii). 

vi. Use the reverse CR input (31) to calculate the 

load flow of the steps of the previous experiment 

to the main space. 
vii. Perform load flow for each experiment. 

viii. Obtain the values of μ and σ using (29). 

   TM Constraints such as No OA table for any number 

of RVs that should be used in composite tables, the 

number of experiments increases with the number of 

RVs, and the computer must be used. TM is used in 

optimization and optimal placement, quality control, 

and cost reduction issues. 

 

5 Simulation Results 

   This IEEE 30-bus test system has 30 buses, 41 

transmission lines, 6 generators, and 24 load buses, and 

other information such as line impedance and generator 

cost function coefficients are mentioned in [31], and this 

test system is shown in Fig. 3. It can be seen from the 

 

 
Fig. 2 Taguchi method flowchart. 
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Fig. 3 IEEE 30-bus test system. 

 
Table 3 Voltage size of TM and PEM methods and accuracy. 

MEMT [%] MEMTC [%] VTM [p.u.] VC [%] VMCS [p.u.] Bus 

0.00 0.00 1.06 0.00 1.06 1 

0.00 -5.31 1.04 -5.13 1.04 2 

0.09 -7.41 1.02 -7.13 1.02 3 

0.10 -9.16 1.013 -8.78 1.01 4 

0.00 -11.63 1.01 -13.7 1.01 5 

0.07 -10.89 1.01 -10.5 1.01 6 

0.04 -12.71 1.01 -12.4 1.00 7 

0.00 -11.63 1.01 1.01 1.01 8 

0.08 -13.82 1.05 1.04 1.01 9 

0.11 -14.62 1.05 1.04 1.04 10 

0.00 -14.62 1.10 1.06 1.06 11 

0.07 -15.51 1.06 1.05 1.05 12 

0.00 -15.60 1.07 1.06 1.06 13 

0.08 -15.18 1.04 1.04 1.04 14 

0.09 -15.52 1.04 1.04 1.03 15 

0.11 -16.21 1.04 1.04 1.04 16 

0.12 -13.38 1.03 1.04 1.03 17 

0.07 0.06 1.02 1.02 1.02 18 

0.06 0.06 1.02 1.02 1.02 19 

0.07 0.07 1.02 1.02 1.02 20 

0.14 0.09 1.03 1.03 1.03 21 

0.16 0.03 1.03 1.03 1.03 22 

0.08 0.07 1.02 1.02 1.02 23 

0.12 0.07 1.02 1.02 1.01 24 

0.04 0.04 1.01 1.01 1.01 25 

0.04 0.04 0.10 0.10 0.10 26 

0.00 0.00 1.02 1.02 1.02 27 

0.04 0.04 1.02 1.00 1.00 28 

0.00 0.00 1.02 1.00 1.00 29 

0.00 0.00 0.10 0.10 0.10 30 

 

results that when we consider the correlation between 

the random variables, the voltage is improved, and the 

value obtained from the Taguchi method is very close to 

the results. It is the Monte Carlo method and also the 

error percentage in the Taguchi method is reduced. 

These are listed in Table 3. 

   Fig. 4 of the voltage profile using the TM shows the 

correlation between the input RVs. Because the main 

purpose of load flow is to determine the amplitude and 

angle of the bus voltage, to show the importance and 

benefits of considering correlation in TM, the amount of 

network bus voltage obtained by load flow is 
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Fig. 4 Voltage profiles by TM considering correlation. 

 

considered as a criterion. 

   Then, to calculate the objective function, the sweeping 

and similar load flow must be used for each of the 

generated random population patterns. That is, the 

amplitude and angle of the phase of the bus voltage, the 

transmission power of transmission lines, and the power 

of loads and generators are determined, and then the 

objective function, which is the losses of the whole 

system, is determined and calculated. And then the 

equal and unequal constraints are checked that if the 

constraints are met, the merit of the answers is 

calculated and used for the next generation. And the 

next steps of the algorithm are executed, otherwise, it 

goes to the random population generation stage. At each 

stage of the implementation, the number of control 

variables and the number of losses are obtained, and 

finally, the answer that satisfies all the constraints and is 

the least amount of losses will be the optimal answer of 

the optimization process. The TM has been studied. 

