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Abstract: Bayesian Networks (BN) provides a robust probabilistic method of reasoning 
under uncertainty. They have been successfully applied in a variety of real-world tasks but 
they have received little attention in the area of load-frequency control (LFC). In practice, 
LFC systems use proportional-integral controllers. However since these controllers are 
designed using a linear model, the nonlinearities of the system are not accounted for and 
they are incapable to gain good dynamical performance for a wide range of operating 
conditions in a multi-area power system. A strategy for solving this problem due to the 
distributed nature of a multi-area power system, is presented by using a BN multi-agent 
system. This method admits considerable flexibility in defining the control objective. Also 
BN provides a flexible means of representing and reasoning with probabilistic information. 
Efficient probabilistic inference algorithms in BN permit answering various probabilistic 
queries about the system. Moreover using multi-agent structure in the proposed model, 
realized parallel computation and leading to a high degree of scalability. To demonstrate 
the capability of the proposed control structure, we construct a BN on the basis of 
optimized data using genetic algorithm (GA) for LFC of a three-area power system with 
two scenarios. 
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1   Introduction1 
Frequency changes in large scale power systems are a 
direct result of the imbalance between the electrical load 
and the power supplied by system connected generators 
[1]. Therefore load‐frequency control is one of the 
important power system control problems which there 
has been continuing interest in designing LFCs with 
better performance using various methods during the 
last two decades [2-12]. 

For example, [11] and [12] have provided two 
different decentralized LFC synthesizes that, [11] 
proposed two robust decentralized control design 
methodologies for LFC. The first one is based on 
control design using linear matrix inequalities (LMI) 
technique and the second one is tuned by a robust 
control design algorithm. However, in [12], a 
decentralized LFC synthesis is formulated as an HN-
control problem and is solved using an iterative LMI 
algorithm that gains lower order proportional–integral 
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(PI) controller than [11].   But all the above mentioned 
controllers are designed for a specific disturbance, if the 
nature of the disturbance varies, they may not perform 
as expected. Also they are model based controllers that 
are dependent to a specific model, and are not usable for 
large systems like power systems with nonlinearities, 
not defined parameters and model. 

Therefore, design of intelligent controllers that are 
more adaptive than linear and robust controllers is 
become an appealing approach [13-16]. 

BN [17] is one of the adaptive and nonlinear control 
techniques that can be applicable in the LFC design. 
BNs are powerful tools for knowledge representation 
and inference under conditions of uncertainty that has 
been applied to a variety of power system problems [18-
22]. It has been effectively used to incorporate expert 
knowledge and historical data for revising the prior 
belief in the light of new evidence in many fields. The 
main feature of the BN is that it is possible to include 
local conditional dependencies into the model, by 
directly specifying the causes that influence a given 
effect [20]. 

BNs can readily handle incomplete datasets and 
allow one to learn about causal relationships. It allows 
us to make predictions in the presence of interventions 
and in conjunction with Bayesian statistical techniques 
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facilitate the combination of domain knowledge and 
data. BN also offers an efficient and principled 
approach for avoiding the over fitting of data (there is 
no need to hold out some of the available data for 
testing), in another word using the Bayesian approach, 
models can be ‘smoothed’ in such a way that all 
available data can be used for training.  

Moreover, as BNs are based on learning methods 
then they are independent of environment conditions 
and can learn each kind of environment disturbances, so 
they are not model based and can easily scalable for 
large scale systems. They can also work well in 
nonlinear conditions and nonlinear systems. A major 
advantage of BNs over many other types of predictive 
and learning models, such as neural networks, is that the 
BN structure represents the inter-relationships among 
the data set attributes then human experts can easily 
understand the network structures and if it is necessary 
modify them to obtain better predictive models. 

In this paper, a Bayesian Networks multi‐agent 
control structure is proposed. It has one agent in each 
control area that provides an appropriate control signal 
according to load disturbances and tie-line power 
changes received from other areas. This technique has 
been applied to the LFC problem in a three-control area 
power system as a case study. In the new environment, 
the overall power system can be considered as a 
collection of control areas interconnected through high 
voltage transmission lines or tie-lines. Each control area 
consists of a number of generating companies (Gencos) 
that is responsible for tracking its own load and 
performing the LFC task. 

