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Introduction

Abstract: Multicamera vehicle tracking is a necessary part of any video-based intelligent
transportation system for extracting different traffic parameters; such as link travel times
and origin/destination counts. In many applications, it is needed to locate traffic cameras
disjoint from each other to cover a wide area. This paper presents a method for tracking
moving vehicles in such camera networks. The proposed method introduces a new method
for handling inter-object occlusions; as the most challenging part of the single camera
tracking phase. This approach is based on coding the silhouette of moving objects before
and after occlusion and separating occluded vehicles by computing the longest common
substring of the related chain codes. In addition, to improve the accuracy of the tracking
method, in the multicamera phase, a new feature based on the relationships among
surrounding vehicles is introduced. The proposed feature is modeled by an exponential
distribution and can efficiently improve the efficiency of the appearance (space-time)
features when they cannot discriminate between correspondent and non-correspondent
vehicles; due to noise or dynamic condition of traffic scenes. A graph-based approach is
then used to track vehicles in the camera network. Experimental results show the efficiency
of the proposed method.

Keywords: Disjoint-Views, Multicameras, Occlusion, Tracking, Neighbors’ Relationships.

Evaluating most traffic parameters in a scene

Interests in intelligent transportation systems (ITS), as
an efficient way of monitoring and controlling traffic
conditions, come from problems caused by traffic
congestions; such as increase of travel time, air
pollution, fuel consumption, and reduce of
transportation infrastructure efficiency. In ITS, different
sensors provide raw data for the transportation
management center (TMC) via a communication
network. At the TMC, traffic parameters of each site are
analyzed and used in controlling signals and message
displays along with other traffic control devices.

Usage of video cameras, as powerful sensors for
collecting different data, has some main advantages
over traditional sensors (e.g., loop detectors). These
include the ease of installation, maintenance, and usage.
In addition, the cameras provide information that is
conceivable by human operators. By the extend of using
cameras in ITS, the role of computer vision for
automating the process of information extraction from
videos has become very crucial.
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requires finding and tracking moving vehicles in a
network of cameras. Traffic cameras, depending on
their applications, may have overlapped or non-
overlapped field of views. Camera overlap is helpful for
solving occlusion and depth estimation problems. But,
traffic cameras are usually placed non-overlapped
(especially in highways) and in a wide distance from
each other to cover wide areas to provide more data.
Tracking the objects as they move across disjoint
camera views is a challenging task and many factors
(including changing illumination conditions, different
viewing angles, shadows, occlusions, and
environmental noise) introduce major challenges in the
process.

In this paper, we present a method for tracking
vehicles in a network of disjoint-view cameras. The
method provides different modules for tracking vehicles
in videos captured by single cameras and tracks them in
a multicamera fashion. It presents new methods for
handling occlusion and improves the precession of
multicamera tracking process. The rest of the paper is
organized as follow. Section II reviews some related
work on vehicle tracking. In Section III, the proposed
multi-tracking method is explained. Experimental
evaluations of the proposed methods are presented in
Section 1V. Finally, the paper conclusion is derived in
Section V.
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2 Related Work

There are several frameworks for visual surveillance
reported in the literature [1], [2] and [3]. In this paper,
the framework reported in [1] is employed; because of
its completeness and widespread usage. This framework
is divided into several stages. Reviewing the work
related to each individual stage is a rather
comprehensive task. Several surveys exist which can
offer a proper introduction to the subject [4, 5, 6].

There are many tracking methods introduced in the
literature. They exhibit different abilities for handling
dynamic situations. For tracking multiple vehicles, it is
important to maintain the trajectory of moving vehicles
before, during, and after an occlusion situation. In [7],
three different general tracking methods are proposed;
namely, point tracking, kernel tracking, and silhouette
tracking.

In point tracking [8], [9] and [10], objects are
represented by some points that are corresponded in
consecutive frames. But, the method encounters
difficulties in handling the occlusion.

In kernel tracking [11], [12] and [13], the
representation of object is based on the primitive object
region and the parametric motion of the object is
computed from one frame to the next. The advantages
are in the use of simple geometric shapes and the
applicability of kernel tracking for both rigid and non-
rigid objects. A well-known kernel tracker is based on
the mean-shift method [24]. Mean-shift tracking
algorithm is an iterative scheme that is based on
histogram comparison of the original object in the
current frame and the candidate regions in the target
frame. The aim is to maximize the correlation between
these two histograms. Hybrid trackers that integrate the
respective advantages of mean-shift and particle filter
(MSPF) have achieved impressive success in robust
tracking [25]. The pivot of MSPF is to sample fewer
particles using particle filters. The particles are then
shifted to their respective local maximum of target
searching space by mean-shift. MSPF not only greatly
reduces the number of required particles, but also
remedies the deficiency of mean-shift. In the
experimental result section we will compare the
performance of our proposed tracker with mean-shift
and MSPF methods.