Now, according to the principles of the TM, there are 24 

consumers in this standard network, and two wind 

power plants and a PV power plant, which have a total 

of 27 RVs in the system. Grid loads and wind farms and 

a PV power plant are all considered as RVs and using 

the MINITAB software because the OA is close to the 

sum of the number of RVs including grid loads and 

random power plants equal to 32. We have used the 

OA32(2)31 and the second level for load factors, which 

are the same RVs, we have considered 40 MW and the 

first level is equal to 0, and for distributed generation 

power plants, we have done the same, and the specific 

value We have assigned their own distribution, now in 

total for these 27 RVs we have to do 32 experiments 

and according to the principles of the TM presented in 

the previous chapter, the same test that has the lowest 

value of the standard test of the TM according to the 

method itself We select the resulting TM and assign the 

value of the RVs of that experiment to the RVs of the 

system, and then proceed to the optimization process 

using the GA. First, we perform 32 tests according to 

the table obtained from the MINITAB software based 
 

Table 4 Results of TM from MINITAB software. 

Load Level 1 Level 2 Delta Rank 

1 538.0 508.3 -29.7 8 

2 530.6 515.7 -14.9 13 
3 560.8 485.5 -75.3 5 

4 522.1 524.2 2.2 26 

5 472.0 574.3 102.2 4 
6 579.3 467.1 -112.2 3 

7 530.4 515.9 -14.5 14 

8 560.8 485.5 -75.3 6 

9 527.3 519.0 -8.3 19 

10 525.9 520.5 -5.4 24 
11 371.8 675.5 302.7 2 

12 531.7 514.6 -17.0 10 

13 369.6 676.7 307.1 1 

14 557.3 489.0 -68.4 7 

15 530.1 516.2 -13.9 15 
16 520.0 526.3 6.3 23 

17 526.7 519.6 -7.1 21 

18 510.0 536.3 26.3 9 

19 529.8 516.5 -13.3 16 

20 526.5 519.8 -6.6 22 
21 521.0 525.3 4.4 25 

22 530.9 515.4 -15.5 12 
23 528.0 518.3 -9.7 18 

24 528.8 517.6 -11.2 17 

PV 531.1 515.2 -15.9 11 

WT1 526.9 519.4 -7.4 20 
WT2 522.8 523.5 0.6 27 

 

on the dual levels of factors, and then we implement the 

TM according to the principles of the TM and the 

objective function of reducing system losses. According 

to Table 4 below, where load1 to load24 are the same 

loads of the system as Wind1 and Wind2 are two wind 

power plants, and delta expresses the major effect of 

each factor on the function and the rank expression 

classify and number the variables based on the delta 

value. Now, according to the positive and negative signs 

of delta, we must select the levels of 1 or 2 factors. 

Looking at Table 4, the results of TM from MINITAB 

software, we see that except for variables 4, 5, 11, 13, 

16, 18, 21, and 27, all of them have a negative delta 

value, and the mentioned factors are set to level 2, and 

then to the same stage as the main test. The specific 

levels for each factor were determined according to the 

TM. 

   In the following, we will first distribute 32 dual loads 

obtained from the TM tests in MATLAB software with 

the TM, and finally, the optimal load flow obtained 

from the TM test with GA will be equal to 27.5 MW, 

which is the number of system losses from the test. And 

the levels determined by the TM are obtained, but the 

answer that we obtain for the losses of the same system 

from the normal OPF by the Newton-Raphson load flow 

method is equal to 33 MW, and this indicates that TM 

adjusts the POPF of factor levels in such a way that the 

least number of losses occur in the system and reduces 

the difference between 33 and 27.5, which is equal to 

5.5 MW, which is a large amount of losses. Also, in 

terms of operational speed, the work is faster and the 

result is faster too, because if it is argued that, like the 

MCS, at least 800 repetitions of OPF with GA should be
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Table 5 Comparison of μ and σ for different methods. 

Total losses TM Scenario LHS 2PEM 

μ [MW] 35.67 51.2 63.60 47.50 

σ 18.77 38.32 48.64 24.35 
 

 
Fig. 5 Convergence of loss optimization by GA. 