The organization of the rest of the paper is as 
follows. In Section 2, a brief introduction to BN and 
LFC problem is given. In Section 3, we explain how a 
load‐frequency controller can be work within this 
formulation. In Section 4, a case study of three‐control 
area power system which the above architecture is 
implemented for, is discussed. Simulation results are 
provided in Section 5 and paper is concluded in Section 
6. 
 
2   Backgrounds 

Sequential data arises in many areas of science and 
engineering. The data may either be a time series, 
generated by a dynamical system, or a sequence 
generated by a 1-dimensional spatial process. In such 
problems, it is desirable to find the probability of future 
outcomes as a function of our inputs and the BN is a 
way to find that. 

 
2.1 Graphical Models 

Graphical models are a combination of probability 
theory and graph theory. The base idea of a graphical 
model is that a complex system is consisted of simpler 
parts [23]. Probability theory side of graphical model 
ensures that the system as a whole is consistent and 
providing ways to interface models to data, however the 

graph theoretic side of it provides a way that humans 
can model highly-interacting sets of variables as well as 
a data structure that lends itself naturally to the design 
of general-purpose algorithms [23]. Actually a graphical 
model is a mathematical graph in that nodes are random 
variables, and arcs represent conditional independence 
assumptions between variables [23]. If there is no arc 
between two nodes, they are independent nodes else 
they are dependent variables. 

There are two main kinds of graphical models: 
undirected and directed. Undirected graphical models 
are more popular with the vision communities however 
directed graphical models (BNs) are more popular with 
the artificial intelligence and machine learning 
communities [23]. In a directed graphical model an arc 
from node A to B can be informally interpreted that A 
“causes” B, (Which A is the parent node of B and B is 
the child node of A) [23]. 
 

2.2   Bayesian Networks 
A BN is a graphical model that efficiently encodes 

the joint probability distribution for a large set of 
variables with relationships. Then they have become the 
standard methodology for the construction of systems 
relying on probabilistic knowledge and have been 
applied in a variety of real-worlds tasks [18]. 

A BN consists of (i) An acyclic graph S, (ii)A set of 
random variables x={x1,…,xn} (the graph nodes) and a 
set of arcs that determines the nodes (random variables) 
dependencies, and (iii) a conditional probability table 
(CPT) associated with each variable (p(xi|pai)). 
Together these components define the joint probability 
distribution for x. The nodes in S are in one-to-one 
correspondence with the variables x. In this structure, xi 
denotes both the variables and its corresponding node, 
and pai denote the parents of node xi in S as well as the 
variables corresponding to those parents. The lack of 
possible arcs in S encodes conditional indecencies. In 
particular given structure S, the joint probability 
distribution for x is given by, 
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For example see a simple BN in Fig. 1 which nodes 
represent binary random variables. The event “grass is 
wet" (W=true) has two possible causes: either the water 
sprinkler is on (S=true) or it is raining (R=true). The 
strength of this relationship is shown in the table below 
W that is W's CPT. For example, P(W = true | S = 
true,R = false) = 0.9 (second entry of second row), and 
hence, P(W = false | S = true,R = false) = 1 – 0.9 = 0.1, 
since each row must sum to one. Since the C node has 
no parents, its CPT specifies the prior probability that it 
is cloudy (in this case, 0.5) [23]. 

The basic tasks related to the BNs are: 
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Fig. 1 A simple Bayesian network [23]. 
 
• Structure learning phase: finding the graphical 

model structure. 
• Parameter learning phase: finding nodes 

probability distribution. 
• Bayesian network inference. 
The structure and parameter learning are based on 

the prior knowledge and prior data (training data) of the 
model. However the basic inference task of a BN 
consists of computing the posterior probability 
distribution on a set of query variables q, given the 
observation of another set of variables e called the 
evidence (i.e. p(q|e)). Different classes of algorithms 
have been developed that compute the marginal 
posterior probability p(x|e) for each variable x, given the 
evidence e. 

One of the important points in the BNs is that it 
doesn’t need to learn the inference data. Inference is a 
probabilistic action that obtains the probability of the 
query using prior probability distribution. 
 