For objects with complex shapes (such as hands,
head, and shoulders) that cannot be well described by
simple geometric shapes, silhouette tracking provides an
accurate shape description of objects. The goal of a
silhouette-based object tracker is to find the object
region in each frame by means of object edges or
contour generated by using previous frames [14], [15]
and [16]. However, these methods often need a training
phase and are highly sensitive to the initialization step.

Although many works are reported for tracking
vehicles in a single camera phase, there are little works

that address multicamera tracking especially with non-
overlapped field of views. In [17], Shan et al. presented
an unsupervised learning approach for measuring edges
and matching the appearance between non-overlapping
views. The matching is based on computing the
probability of two observations from different views.
Since the method compares edge images of vehicles, the
images should be registered together. This constrains
the views of cameras to be somewhat similar. In [18],
Maden et al. proposed an algorithm for tracking
pedestrians in disjoint-view cameras that is based on
appearance representation and is capable of dealing with
small changes of pose. A matching strategy then
extends along the whole available tracks. Ellis et al. [27]
determined the topology of a camera network by finding
the entry and exit zones of each camera and the links
between them using the cooccurrence of entry and exit
events, assuming that correct correspondences will
cluster in the feature space (location and time).

Other type of trackers is based on Bayesian
formulation [19] and [20]. In [19], Huang and Russell
defined a physical event space over which probabilities
are defined. Then, given that a stream of observation of
many objects is available and by introducing an identity
criterion they were able to compute the probability that
any two objects are the same. In [20], Javed et al.
proposed an algorithm for tracking objects in a network
of nonoverlapping cameras. By using the kernel density
estimation, the algorithm learns the camera topology in
the form of multivariate probability density of space-
time variables. It also learns the subspace of inter-
camera brightness transfer functions to handle the
appearance change of an object as it moves from one
camera to another. That framework has been followed
in [28] and [29] with some novelties in modeling
features.

In this paper, we present an efficient method for
tracking moving vehicles in a network of disjoint-view
cameras, where more attention is paid on occlusion
handling in the single camera tracking phase along with
modeling new features for improving the accuracy of
multicamera tracking. This reasoning is valid especially
in highways where groups of vehicles tend to keep their
relationships through the road. Matching is then
performed separately for each pair of cameras by using
the assignment procedure. The proposed method, in
contrast to [19], learns the topology of movements and
presents a general approach that works not only for two
cameras, but also for a network of multi-cameras.

3 Proposed Multicamera Tracking Method

Figure 1 shows the overall block diagram of the
proposed multicamera tracking method. It contains the
stages of single camera tracking and fusion of
multicamera information.
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Fig. 1 Overall block diagram of proposed multicamera tracking methods.

3.1 Single Camera Tracking

Tracking as the process of finding and following
interested objects in video sequences, is one of the most
popular tasks in video surveillance methods. The input
to a single camera tracking module is a binary mask of
detected vehicles and the output is the trajectory of
vehicles. These trajectories are then used for extracting
traffic parameters. After detecting and classifying
objects as vehicles, it is time to track vehicles in a
sequence of frames. This is called data association;
which is the strategy of finding the best match for
obtained tracks. In this paper, we present a kernel
tracker for tracking the bounding box of objects using
Kalman filtering. The Kalman filter builds a model for
the state of the method that maximizes the a posteriori
probability of previous measurements.

Figure 2 shows the pseudo code of the proposed
vehicle tracking algorithm, which should be run on each
frame. First, an mxn match matrix is considered for m
tracks and n detected blobs. Then, this matrix is filled
by the overlap of predicted tracks and detected blobs.
This matrix can be used to analyze different cases that
have been occurred (including appearance of new
objects, object lost, matching, object split/merge, or any
combination of these cases). A good tracking algorithm
must efficiently handle these different situations. Figure
3 shows the pseudo code of the proposed process.

If (time ==0) { // the first frame
Consider a new track for each detected vehicle
¥
Elze {
For (all existing tracks) {
Predict new location and size of track by Kalman filter
Owerlap new location with all detected blobs
If{overap (track (1), blob (j))! =0)
Markmatch_matmx[i][j];
Analyze ( match-matnx); }
h

Fig. 2 Pseudo code of proposed vehicle tracking method.

When no match is found for a track, the track is lost.
But, the track should be kept alive for some frames
while the Kalman filter continues predicting the new
location of the track. If no match is found for that track,
during a period of time, it will be ignored. In the case of
object match, the Kalman filter and the track mask are
updated. We keep a binary mask for each track for the
occlusion reasoning algorithm that will be discussed
next.

Object splitting is resolved by assigning the largest
split part with the track and creating new tracks for the
remaining parts. Track merging or occlusion is the most
challenging part of data association. Inter-object
occlusion occurs when at least two blobs of tracks
merge together.
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Analyze (match_matrix){

For (ezch row of match_matrix){

If (row has no mark) // track lost

If (Tdead = threshold){
Delete track;
Tdead++;}

Else if (row has one mark){ / object match
Update mask & mean color;
Correct kalman filter;}

Else { /‘object split
if (this track is not virtual){
Assign the mest similar detectad object to it
Create new track for remaining object ;}

Else {//an occluded object 15 splittimg
Assign detected objects with their parents ;}

h’
J

For (gach column of matrix){
If (column has no mark) //new object
Consider a new track for this detectad object;
Else if{column has more than one mark)/object mergmg
occlusion_reasomg():

1
¥

}

Fig. 3 Pseudo code of proposed match matrix analyzer.

