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Abstract: We present an efficient method for the reduction of model equations in the 

linearized diffuse optical tomography (DOT) problem. We first implement the maximum a 

posteriori (MAP) estimator and Tikhonov regularization, which are based on applying 

preconditioners to linear perturbation equations. For model reduction, the precondition is 

split into two parts: the principal components are considered as reduced size 

preconditioners applied to linear perturbation equations while the less important 

components are marginalized as noise. Simulation results illustrate that the new proposed 

method improves the image reconstruction performance and localizes the abnormal section 

well with a better computational efficiency. 
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1 Introduction
1
 

Diffuse optical tomography (DOT) involves the 

technique of using Near Infrared light for imaging 

specific parts of the body by diffusive nature of photons 

in turbid media. It has the advantages of good temporal 

resolution an order of magnitude faster than functional 

MRI, which is also portable, low-cost, non-invasive and 

non-ionizing. Furthermore, it offers unique 

physiological information about the metabolic status 

that is unavailable from other imaging methods [1,2]. It 

is also useful for obtaining information about tissue 

abnormalities, such as breast and brain tumors. For 

these reasons, DOT is becoming a useful complement to 

the current tomographic modalities. 

Despite the unique feature it possesses, the extracting of 

optical properties or image reconstruction in DOT is a 

nonlinear, ill-posed problem which usually suffers from 

a low spatial resolution. To remedy these, various 

approaches including regularization and Bayesian 

methods with spatial prior have drawn a significant 

attention. These approaches have led to the development 

of many enhanced diffuse optical imaging systems such 

as MR-guided optical breast imaging [2] and the X-ray-

guided DOT systems [3]. Owing to sparse and 

correlated measurements data, Bayesian methods are 

suitable. In such problems, which are solved by iterative 
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methods, for stabilization and better convergence, the 

solution space must be small. These constraints lead to 

extensive and over determined system of equations so 

that model reduction to efficiently minimize 

computation and model retrieving criteria to refine 

model error are often required.  

In the literature, some methods for model reduction are 

proposed. Popular methods are bound to tessellate the 

domain for the forward problem into sparse or coarse 

meshes or truncate the model, which has some 

disadvantages such as reduction of image quality. In [4] 

a model reduction method with better performance is 

proposed. It represents computational model inaccuracy 

as a random variable or noise. But in this method, the 

non-linearity nature of the optimization problem has 

some disadvantages such as restriction of applying some 

criteria or constraints, e.g. regularized total least squares 

(RTLS) and principal component analysis (PCA), both 

of which are used in this paper. Also, lack of prior 

information in model reduction has some disadvantage 

such as blind and case sensitive model reduction. 

An efficient framework for model reduction in DOT is 

presented in this paper. For this reason, the principal 

components of covariance matrices are considered as 

the preconditioner matrices. However, the less 

important ones are marginalized as noise. This type of 

preconditioners, have properties such as maximum a 

posteriori (MAP) estimator and Tikhonov 

regularization, which simplify applying proposed 

methods without changing the linearity of the problem. 

In this paper, model reduction and refinement is 

performed using PCA method and RTLS criteria 

respectively, for treating the linearized preconditioned 

DOT problem. All of the proposed methods in this 
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paper are concentrated in one algorithm which is named 

PCAME (Principal Component analysis with 

marginalization errors). In this paper, we have 

compared proposed PCAME algorithm with traditional 

model reduction methods. 

This paper is organized as follows: In Section 2, some 

useful theories in DOT are discussed. In Section 3, 

numerical methods for solving linear equations which 

we are concerned with are recalled. Section 4 introduces 

a method for reduction of the model size which is 

named PCAME algorithm. Simulation results 

illustrating the performance of the proposed methods in 

DOT problems are presented in Section 5. Section 6 

contains the conclusions. 

 

2 Diffuse Optical Tomography 

2.1  Diffusion Approximation 

Light photons undergo absorption and scattering 

processes when passed through domains such as tissue 

and the diffusion equation approximates the bulk light 

propagation under the assumption that the diffuse 

fluency behaves as though the scattering is uniformly 

isotropic with a reduced scattering coefficient, 
s
′µ , when 

measured over long distances [5,6]. This condition 

exists under the assumption that scattering dominates 

over absorption which is true in the case of several 

tissue types, including the human breast, in the 

wavelength region of 650-1350 nm [2]. Let 
PR (p 2,3)Ω ⊂ =  denote the domain under test. In the 

frequency-domain, this differential equation can be 

described accurately by the Diffusion Approximation 

(DA) which is expressed by [2,7]: 

 

( ) a
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where ),r( ωΦ  is the photon density at position r and 

modulation frequency ω (in this work, ω = 100MHz), 

a s(r) 1/ 3( )′κ = µ +µ  denotes the spatially varying 

diffusion coefficient with absorption coefficient aµ  and 

reduced scattering coefficient sµ′ , c is the speed of light 
in the medium, p=2,3 is the dimension of the domain, 

0
q (r, )ω  is the isotropic source term and i 1= − . In the 

DA, it is assumed that the angular distribution of the 

radiance is almost uniform. This assumption can be 

achieved within highly scattering medium (
s a
′µ >> µ ) 

relatively far (a few 
s

1/ ′µ ) from the sources [2,8]. 