 
Table 6 Values of control variables by TM and 2PEM. 

Control variables TM 2PEM Control variables TM 2PEM Control variables TM 2PEM 

PG2 [MW] 48.77 47.87 VG2 [p.u.] 1.03 1.03 T6,10 [p.u.] 1.00 1.00 

PG5 [MW] 21.98 21.84 VG5 [p.u.] 0.99 0.98 T4,12 [p.u.] 1.01 0.98 

PG8 [MW] 20.94 22.22 VG8 [p.u.] 1.01 1.03 T28,27 [p.u.] 0.96 0.95 

PG11 [MW] 12.74 12.94 VG11 [p.u.] 1.03 1.03 Qsh10 [MVAr] 31.30 35.40 

PG13 [MW] 12.65 12.28 VG13 [p.u.] 1.04 1.05 Qsh24 [MVAr] 15.27 13.71 

VG1 [p.u.] 1.05 1.04 T6,9 [p.u.] 1.00 0.99    

 

repeated, then for 27 problem factors 800 times adjust 

the appropriate random number and repeat the relevant 

operation, which itself requires both a lot of time and a 

lot of memory to store information, but in the TM, first, 

the optimal levels of each factor are determined using 

the principles of the TM and then based on the same 

levels. The optimal load is done, and the optimal answer 

is obtained, and in this paper, instead of 32 tests that 

replaced the MCS, the same 32 tests are performed with 

a test in which all the factors are at their best according 

to the principles of TM. We replace it with much less 

time with a GA to get the desired answer. In Table 4, 

the values of the control variables are compared by 

2PEM and TM. This optimization was performed by the 

GA and the TM in 52.21 seconds with 300 iterations for 

the GA, which converged in the 28 iterations of the 

answer as shown in Fig. 5. 

   By observing the results of Tables 5 and 6, it can be 

inferred that TM, considering the concept of correlation, 

has better results than the 2PEM, which shows the effect 

of correlation. In general, due to the fact that in the 

2PEM we need the statistical torques of the input RVs 

and also we need to perform mathematical calculations 

of high-degree integrals to achieve the answer, which in 

itself increases the number of steps and at the same time 

the function of the PEM increases because in the TM 

these statistical moments are not required, and the 

answer can be achieved optimally with the simple 

formulation. 

 

6 Conclusions 

   Optimal power flow is very important in the analysis 

and study of power distribution systems, especially in 

minimizing losses. In this paper, using the Taguchi 

method, the optimal power generation levels of wind 

turbine and photovoltaic cells and loads were selected as 

the uncertainty of the probabilistic optimal power flow 

problem by considering the correlation between random 

variables based on orthogonal arrays. And the genetic 

algorithm is used to minimize IEEE 30-bus distribution 

network losses and the losses were reduced from 

33 MW to 27.5 MW. It was also shown that in addition 

to the optimal levels of uncertainty values can be 

selected by considering the correlation using the genetic 

algorithm, these optimal levels obtained the optimal 

values of the control variables of the optimal power 

flow problem and the minimum amount of losses. In 

this paper, Monte Carlo simulation plays the role of a 

reference method that is used to compare Taguchi 

method results with the two-point estimation method. 

Examining the results, it can be seen that the Taguchi 

method has closer results to Monte Carlo simulation 

results, the rate of losses with the Taguchi method is 

lower than Monte Carlo simulation and has higher 

accuracy, and in terms of operating time of this Taguchi 

method is very high. Better than the reference method 

for the number of two levels for each correlated factor. 

The number of tests required for a three-level Taguchi 

method for each random variable is equal to the number 

of two-point estimation method steps and is not 

comparable to a two-level Taguchi method in terms of 

computational load, computational time, and 

complexity. Taguchi method in large networks due to 

the increase of uncertain modes Monte Carlo simulation 

working time is greatly increased and in this type of 

network it is better to use Taguchi method, but in 



Loss Reduction in Distribution Networks With DG Units by 

 
… M. Najjarpour et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 4, 2022 10 

 

medium and small networks in terms of working time, 

etc. Monte Carlo simulation is recommended. 