When a new track is created, a binary mask of object
is kept for it. To be more resistant against noise, a
Gaussian filter is used to smooth the mask. This mask is
updated when a match is found for the track. Thus, the
mask presents the most recent object shape. When
occlusion occurs, first we try to resolve the occlusion by
detecting tracks that are involved in that occlusion
situation and split the region of each track. If it is not
possible or reliable, we keep the information of
involving tracks to be able to recognize objects after
occlusion finishes. We explain these two steps in the
following subsections.

3.1.1 Usage of Chain Codes for Occlusion Resolving

An occlusion case is recognized when a column of
match matrix has more than one mark (i.e., a detected
blob has overlaps with more than one existing track). In
this case, occlusion has occurred among overlapping
tracks and thus we first split them.

The directional chain code has been widely used in
image retrieval for its simplicity and low storage
requirement. The first approach for representing digital
curves using chain code was introduced by Freeman in
1961 known as Freeman chain code (FCC). This code
follows the object contour in a counter clockwise
manner and keeps the track of directions as we go from
a pixel to the next. Here, an 8-connected FCC is used to
represent the vehicle contour.

By keeping an updated version of the track mask,
one can code the object contour by FCC. The shape of a
solid object does not change widely in consecutive
frames. Here, we use the Kalman filter not only for
predicting the new track location but also for predicting

Fig. 4 a) FCC of red car before occlusion {000777607766544
465432465432444322110211}. b) FCC of blue car before
occlusion{0007676000766644674324446543244322100021}.
¢) FCC of detected blob in occlusion interval
{0000777607766544465444443 2465412443221000212.

the new object size or even rotation angle. This
prediction helps us to scale and rotate the mask, to
compensate these changes.

After updating the mask of involved tracks in
occlusion situation, based on predicted size of the track,
the FCC of tracks and the detected blob are extracted.
One can expect common substrings between FCCs of
tracks and detected blob. Figure 4 shows the vehicle
mask before occlusion that scales in consecutive frames.
For this mask and detected blob, FCCs are extracted
after bring smoothed by a Gaussian filter. The next step
is the comparison of FCCs. We used the longest
common substring (LCS) algorithm for this comparison.
The LCS problem finds the longest string that is a
substring of two or more strings. One can find these
substrings in #(m+n) and compute them by dynamic
programming costs #(mn), where n and m are the
lengths of two codes. Note that as the LCS algorithm is
only run on the boundary of foreground mask and only
in the occlusion situation it is not time consuming.

The algorithm then finds other points of boundary,
which are not visible due to occlusion, based on the
common substring. It is probable to have more than one
LCS in FCCs. The question is then “Which LCS is the
best match for the track?”. Each common substring
separates a set of points with a bounding box, which is
assigned as the new track location. Consequently, the
best match is the one with the least distance to the
predicted location of the track.

3.1.2 Occlusion Management

Sometimes when the length of LCS is not so large or
when the distance of predicted track is far from the best
set of points, it is not reliable to split tracks. In these
cases, we propose an occlusion reasoning strategy as
follow (see Figure 5).

Once it is recognized that the object splitting is not
reliable, the reasoning algorithm can create a new
virtual track of the merged objects and assign these
objects as parents of a virtual track. The reasoning
algorithm tracks the merged object until the end of
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occlusion, and simultaneously predicts the objects
involved in occlusion using the parameters obtained
before occlusion. If a virtual track tends to split, these
parts are compared with track parents and the algorithm
decides two trajectories that have the minimum feature
distance. In essence, this occlusion reasoning does not
make any assumption on the number of objects
involving in occlusion. In addition, since it is based on
the object shape, it is useful for traffic sequences where
the range of vehicle colors is limited.

3.2 Multi View Vehicle Tracking

Tracking vehicles in a network of cameras with
disjoint views is the last module of the tracker. The
input to this module is the track list of different cameras
and the output is a list of correspondent vehicles in
different sites. In this paper, we use the formulation of
[20] to define the event space and to convert the
multicamera tracking problem into a minimization
problem. The probability of correspondence of two
given observations from two cameras is calculated
based on appearance and space-time features of
observations. Dynamic condition of environment such
as sudden changes of illumination, congestion, or stop
lights may invalidate this  probability  of
correspondences.

Thus, we suggest using the relationship among
vehicle neighbors to improve the accuracy of the
modeling. This reasoning is valid especially in
highways where groups of vehicles tend to keep their
relationships through the road. Matching is performed
separately for each pair of cameras using the assignment
problem.