DA can be solved using standard numerical techniques, 

and here a finite element model (FEM) for this equation, 

has been applied. After solving this equation, one can 

obtain the fluency for a given distribution of optical 

properties by applying suitable boundary conditions. In 

this paper, a Robin (Type III) boundary condition is 

used, which is given as follows [2,9]: 

 

1 (r, )
(r, ) (r) g(r, )

2
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where g(r, )ω  models the boundary sources, γ  is a 
dimension-dependent constant 

2 3
( 1/ , 1/ 4)γ = π γ =  and 

ν is the outer normal at boundary domain, Ω∂ . 

 

2.2  Image Reconstruction 

Image reconstruction methods in DOT differ in the type 

of data being considered, the type of solutions being 

sought, the physical model assumed for light 

propagation, and in the algorithmic details [10,11], 

which is always done by sequential solving of two 

problems, forward and inverse problems. Roughly 

speaking, the forward problem in DOT describes the 

photon propagation in tissue and is usually formulated 

by the DA equation. The inverse problem consists in 

retrieving the spatially varying image of the object by 

comparing predicted and actual measurements. In this 

paper, the forward problem is solved with Finite 

Element based methods (FEM). The key principle in the 

FEM is the reduction of the general, continuous 

problem to one of matrix algebra of finite size [12]. 

Each node in the FEM mesh is labeled according to the 

region obtained from simulated MRI images [13]. In the 

inverse problem, the actual and predicted measurements 

are often used by optimization based procedure to get 

the retrieved image. 

The inverse problem solving methods are divided into 

two classes, which are the linear methods based on 

perturbation theory and the non-linear methods based on 

optimization approach [10]. Two main distinctions exist 

between linear and non-linear methods. In the former 

category, a perturbation model is postulated which 

corresponds to the first term in a Born or Rytov 

expansion of the Lippman–Schwinger equation [13]. 

We have employed the perturbation approach with a 

first-order Rytov approximation in the frequency 

domain [7,11]. The second approach considers the 

model in terms of explicit parameters and adjusts these 

parameters in order to optimize an objective function 

combining a data fitting and regularization term. The 

nonlinear minimization problem is usually solved 

iteratively using gradient methods such as the nonlinear 

conjugate gradient [14,15] or Newton based methods 

[11] to minimize the objective function over the search 

space of optical parameters. Newton based methods 

converges faster owing to the contribution of higher 

order information. However, the price paid is the 

reduction in robustness, i.e. it is more sensitive to poor 

initial estimates than the conjugate gradient (CG) 

method. To provide a significant computation time and 

error saving of Hessian matrix (second derivative of 

forward model) which is used in Newton based 
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methods, a Gauss–Newton approach [11] to the inverse 

solver in optical tomography is used.  

It is shown that [10], the linear methods has a good 

performance such as robustness for poor initial 

estimates in the first stage of the iterative process. But 

in the final stages of the iterations, where the estimate of 

optical property is closed to the actual ones, Gauss–

Newton method is very good because of its quadratic 

convergence and low oscillation during convergence 

[11]. For this reasons, we have used the linear 

perturbation method at the first and the non-linear 

Gauss–Newton method at the final stage. In order to 

focus on numerical aspects of perturbation and Gauss-

Newton equations, they can be represented in the matrix 

form by concerning with the solution of large linear 

equation systems contaminated by additive Gaussian 

noise: 

 

m n n mb Ax e, A R , x R , b,e R ,×= + ∈ ∈ ∈  (3) 

 

where e is the additive noise vector, x is the image 

perturbation and b and A are named the measurement 

vector and model matrix respectively. The model matrix 

A includes Jacobian structural elements [10]. The 

measurements in equation (3) would be complex, and 

inversion would lead to a complex parameter update. 

For this reason we split the measurement vector into 

real and imaginary parts with a commensurate splitting 

of the linearized derivative operators. In addition, when 

considering log of the data the splitting associates the 

real part with logarithmic amplitude, and the imaginary 

part with phase [11]. In DOT the actual measurement of 

each photon is most often corrupted by shot noise 

statistics, which originates from Poisson statistics. 

However, with a sufficiently large number of detected 

photons, as the intensity tends to infinity, the probability 

distribution of the shot noise is normally considered in 

the Gaussian limit [7]. So, e in (3) is assumed to have 

Gaussian distribution, where its variance is expected to 

be proportional to the number of photons at the detector 

and spatially uncorrelated for simplicity. 

In particular, we are concerned about the solution of 

linear discrete ill-posed problems for which the 

corresponding model matrices A are of ill-determined 

rank, contaminated by noise, and as large as to make its 

factorization impossible and not explicitly available. 

Besides, the model matrix A is very extensive and large 

so that model reduction to efficiently minimize 

computation is often required.  