2.3 Load Frequency Control 
A large-scale power system consists of a number of 
interconnected control areas [24]. Fig. 2 shows the 
block diagram of control area-i, which includes n 
Gencos, from an N-control area power system. As is 
usual in the LFC design literature, three first-order 
transfer functions are used to model generators, turbine 
and power system (rotating mass and load) units. The 
parameters are described in the list of symbols in [24]. 
Following a load disturbance within a control area, the 
frequency of that area experiences a transient change, 
the feedback mechanism comes into play and generates 
appropriate rise/lower signal to the participating Gencos 
according to their participation factors (αji) to make 
generation follow the load. In the steady state, the 
generation is matched with the load, driving the tie-line 
power and frequency deviations to zero. The balance 
between connected control areas is achieved by 
detecting the frequency and tie-line power deviations to 
generate area control error (ACE) signal which is, in 
turn, utilized in the PI control strategy as shown in Fig. 

2. The ACE for each control area can be expressed as a 
linear combination of tie-line power change and 
frequency deviation [24]. 

itieiii PfACE −Δ+Δ=β     (2) 

 
3   Proposed Control Framework 

In practice, the LFC controller structure is 
traditionally a proportional-integral (PI)-type controller 
using the ACE as its input as shown in Fig. 2. In this 
section, the intelligent control design algorithm for such 
a load frequency controller using Bayesian networks 
multi-agent technique is presented. 

Fig. 3 shows the proposed model for area i, that an 
intelligent controller have been used in this structure. It 
is responsible to find an appropriate supplementary 
control action. 

The objective of the proposed design is to control 
the frequency to achieve the same performance as 
proposed robust control design in [11, 12]. 

 
 

 
Fig. 2 LFC system with different generation units and 
participation factors in area i [24]. 
 
 

 
Fig. 3 The proposed model for area i. 
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3.1   BN Construction 
To illustrate the process of a BN construction, it is 

better to start by determining of the necessary variables 
for modeling. This initial task is not always 
straightforward. As part of this task we must (i) 
correctly identify the goal of modeling, (ii) identify 
many possible observations that may be relevant to the 
problem, (iii) determine what subset of those 
observations is worthwhile to model, and (iv) organize 
the observations into variables having mutually 
exclusive and collectively exhaustive states. 

In this algorithm, the aim is to achieve the 
conventional LFC objective and keep the ACE signal 
within a small band around zero using the 
supplementary control action signal (Fig. 2). Then the 
query variable in the posterior probability distribution is 
∆Pc signal and the posterior probabilities according to 
possible observations relevant to the problem are as 
follows, 

),,,( fLPtiePACEcPp ΔΔΔΔ  
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According to (3) there are so many observations that 
are related to this problem, however the best one that 
has the least dependency to the model parameters (e.g. 
frequency bias factor, etc) and causes the maximum 
effect on the frequency (speed) deviation and 
consequently ACE signal changes, are load disturbance 
and tie-line power deviation signals. Then the posterior 
probability that should be found is p(∆Pc|∆Ptie, ∆PL). 
 

3.2   Structure and Parameter Learning 
After determining the most worthwhile subset of the 

observations (∆Ptie, ∆PL), in the next phase of Bayesian 
network construction, a directed acyclic graph that 
encodes assertion of conditional independence is built. 
It includes the problem random variables, nodes 
conditional probability distribution and nodes 
dependencies. 

The basic structure of the graphical model is built 
based on the prior knowledge of the problem (see Fig. 
4). In this algorithm, for the simplicity, the most 
important parameters are taken into account: load 
disturbances and tie-line power changes [24]. Therefore 
in this method it is considered that ∆Pc signal dependent 
to ∆PL and ∆Ptie only, then finding the graphical model 
of Fig. 2 is very simple. 

In the next step of BN construction (parameter 

learning), the local conditional probability 
distribution(s) p(xi|pai) are computed from the training 
data. Probability distributions and conditional 
probability distribution related to this problem 
according to Fig. 4 are: p(∆PL), p(∆Ptie) and p(∆Pc|∆PL, 
). To find the above probabilities, training data matrix 
should be in the format of Table 1. Bayesian networks 
toolbox (BNT) [25] uses the training data matrix and 
finds the conditional probabilities related to the 
graphical model variables (This is the parameter 
learning phase). 