3.2.1 Formulation

The multicamera tracking problem and the matching
algorithm are formulated for two cameras. Obviously,
this two-camera solution can be generalized for a
multicamera problem by considering each two pairs of
cameras, separately. A

We start by defining the used notations. Here, O,'
denotes the observation of object a, in camera i (C;), O'
denotes the set of all observations of all objects passing
C;, O is the set of all observations in C; and C, (i.e., O =
0' U 0%, K." is the correspondence of object a in C,
with object b in C,. Then, K,? is true if O,

tateeell

e
Fig. 5 Occlusion handling example. Two vehicles A and B
occlude each other at frame F4. A virtual track is kept for
them during occlusion. Virtual track splits at Frame F6. Split
parts are assigned with parents of virtual track.

corresponds to 0,2, and false otherwise. K is a matrix
representing a feasible solution of problem with m rows
and n columns where these are the number of
observations in C;and C,, respectively. The entry of row
i and column j of matrix K is denoted by K.

Now, consider two cameras C; and C, and the list of
observed vehicles tracks obtained from the single
camera tracking phase. The problem is then finding a
matrix K among all feasible solutions that maximizes
P(KJ|O); i.e., given all observations of tracks in C; and
C, if a set of correspondences K gives the maximum
probability that it is the solution. This problem is
equivalent to
K'=argmin ¢ (=log(P(K|0))) O]
in which S is the set of all possible correspondence
matrixes. Assuming that each matching between two
observations is conditionally independent of other
matches, we have

P(K[0) = I1

v K‘jeK where  K{=true

P(K}|0;.07) )

Now, the main questions are how to compute the
probability of correspondence of two given observations
O;' and O;” and how to solve this minimization problem.
We will address these two topics in the subsequent
sections.

When a certain camera C; observes some vehicles, it
generates a report consisting of various features. Thus,
the observation O,' in our method forms a feature
vector. We call the features of three first rows as space-
time (st) features and the mean color of vehicles during
the tracking process as the appearance (app) feature. In
addition, we use the appearance of a vehicle neighbors
as another clue to find the correspondence. Vehicles that
have a similar velocity and their time distance is less
than a threshold are hypothesized to be neighbors. To
compute the probability of (2) it is needed to estimate
the probability density function (PDF) of different
features. Since features listed in Table 1 are in three
distinct categories and are different in nature, three
different probability density functions are needed. Here,
the Parzen window is used as the correspondence
probability estimator of space-time features, while the
appearance is modeled by a multivariate Gaussian
distribution, and a heuristic method is applied to model
the probability of similarity within neighbors.

Modeling the space-time and appearance features,
by the Parzen window and Gaussian distribution,
requires a training phase to learn some correspondent
observations in that environment. Learning is done by
assuming that the correspondence is known. One way to
achieve this is to manually select the tracks of similar
vehicles. To facilitate this task, we developed a GUI
tool (see Figure 6). Having the probability of
appearance as well as the space-time and neighbors’
relationships, the probability of correspondence of two
given observations is given by
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Fig. 6 GUI tool for creating samples or ground-truth.

P(Ki[0f, 0f) =
(P(Kl(app)|0f,07) x P(Ki(st)|0f, 07 ))* x

j 1 2} 7%
P(KI(N\)|of,07) (3)
in which a is the weight of space-time and appearance
features against the neighbors’ relationships. This
probability is high when 1) two observations have a high
similarity of appearance and their space-time features
match together, or ii) the similarity of neighbors of two
observations is high enough. Note that using the
similarity of neighbors is helpful due to the fact that
traffic conditions are dynamic and space-time features
may not follow a single distribution.

Table 1 Various features of an observation.

Name Description Category

Time of exit from
region of interest
(ROI) of camera or
Time of entrance to
ROL

(x,y) location of
exit/enter to the
ROL

Texit /Tenter Space-time

Lexit /Lenter Space-time

Mean velocity of

v vehicle in the ROL

Space-time

Mean color of
Col vehicle in the ROI
(HSV).

Set of neighbors of
vehicle in ROL

Appearance

Neighbors’
Relationship

3.2.2 A Brief Review on Modeling Space-Time
Similarity of Observations

Kernel density estimation (or Parzen window)
method is a nonparametric way of estimating the PDF
of a random variable. Kernel density estimation (KDE)
makes it possible to extrapolate the data to the entire
population. If X;, X,, ..., X, is a d-dimensional
independent and identically-distributed (i.i.d.) samples
of a random variable, then the kernel density
approximation of its probability PDF is given by

F(X) = ! iker(H’%(X—Xi)) 4)

nf]
where n is the number of samples obtained from the
learning phase, ker is a kernel, and H is a dxd
smoothing matrix, called the bandwidth. To reduce the
complexity, H is assumed to be diagonal (i.e.,
H:diag[hlz,hzz,...,hdz]), and the diagonal elements are
estimated using the correspondent objects in the training
set. The multivariate kernel can be generated from the
product of symmetric univariate kernels

d
ker(X) = l—l[ker(xj) %)
e
where x; are the d-components of X. Quite often ker is
taken to be a standard zero-mean and unit-variance
Gaussian function. Thus, the variance is controlled
indirectly through the parameter h by

(x=xp?
X—Xj 1 ___5 (6)
ker (h_l) == 2 |

We use F(X) for calculating P(K{(st)|O;', O’ in (3).
In our method, X is a 7D vector comprising space-time
features of two given observations in C; and C,,
including L of 0y, Leyer of sz (x,y), difference of

Tenter Of sz and T.; of O;', and V of O;' and sz.