 
 

Intellectual Property 

   The authors confirm that they have given due 

consideration to the protection of intellectual property 

associated with this work and that there are no 

impediments to publication, including the timing of 

publication, with respect to intellectual property. 

 
 

Funding 

   No funding was received for this work. 

 
 

CRediT Authorship Contribution Statement 

M. Najjarpour: Conceptualization, Methodology, 

Software, Formal analysis, Writing - Original draft. 

B. Tousi: Supervision. S. Jamali: Investigation. 

 
 

Declaration of Competing Interest 

   The authors hereby confirm that the submitted 

manuscript is an original work and has not been 

published so far, is not under consideration for 

publication by any other journal and will not be 

submitted to any other journal until the decision will be 

made by this journal. All authors have approved the 

manuscript and agree with its submission to “Iranian 

Journal of Electrical and Electronic Engineering”. 

 

 

References 

[1] J. Carpentier, “Optimal power flows,” International 

Journal of Electrical Power & Energy Systems, 

Vol. 1, No. 1, pp. 3–15, 1979. 

[2] S. Li, W. Gong, L. Wang, X. Yan, and C. Hu, 

“Optimal power flow by means of improved 

adaptive differential evolution,” Energy, Vol. 198, 

p. 117314, 2020. 

[3] A. F. Soofi, S. D. Manshadi, G. Liu, and R. Dai, “A 

SOCP relaxation for cycle constraints in the optimal 

power flow problem,” IEEE Transactions on Smart 

Grid, Vol. 12, No. 2, pp. 1663–1673, 2020. 

[4] Y. Sun, B. Zhang, L. Ge, D. Sidorov, J. Wang, and 

Z. Xu, “Day-ahead optimization schedule for gas-

electric integrated energy system based on second-

order cone programming,” CSEE Journal of Power 

and Energy Systems, Vol. 6, No. 1, pp. 142–151, 

2020. 

[5] Z. Yan and Y. Xu, “Real-time optimal power flow: 

A Lagrangian based deep reinforcement learning 

approach,” IEEE Transactions on Power Systems, 

Vol. 35, No. 4, pp. 3270–3273, 2020. 

[6] D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, 

K. Baker, and J. King, “Learning-accelerated 

ADMM for distributed DC optimal power flow,” 

IEEE Control Systems Letters, Vol. 6, pp. 1–6, 2020. 

[7] A. Hauswirth, S. Bolognani, G. Hug, and 

F. Dörfler, “Generic existence of unique Lagrange 

multipliers in AC optimal power flow,” IEEE 

Control Systems Letters, Vol. 2, No. 4, pp. 791–796, 

2018. 

[8] A. M. Eltamaly, Y. Sayed, A. H. M. El-Sayed, and 

A. N. A. Elghaffar, “Optimum power flow analysis 

by Newton Raphson method, A case study,” Ann 

Fac Eng Hunedoara, Vol. 16, No. 4, pp. 51–58s, 

2018. 

[9] S. Ida Evangeline and P. Rathika, “Real-time 

optimal power flow solution for wind farm 

integrated power system using evolutionary 

programming algorithm,” International Journal of 

Environmental Science and Technology, Vol. 18, 

No. 7, pp. 1893–1910, 2021. 

[10] O. D. Montoya, W. Gil-González, and 

L. F. Grisales-Noreña, “Optimal power dispatch of 

DGs in DC power grids: A hybrid Gauss-Seidel-

genetic-algorithm methodology for solving the OPF 

problem,” WSEAS Transactions on Power Systems, 

Vol. 13, pp. 335–346, 2018. 

[11] H. Tehzeeb-Ul-Hassan, M. F. Tahir, K. Mehmood, 

K. M. Cheema, A. H. Milyani, and Q. Rasool, 

“Optimization of power flow by using Hamiltonian 

technique,” Energy Reports, Vol. 6, pp. 2267–2275, 

2020. 

[12] X. Pan, T. Zhao, M. Chen, and S. Zhang, “Deepopf: 

A deep neural network approach for security-

constrained dc optimal power flow,” IEEE 

Transactions on Power Systems, Vol. 36, No. 3, 

pp. 1725–1735, 2020. 