 
3.3   Bayesian Network Inferences 

Once a BN has been constructed (from prior 
knowledge, data or a combination), various probabilities 
of interest from the model are determined. In this 
problem we want to compute the posterior probability 
distribution on a set of query variables, given the 
observation of another set of variables called the 
evidence. The posterior probability that should be found 
is p(∆Pc|∆Ptie, ∆PL). This probability is not stored 
directly in the model, and hence needs to be computed. 
In general, the computation of a probability of interest 
given a model is known as probabilistic inference. Here 
BNT is used to probabilistic inference of the model. 

 
3.4   Finding Training Data based on GA 

As mentioned and is shown in the graphical model 
of a control area (Fig. 4), the essential parameters used 
for the learning phase among each control area are 
considered as ∆Ptie, ∆PL, and ∆Pc. 

Here genetic algorithm is used to find a related set of 
training data (∆Ptie, ∆PL, ∆Pc) and to gain better results 
as follow. 

GA produces a ∆Pc vector and the simulation is run 
(with the obtained ∆Pc) for a special load disturbance. 
Then the appropriate ∆Pc is evaluated based on the 
gained ACE signal. 

 

 

Fig. 4 The graphical model of area i. 
 
 
Table 1 Training Data Matrix. 

Time (sec) ∆Ptie (pu) ∆PL (pu) ∆Pc (pu) 
1 
… 

0.03 
… 

0.1 
… 

-0.08 
… 
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Each GA’s individual (∆Pc signal) is a double vector 
(population type) with 100 variables between [0 1] (the 
number of variables is equal to the simulation time). For 
simulation stage the vector values should be scaled to 
the valid ∆Pc changes of that area: [∆PcMin ∆PcMax]. 
∆PcMax is the maximum power change that can be 
effected within one AGC cycle (it is automatically 
determined by the equipment constraints of the system) 
and ∆PcMin is the minimum change that can be 
demanded in the generation. 

The start population size is equal to 30 individuals 
and it was run for 100 generations. Fig. 5 shows the 
results of running the proposed GA for area 1 of the 
three-control area power system given in [11, 12]. 

To find individual’s eligibility (fitness), ∆Pc values 
should be scaled to the according rang of that area 
(mentioned above). After scaling and finding the 
corresponding ∆Pc, the simulation is run for a special 
∆PL (a signal with 100 instances) and with above ∆Pc, 
for 100 seconds. The individual’s fitness is proportional 
to the average distances of gained ACE signal instances 
from zero after 100 seconds simulation. Each individual 
that causes to smaller fitness is the best one and the 
tuple (∆Ptie, ∆PL, ∆Pc) related to that simulation is one 
row of the training data matrix. 

This large training data matrix is partly complete 
and it can be used for parameter learning issue in the 
power system with a wide range of disturbances. Since, 
the BNs are based on inference and new cases (that may 
not include in the training set) can be inferred from the 
training data table, it is not necessary to repeat the 
learning phase of the system for different amounts of 
disturbances occurred in the system. 
 
4  Case Study: A Three-Control Area Power System 

As mentioned before, to illustrate the effectiveness 
of the proposed control strategy, a three-control area 
power system (same as example used in [11, 12]) is 
considered as a test system. It is assumed that each 
control area includes three Gencos and its parameters 
are given in [11, 12]. Then the proposed multi-agent 
structure for the three-control area power system is like 
Fig. 6. Our purpose here is essentially to show the 
various steps in implementation and illustrate the 
method. 

After providing the training set according to Section 
3, the training data related to each area are separately 
given to the BNT. The BNT uses the input data and do 
the parameter learning phase for each control area 
parameters. It founds prior and conditional probability 
distribution related to that area’s parameters, which 
according to Fig. 4, are p(∆PL) and p(∆Ptie). 