3.2.3 A Brief Review on Estimating the PDF of
Appearance Features

Given two observations O;' and sz, we define a
random variable Y that is the difference of the color of
Oil and sz. In our method, the mean and variance of
this variable is learned during the training phase by
observing similar objects in that environment.
Therefore, Y is a 3D vector representing the difference
of HSV color model components. Fitting a Gaussian
kernel to the mean and variance of Y, the PDF is
obtained by

F(Y)=;yexp<—§(Y—u>Tz-‘<Y—u)) @)
en'[Y |

where p is the mean and 2. is the variance of Y,

assuming that color channels are independent. We use
F(Y) to compute P(K/(app) |O;' , O;%) in (3).

3.2.4 Probability of Neighbors Similarity

In this section, we explain how to model the
neighbors’ similarity as a new feature introduced in our
formulation. Two vehicles are considered neighbors, if
their time distance and velocity difference are smaller
than a threshold. Vehicles tend to keep their relationship
as they move through highways (because of constrains
of speed in roads and less ramps between camera sites).
If N;' denote the set of all vehicles that are the neighbors
of vehicle i in C; and N;* denote the set of all vehicles
neighboring vehicle j in C,, the similarity of these two
groups is defined as

7= |N} | + |N]2| — 2Npaech 8)
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P(N{ similar N?|0},0?) = BeF% ©)

where “|S|” denotes the cardinality of set S, and Ny 1S
the number of correspondent vehicles in two sets with
close appearance similarity. Figure 7 shows the pseudo-
code of np,., calculation.

Nparch = 0
For (all ain N;%)
{

If (max, 2 (P(KZ (app)| 0L, 07)) > Threshold)

Ngstcr™ Ngmen T 1

}

Fig. 7 Proposed pseudo code for computing 0, in (11).

As this figure shows, Ny, increases when the
maximum appearance similarity of a member of N;'
with all members of sz resides in an acceptable range.
By having the number of matches in two sets, a new
variable, called Z, is computed. Since N, iS at most
max(|N}' |, [N?|), Z is always nonnegative, and thus we
can model the probability of Z by an exponential
density function (9). This function reaches its maximum
value when the number of matches in two sets is the
most, and decreases when ny,, reduces. B adjusts the
slop of the exponential function and should be set so
that when n,,, equals zero the function value vanishes.
At this stage we can model the probability of similarity
of neighbors of two observations by this exponential
function. Figure 8 shows an example of the probability
calculation.

3.2.5 Finding Correspondence

Having the probability of correspondence of each
two corresponding observations in C; and C,, it is time
to find the solution matrix K, such that it minimizes (1).
We begin with the simplest case where all vehicles
detected in C,; are also detectable in C,. In this case, a
most probable assignment (pairing all vehicles) can be
found by formulating the problem as a weighted
bipartite matching problem and using any of several
well-known algorithms of bipartite graph matching. To
do this, a bipartite graph is constructed where nodes in
the left and right partitions are represented by O;' and
sz, respectively, and the edge between these nodes is
represented by -log P(K{ |0;', O).

A match in a graph G = (V, E) is a subset of M
edges E such that no two edges in M share a common
vertex V; V= (AUB) denotes a bipartite graph, where A
and B are two kinds of vertices. A match in a bipartite
graph assigns vertices of A to vertices of B. A
maximum cardinality match is a match with the
maximum number of edges. If the edges of the graph
have associated weights, then a minimum weight match

Vehicle | Vehicle j

Fig. 8 Example of calculating probability of similarity of
neighbors of two vehicles. Vehicles i and j are observed by C,
and C, cameras. N;' and sz are neighbors of i and j. Here,
Nimaieh 1S set to 2 (because green vehicle in N;' has maximum
appearance similarity with green vehicle in sz) that is more
than threshold. This also is true for two yellow vehicles. From
Eq. (8), Z=(3+2)-4 =1, so similarity of this two sets is ﬁe'ﬁ.

is a match for which the sum of edge weights is
minimized. A minimum-weight maximum-cardinality
match is a match with the least weight. The best known
algorithm with polynomial time bound for weighted
bipartite match is the classical Hungarian method due to
Kuhn [23], which runs in time O(|V| ([E |+ [V| log|V])).
Weighted bipartite match algorithms can be
implemented efficiently and can be applied to graphs
with reasonably large sizes.