[13] V. Suresh, P. Janik, and M. Jasinski, “Metaheuristic 

approach to optimal power flow using mixed integer 

distributed ant colony optimization,” Archives of 

Electrical Engineering, Vol. 69, No. 2, pp. 335–348, 

2020. 

[14] S. Duman, S. Rivera, J. Li, and L. Wu, “Optimal 

power flow of power systems with controllable 

wind‐photovoltaic energy systems via differential 

evolutionary particle swarm optimization,” 

International Transactions on Electrical Energy 

Systems, Vol. 30, No. 4, p. e12270, 2020. 

[15] B. R. Prusty and D. Jena, “A critical review on 

probabilistic load flow studies in uncertainty 

constrained power systems with photovoltaic 

generation and a new approach,” Renewable and 

Sustainable Energy Reviews, Vol. 69, pp. 1286–

1302, 2017. 



Loss Reduction in Distribution Networks With DG Units by 

 
… M. Najjarpour et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 4, 2022 11 

 

[16] U. H. Ramadhani, M. Shepero, J. Munkhammar, 

J. Widen, and N. Etherden, “Review of probabilistic 

load flow approaches for power distribution systems 

with photovoltaic generation and electric vehicle 

charging,” International Journal of Electrical Power 

& Energy Systems, Vol. 120, p. 106003, 2020. 

[17] L. Tang and J. D. McCalley, “An efficient transient 

stability constrained optimal power flow using 

trajectory sensitivity,” in IEEE North American 

Power Symposium (NAPS), pp. 1–6, 2012. 

[18] C. S. Saunders, “Point estimate method addressing 

correlated wind power for probabilistic optimal 

power flow,” IEEE Transactions on Power Systems, 

Vol. 29, No. 3, pp. 1045–1054, 2013. 

[19] M. Marzband, A. Sumper, A. Ruiz-Álvarez, 

J. L. Domínguez-García, and B. Tomoiagă, 

“Experimental evaluation of a real time energy 

management system for stand-alone microgrids in 

day-ahead markets,” Applied Energy, Vol. 106, 

pp. 365-376, 2013. 

[20] J. Gu, L. Zhao, and C. Zhu, “Quasi-Monte Carlo 

method for probabilistic power flow considering 

uncertainty of heat loads,” in IEEE 3rd Student 

Conference on Electrical Machines and Systems 

(SCEMS), pp. 808–812, 2020. 

[21] A. Tamtum, K. M. Alajel, and K. M. Abusabee, 

"Maximum Area Aggregation Approach For 

Cumulant-Based Probabilistic Optimal Power Flow 

studies," 2020. 

[22] M. T. Ajmal and V. Mehar, “Probabilistic 

uncertainty and risk management in optimal power 

flow distribution system,” Research Journal of 

Engineering Technology and Medical Sciences, 

Vol. 3, No. 03, pp. 1–12, Sep. 2020. 

[23] Y. Liang, S. Tang, H. Tian, Z. Wang, X. Li, G. Li, 

and Z. Bie, “A chance-constrained optimal power 

flow model based on second-order cone,” in IEEE 

4th International Conference on HVDC (HVDC), 

pp. 1195–1200, Nov.2020. 

[24] S. Peng, J. Tang, W. Wang, F. Liu, and J. Zheng, 

“An unscented transformation based probabilistic 

power flow for studies on uncertainty sources in 

AC/DC grid,” in IEEE International Conference on 

Smart Grid and Smart Cities (ICSGSC), pp. 221–

226, 2017. 

[25] Y. Che, X. Wang, X. Lv, and Y. Hu, “Probabilistic 

load flow using improved three point estimate 

method,” International Journal of Electrical Power 

& Energy Systems, Vol. 117, p. 105618, 2020. 

[26] K. Teeparthi and D. Vinod Kumar, “Security-

constrained optimal power flow with wind and 

thermal power generators using fuzzy adaptive 

artificial physics optimization algorithm,” Neural 

Computing and Applications, Vol. 29, No. 3, 

pp. 855–871, 2018. 