Following completing the learning phase, the power 
system simulation will be ready to run and the proposed 
model uses inference phase to find an appropriate 
control action signal (∆Pc) of each control area as 
follows: At each simulation time step, corresponding 
controller agents of each area, get  the  input  parameters 

 
Fig. 5 The result of running GA for area 1 of the three-control 
area power system given in [11, 12]. 
 
 

 
Fig. 6 The proposed multi-agent structure for three-control 
area power system.

 
 

(∆Ptie, ∆PL) of the model, and digitizes them for the 
BNT (the BNT does not work with continuous values). 
The BNT finds the posterior probability distribution 
p(∆Pc|∆Ptie, ∆PL) related to each area, then the controller 
agent finds the maximum posterior probability 
distribution from the return set and gives the most 
probable evidence ∆Pc in the control area. Using this 
change to the governors setting and the current values of 
the load disturbances the tie-line power deviation is 
integrated for the next time. 
 
5   Simulation Results 

To demonstrate the effectiveness of the proposed 
control design, some simulations were carried out. In 
these simulations, the proposed controllers were applied 
to the three-control area power system described in Fig. 
6. In this Section, the performance of the closed-loop 
system using the linear robust PI controllers [11,12] 
compared to the designed Bayesian networks multi-
agent controller will be tested for the various possible 
load disturbances. 
Case1: As the first test case, the following large load 
disturbances (step increase in demand) are applied to 
three areas: 
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∆Pd1=100 MW; ∆Pd2=80 MW; ∆Pd3=50 MW; 
The frequency deviation (∆f) area control error 

(ACE) and control action (∆Pc) signals of the closed-
loop system are shown in Fig. 7. 
Case 2: Consider larger demands by areas 2 and 3, i.e. 

∆Pd1=100 MW; ∆Pd2=100 MW; ∆Pd3=100 MW; 
The closed-loop responses for each control area are 

shown in Fig. 8. 
Using the proposed method the ACE and frequency 

deviation of all areas are properly driven back to zero, 
as well as robust controllers. Also, the convergence 
speed of the frequency deviation and the ACE signal to 
its final values are good; they attain to the steady state 
as rapidly as the signals in [11, 12]. However, the 
maximum frequency deviation occurs at 2 sec. in which 
load disturbances occur. 

 
 

(a) 
 

(b) 
 

(c) 
Fig. 7 System responses in case 1, (a) area 1, (b) area 2, (c) 
area 3, (Solid line: proposed method, dotted line: robust PI 
controller [11], dashed line: robust PI controller [12]).

(a) 
 

(b) 
 

(c) 
Fig. 8 System responses in case 2, (a) area 1, (b) area 2, (c) 
area 3, (Solid line: proposed method, dotted line: robust PI 
controller [11], dashed line: robust PI controller [12]). 

 
As shown in the above figures, the generation 

control signal deviation (DPc) change is low and it 
smoothly goes to the steady state and satisfies the 
system physical conditions well. Also, it is clear that the 
DPm (mechanical power deviation) is proportional to 
the participation factor of each generator precisely. 

Furthermore, assuming that the proposed algorithm 
is an adaptive algorithm and is based on the learning 
methods – in each state, it finds the local optimum 
solution so as to gain the system objectives (the ACE 
signal near zero) – therefore the intelligent controllers 
provide smoother control action signals. 
 
6   Conclusions 

A new method for LFC, using a Bayesian networks 
multi-agent based on genetic algorithm optimization has 
been proposed for a large-scale power system. The 
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proposed method was applied to a three-control area 
power system and was tested with different load change 
scenarios. The results show that the new algorithm 
performs very well, compares well with the 
performance of recently designed linear controllers. The 
two important features of the new approach: model 
independence from power system parameters and 
flexibility in specifying the control objectives, make it 
very attractive for this kind of applications. However 
the scalability of Bayesian networks multi-agent to 
realistic problem sizes is one of the great reasons to use 
it. In addition to scalability and benefits owing to the 
distributed nature of the multi-agent solution, such as 
parallel computation, Bayesian networks provide a 
robust probabilistic method of reasoning with 
uncertainty. They are more suitable to represent 
complex dependencies among components and can take 
into consideration load uncertainty as well as 
dependency of load in different areas. 
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