In a general case, vehicles can appear or disappear in
connections between cameras (i.e., number of
observations is not equal in two cameras). A minimum
weight maximum cardinality match, on the other hand,
would always return the match with maximum
cardinality. It guarantees that every vertex in A is
matched to a vertex in B. Thus, to handle this case, we
used the method in [19] that adds extra nodes to each
partition. With m and n vehicles in C; and C,,
respectively, the bipartite graph has m+ n nodes in each
part to allow all possibilities. Extra nodes are called
virtual nodes. In this form, three kinds of edges are
distinguishable; namely, edge between two real nodes,
edge from a real node to a virtual node, edge from a
virtual node to a real node, and edge between two
virtual nodes. The edge weight of the first kind is as the
case for which there is no virtual nodes in the method
(described above). Edge weights of the second and third
groups are equal to the —log of the probability of exit
between two camera sites and —log of the probability of
entrance between two cameras. The probability of
exit/enter can be assessed as a prior knowledge in the
training phase. The forth group has edges of zero
weight.

4 Experimental Results

As there is no standard database available for
evaluating  the performance of disjoint-view
multicamera trackers, in this paper, the proposed
tracking method was tested on two provided datasets.
The first dataset is a set of videos captured from Resalat
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tunnel prepared by Tehran traffic control center. Each
sequence in this dataset has a frame rate of 25
frames/second and resolution of 640x480 pixels/frame.
The sequences are captured by two cameras placed in
east to west of the tunnel in opposite directions. This set
is in low quality and populous. The second dataset is
recorded by our group for this work. It contains a set of
videos captured from Kordestan highway by three
cameras placed in a distance of about 500 m apart. Each
sequence has a frame rate of 25 frames/second and
resolution of 576x720 pixels/frame. Vehicles move in
one direction from north to south. There are some ramps
between camera sites. Also, some vehicles miss or
appear in successive cameras. Figure 9 shows the
location of these cameras.

Conducted experiments consider two steps of single
camera tracking and multicamera information fusion.
Each step has its related metric for evaluation.

Fig. 10 Single camera tracking results.

In the single camera tracking method, the efficiency
of tracker is defined by the ratio of the number of
vehicles tracked correctly to the actual number of
vehicles as defined in [20]

ef ficiency
_ Number of Vehicles correctly tracked by method

actual number of vehicles
x 100

(10

Table 2 lists the result of this criterion along with the
comparison of our proposed method with [24] and [25],
on the two datasets. As these results show, the
efficiency of the proposed single camera tracker is the
same or even more than the hybrid method which is
based on mean-shift and particle filtering. As expected,
the results on Resalat tunnel are low due to low
resolution of the frames. Figure 10 shows the result of
this tracker on some frames of this dataset.

Table 2 Result of Eq. (25) on two datasets.

Mean-
Mean-
Number . Shif +
shift Proposed
Camera Site of Particle
Method o Method
Frames Filtering
[30]
[31]

Kordestan
Highway, 855 %68 %93 %93
Camera 1
Kordestan
Highway, 1300 %76 %95 %95
Camera 2
Kordestan
Highway, 1770 %70 %82 %88
Camera 3

Resalat

Tunnel, 260 %68 %73 %89
Camera 1

Resalat

Tunnel, 305 %50 %62 %75
Camera 2

For multicamera tracker, a training phase is required
to learn the corresponding vehicles in that environment.
As shown in Figure 6, a GUI was developed to facilitate
the manually creation of correspondent vehicles. In the
training phase, it is not needed to find correspondence
for all vehicles, but the number of samples should be
high enough to estimate the space-time and appearance
probabilities properly. In the testing phase,
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correspondences are computed using the proposed

multicamera vehicle tracking algorithm. In our 078 ol e
assignment strategy, a real node may correspond to a —& — (203
real or virtual node. Therefore, it is probable that the o7l P
number of matches be less than the actual number of P \\\E
matches. We use the recall and precision criteria to i
evaluate the process [7] i - ’ 4
0 o # 4
D% - E”
recall = 100 X =l et
true number of matches method finds an L B
actual number of matches a”
0.55F 3
L. e
precision " o~
= 100 (12) |
true number of matches method finds U6 0m uss 0 o0m 09 092 095 0% 0@

total number of matches method finds

alfa

Tables 3 and 4 summarize these results for two Fig. 11 F-score measure on the data of tables 3 & 4.

scenarios of passing from Camera 1 to 2, and from 2 to
3. In each case, about 35 vehicles pass from each
camera where about 12 vehicles are common between
Cameras 1 and 2, and about 15 vehicles are common
between cameras 2 and 3. Results of Equation (3) for
different values of a are presented, where a=1 is true for
the case in which neighbors’ relationships are not
considered at all; which is equal to the method of Javed
in [20]. For brevity, formulas are written concisely. To
better decide on the best o, the F-score measure is used
that is in fact the harmonic mean of precision and recall.

precision+recall (13)
Figure 11 shows the result of the F-score measure on
the data of Table 3 and 4. As the results show, for
Camera | and 2 the value of 0.95 for a gives the best
result while this happens in 0=0.9 for Camera 2 and 3.
In addition, o should be high; because the appearance
and space-time features are important hints and as
Figure 11 shows selecting o less than 0.85 can result
worse than the case in which neighbors’ relationships
are not considered at all. Generally, the selection of o
depends to the used database and environmental
condition. Figure 12 shows the result of our matcher for
three vehicles in the environment.