[27] G. Carpinelli, R. Rizzo, P. Caramia, and 

P. Varilone, “Taguchi’s method for probabilistic 

three-phase power flow of unbalanced distribution 

systems with correlated Wind and Photovoltaic 

Generation Systems,” Renewable Energy, Vol. 117, 

pp. 227–241, 2018. 

[28] A. J. Conejo, M. Carrión, and J. M. Morales, 

Decision making under uncertainty in electricity 

markets. Springer, 2010. 

[29] S. Rajamand, “Optimal power flow using adaptive 

droop coefficients and considering the probability 

approach of renewable sources and load,” Iranian 

Journal of Electrical and Electronic Engineering, 

Vol. 18, No. 2, p. 2169, 2022. 

[30] R. Billinton and L. Gan, “Wind power modeling 

and application in generating adequacy assessment,” 

in IEEE WESCANEX 93 Communications, 

Computers and Power in the Modern Environment-

Conference Proceedings, pp. 100–106, 1993. 

[31] H. J. Touma, “Study of the economic dispatch 

problem on IEEE 30-bus system using whale 

optimization algorithm,” International Journal of 

Engineering Technology and Sciences, Vol. 3, 

No. 1, pp. 11–18, 2016. 

 

 

 

 

M. Najjarpour was born in 1997 in 

Urmia, West Azerbaijan, Iran. He 

received his Diploma and Pre-university 

degrees from Ferdowsi High School 

Tabriz in Tabriz in 2014 and 2015, 

respectively all in Mathematics and 

Physics fields. Winning the title of the 

first person of the Mathematical 

Olympiad in East Azerbaijan Province, 

Iran in 2011 and Member of Tabriz and Mathematics House 

and B.Sc. and M.Sc. degrees from Urmia University in Urmia 

in 2019 and 2021, respectively all in Electrical Engineering. 

He is currently working towards a Ph.D. degree in the 

Department of Electrical Engineering at Iran University of 

Science and Technology (IUST) in Tehran, Iran since Sep. 

2021. He was ranked first in M.Sc. and was accepted without 

exams by using the quota of talented students in M.Sc. and 

Ph.D. His field of interest includes power system protection, 

distribution systems protection, and automation. 



Loss Reduction in Distribution Networks With DG Units by 

 
… M. Najjarpour et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 4, 2022 12 

 

B. Tousi received the B.Sc. degree in 

Electronic Engineering from University 

of Tabriz, Tabriz, Iran. He received the 

M.Sc. and Ph.D. degrees both in Electric 

Power Engineering from Amirkabir 

University of Technology, Tehran, Iran, 

in 1995 and 2001, respectively. He is now 

a Professor at Faculty of Electrical and 

Computer Engineering, Urmia 

University, Urmia, Iran. His research interests include analysis 

and applications of power electronics and electric power 

system studies. 

 

S. Jamali received his B.Sc. from the 

Sharif University of Technology, Iran, in 

1979, M.Sc. from the University of 

Manchester, UK, in 1986, and Ph.D. from 

the University of London, City, UK, in 

1990, all in Electrical Engineering. 

Professor Jamali is currently with the 

School of Electrical Engineering at the 

Iran University of Science and 

Technology. He is a Fellow of the Institution of Engineering 

and Technology (FIET) and a Chartered Engineer in the UK. 

His research findings have been published in over 250 papers 

in journals and international conferences. His research areas 

include power system protection, electricity distribution 

systems, and railway electrification, where he is heavily 

involved in industrial consultancy. 
 

 

 

 

 

© 2022 by the authors. Licensee IUST, Tehran, Iran. This article is an open-access article distributed under the 

terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) 

license (https://creativecommons.org/licenses/by-nc/4.0/). 
 

https://creativecommons.org/licenses/by-nc/4.0/

	Nomenclature
	1 Introduction
	2 Problem Formulation
	2.1 Uncertainties Modeling
	2.1.1 Load Modeling
	2.1.2 Wind Power Plant Modeling
	2.1.3 Photovoltaic Modeling

	2.2 Correlation in RVs

	3 Orthogonal Arrays
	4 POPF With TM
	6 Conclusions
	Intellectual Property
	Funding
	CRediT Authorship Contribution Statement
	Declaration of Competing Interest
	References