2precisionxrecall
F — score = “E=onxeee

Fig. 12 Multicamera tracking results.

Table 3 Recall measure for different as.

formula P(app)*p(st). [26

o P(app)*P(st) + (1-a)P(N) (app)p(s0). [26]
cameras 0 =0.80 o =0.85 o=0.90 a=0.95 0=0.99 o=1
C-C, 0.44 0.53 0.60 0.64 0.66 0.54
C,-Cy 0.53 0.62 0.65 0.64 0.59 0.55

Table 4 Precision measure for different os.

formula o P(app)*P(st) + (1-a)P(N) P(app)xp(st). [26]
cameras o =0.80 o =0.85 o=0.90 o=0.95 o=0.99 o=1
C-C, 0.58 0.61 0.62 0.78 0.69 0.67
Cy-Cs 0.64 0.66 0.68 0.68 0.73 0.68
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5 Conclusion

In this paper, an efficient method for tracking
moving vehicles by using multicameras with disjoint
views was presented. We introduced our solutions for
tracking vehicles in a sequence of video frames
captured by single cameras based on coding the shape
of objects before and after occlusion. As the method
does not require any hypothesis on the number of
vehicles involved in occlusion it is suitable for traffic
scenes due to its shape-based reasoning. Multicamera
tracking was formulated using the appearance, space-
time, and vehicle neighbors’ relationships. The
reasoning required estimating different probabilities for
correspondence of observations. Matching was
performed by a bipartite graph and the assignment
problem. Experimental results showed the efficiency of
proposed method.

Acknowledgement
We would like to express our gratitude for Tehran
traffic control center for providing us with the Tehran

Resalat tunnel dataset.

References

[1] Hu W., Wang T. and Maybank S., “A Survey on
Visual Surveillance of Object Motion and
Behaviors”, IEEE Transactions on Methods,
Man, and Cybernetics, Vol. 34, No. 3, pp. 334-
352, Aug. 2004.

[2] Moeslund T., Hilton A. and Kruger V., “A
Survey of Advances in Vision-Based Human
Motion Capture and Analysis”, Journal of
Computer Vision and Image Understanding,
Elsevier Science Inc., New York, NY, USA, pp.
90- 126, 2006.

[3] Valera M. and Velastin S., “Intelligent
Distributed Surveillance Methods: A Review”,
IEEE Proceedings on Vision, Image, and Signal
Processing, Vol. 152, No. 2, pp.192-204, April
2005.

[4] Kastrinaki V., Zervakis M. and Kalaitzakis K.,
“A Survey of Video Processing Techniques for
Traffic Applications”, Image Vision Computing,
Vol. 21, No. 4, pp.359-381, 2003.

[5] Moeslund T., Hilton A. and Kruger V., “A
Survey of Advances in Vision-Based Human
Motion Capture and Morris, Analysis”, Journal
of Computer Vision and Image Understanding,
Vol. 104, No. 2, pp. 90-126, Nov. 2006.

[6] Morris T. and Trivedi M., “A Survey of Vision-
Based Trajectory Learning and Analysis for
Surveillance”, IEEE Transactions on Circuits and
Methods for Video Technology, Vol. 18, No. 8§,
pp. 1114-1127, Aug. 2008.

[71 Yilmaz A., Javed O. and Shah M., “Object
tracking: A survey”, ACM Computing Surveys
(CSUR), Vol. 38, No. 4, pp.13-58. 2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Salari V. and Sethi 1. K., “Feature point
correspondence in the presence of occlusion”,
IEEE Transactions on Pattern Analysis Mach.
Intell., Vol. 12, No. 1, pp. 87-91, 1990.

Veenman C., Reinders M. and Backer E.,
“Resolving motion correspondence for densely
moving points”, IEEE Transaction on Pattern
Analysis Mach. Intell., Vol. 23, No. 1, pp. 54-72,
2001.

Streit R. L. and Luginbuhl T. E., “Maximum
likelihood method for probabilistic
multihypothesis tracking”, Proceedings of the
International Society for Optical Engineering
(SPIE), pp. 394-405, 1994.

Comaniciu D., Ramesh V. and Andmeer P.,
”Kernel-based object tracking”, IEEE
Transaction on Pattern Analysis Mach. Intell.,
Vol. 25, No. 5, pp. 564-575, 2003.

Malik J. and Russell S., “A Machine Vision
Based Surveillance Method for California
Roads”, PATH project Mov-83 Final Report,
University of California, Berkeley, 1994.

Senior A., Hampapur A., Tian L., Brown L.,
Pankanti S. and Bolle R., “Appearance models
for occlusion handling”, Image and Vision
Computing, Vol. 24, No. 11, pp.1233-1243, 2006.
Bertalmio M., Sapiro G. and Randall G,
“Morphing active contours”, IEEE Transactions
on Pattern Analysis Mach. Intell.,Vol. 22, No. 7,
pp- 733-737, 2000.

Kang J., Cohen I. and Medioni G., “Object
reacquisition  using  geometric  invariant
appearance model”, International Conference on
Pattern Recongnition (ICPR), pp.759-762, 2004.
Sato K. and Aggarwal J., “Temporal spatio-
velocity transform and its application to tracking
and interaction”, Comput. Vision Image
Understand, Vol. 96, No. 2, pp. 100-128, 2004.
Shan Y., Sahwney H. S. and Kumar R,
“Unsupervised learning of discriminative edge
measures for vehicle matching between
nonoverlapping cameras,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.
30, No. 4, pp. 700-711, April 2008.

Madden C., Cheng E. D. and Piccardi M.,
“Tracking people across disjoint camera views by
an illumination-tolerant appearance
representation”, Machine Vision and
Applications, Vol. 18, No. 3, pp. 233-247, August
2007.

Huang T. and Russell S., “Object identification in
a bayesian context”, Proceedings of IJCAI, pp.
1267-1283, 1997.

Javed O., Shafique K., Rasheed Z. and Shah M.,
“Modeling  inter-camera  space—time  and
appearance relationships for tracking across
nonoverlapping views”, Computer Vision and

Shabani Nia & Kasaei: Moving Vehicle Tracking Using Disjoint-View Multicameras 177



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

178

Image Understanding, Elsevier Science Inc., Vol.
109, No. 2, pp. 146-162, February 2008.

Xiao M., Han C. Z. and Zhang L., “Moving
Shadow Detection and Removal for Traffic
Sequences”, International Journal of Automation
and Computing, Vol. 4, No. 1, pp. 38-46, January
2007.

Hu W, Hu M., Zhou X., Tan T. et al., “Principal
Axis-Based Correspondence between Multiple
Cameras for People Tracking”, I[EEE
Transactions On Pattern Analysis And Machine
Intelligence, Vol. 28, No. 4, pp. 663-671, 2006.
Kuhn H. W., “The hungarian method for the
assignment problem” , Naval Research Logistics
Quarterly, pp. 83-97, 1955.

Comaniciu D., Ramesh V. and Andmeer P.,
“Kernel-based object tracking”, IEEE
Transactions on Pattern Analysis, Mach. Intell,
Vol. 25, No. 5, pp. 564-575, 2003.

Chen T. P., Haussecker H., Bovyrin A. et al,
“Computer Vision Workload Analysis: Case
Study of Video Surveillance Methods”, Intel
Technology Journal, Vol. 9, No. 2, pp. 109-118,
2005.

Shabaninia E. and Kasaei S., “A novel vehicle
tracking method with occlusion handling using
longest common substring of chain-codes”,
International CSI conference (CSICC2009),
Tehran, Iran, Oct. 2009.

Makris D., Ellis T. J. and Black J. K., “Bridging
the gaps between cameras”, [EEE Conf. on
Computer Vision and Pattern Recognition, pp.
205-210, 2004.

Shabaninia E. and Kasaei S., “Neighboring
Vehicles Modeling for Tracking across
Nonoverlapping Cameras”, [ranian Conference
on Electrical Engineering (ICEE2010), Isfahan,
Iran, May 2010.

Chen K., Lai C., Hung Y. and Chen C., “An
Adaptive Learning Method for Target Tracking
across Multiple Cameras”, IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 1-
8, 2008.

Elham Shabaninia was born in Iran, in
1984. She received the B.S. and M.S.
degrees both in Computer Engineering
from Shahid Bahonar University of
Kerman and Sharif University of
Technology of Tehran in 2006 and 2009,
respectively. She is currently working as
a lecturer in the Department of
Computer Engineering at  Shahid
Bahonar University of Kerman. Her
research interests are object tracking,
machine vision and video processing.

Shohreh Kasael received the B.Sc.
degree from the Department of
Electronics, Faculty of Computer and
Electrical Engineering, Isfahan
University of Technology (IUT), Iran,
in 1986. She worked as research
assistance in Amirkabir University of
Technology (AUT), for three years.
She then received the M.Sc. degree
from the Graduate School of
Engineering, Department of Electrical
and Electronic Engineering, University of the Ryukyus, Japan,
in 1994, and the Ph.D. degree from Signal Processing
Research Centre (SPRC), School of Electrical and Electronic
Systems Engineering (EESE), Queensland University of
Technology (QUT), Australia, in 1998. She was awarded as
the best graduate student in engineering faculties of University
of the Ryukyus, in 1994, the best Ph.D. student studied in
overseas by the ministry of Science, Research, and
Technology of Iran, in 1998, and as a distinguished researcher
of Sharif University of Technology (SUT), in 2002 and 2010,
where she is currently a professor. She is the director of Image
Processing Lab (IPL) at Sharif University of Technology. Her
research interests are in image processing with primary
emphasis on multi-resolution texture analysis, 3D computer
vision, 3D object tracking, 3D model building, scalable video
coding, image retrieval, video indexing, face recognition,
hyperspectral change detection, video restoration, fingerprint
authentication, and watermarking.

Iranian Journal of Electrical & Electronic Engineering, Vol. 7, No. 3, Sep. 2011