 

3 Numerical Methods  

3.1  Regularization 

When the linear equation (3) comes from the 

discretization of a diffusion approximation, many of the 

singular values of the coefficient matrix A are very close 

to the origin, so the ill-conditioning of the coefficient 

matrix for these linear systems is typically very large 

[17]. Quite often, one of the following results can occur 

in the evaluation of the goal of the inverse problem: 1) 

the solution does not exist, 2) the solution is not unique, 

3) the solution is not converge with acceptable 

computational time or 4) solving the solution is not 

stable, i.e. a tiny perturbation (error) in b 

(measurements) will be amplified so that it results in a 

large perturbation in x (image). If any of the above 

results occurs, the inverse problem is said to be ill-posed 

(in the Hadamard sense) [18], sometimes so much as to 

make the computed image useless. An ill-posed problem 

must be converted into a well-posed version in order to 

be solved. The technique for this conversion is called 

regularization. 

We extend the discussion into three useful and popular 

regularization methods for the conversion of linear 

systems to have a better behavior and solutions. 

The first method for regularizing is preconditioning. In 

traditional iterative reconstruction methods, 

preconditioning is a technique which improves the 

convergence rate by transforming the matrix A into a 

new matrix with more desirable spectral characteristics 

[16]. With this perspective, the equation 

 

( ) ( )1

1 2 2 1L AL L x L b− =  (4) 

 

is named the preconditioned system of equations (3), 

with the same solution. 1
L  and 

1

2L
−
are symmetric 

positive definite matrices which are named left and right 

preconditioners respectively, such that the condition 

number of the resulting matrix 
1

21ALL −
, in general, will 

be smaller. Furthermore, the side of the preconditioner 

is very important. In the iterative solution of linear 

discrete ill-posed problems, a right preconditioner is 

closely related to available or inferred information about 

the solution, while a left preconditioner conveys 

information about the noise in the data or model matrix 

whose statistical properties may be known. A survey of 

popular preconditioning strategies can be found, e.g., in 

[16]. 

The second but most popular method for regularization 

in DOT is Tikhonov regularization which replaces the 

linear system (3) with the minimization problem 

 

2 2

tikhonov 0
x

x arg min{ Ax b L(x x ) }= − +λ −  (5) 

 

where the second term in the functional to be minimized 

penalizes unexpected growth of the solution. The Matrix 

L decides how the computed solution should be allowed 

to grow and the regularization parameter λ  balances 

the effect of the prior with predicted-actual 

measurements mismatch. Details of how to choose the 

optimal regularization parameters L and λ can be found 

in [11,20,21]. 
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The third method for regularizing linear ill-posed 

problems with the application of DOT is TLS (total 

least squares) based methods. It can guarantee the 

existence of the solution by adapting the measurement 

space with the model space. The TLS method can 

produce a robust solution only in linear systems such as 

equation (3) when A and b are both contaminated with 

noise whereas other methods only consider the noise in 

b. The TLS estimation is obtained by [22]: 

 

( ) ( )
F

min E, f subject to A E x b f+ = +  (6) 

 

where both E and f must be minimized with the 

Frobenius norm 
F
 . For more detail see [23]. Also, in 

practical situations, the linear system is often ill-

conditioned. In these cases the TLS solution can be 

physically meaningless and thus regularization is 

essential for stabilizing the solution. For this reason, 

RTLS was addressed by several approaches such as 

truncation methods and Tikhonov regularization 

[18,22,23]. In this paper, RTLS is applied to all of the 

preconditioned linear equations as the minimization 

problem of [23]: 

 

n

2

2

RTLS s2
x R

Ax b
x arg min : L x ,

x 1∈

 − 
= ≤ ρ 
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 (7) 

 

where 0ρ >  is a regularization parameter and 

( )k n

s
L R k n×∈ ≤  is a regularization matrix that defines 

a (semi)norm on the solution which is frequently chosen 

to approximate the first or second derivative operator. 

 

3.2  Dimension Reduction of Equations 

Dimension reduction is often required in several 

applications, typically due to limited available time, 

computer memory or other restrictions. In problems that 

are related to partial differential equations, this often 

means that we are bound to use sparse or coarse meshes 

in the model for the forward problem, to reduce the 

dimension of equation (3). Typically, the distributed 

parameter x is approximated by a representation in 

lower dimension basis such that the linear equation (3) 

is replaced by an reduced size equation, 

 

1 1

h h

m n n m

h

b A x e,

A R , x R , b,e R ,
×

= +
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 (8) 

 

Where 
1

n  is the degrees of the approximation of x 

(
1

n n≤ ), and h 0>  is a parameter controlling the level of 

discretization. Conversely, if we are given more and 

more accurate measurements, we have to employ 

increasingly accurate forward problem solvers in order 

to exploit the information in the measurements. In DOT, 

the typical required accuracy for the forward problem 

solver leads to computational times that may be 

unacceptable both in biomedical and industrial end 

applications. On the other hand, if in (8) the forward 

model is inaccurate; the discretization error may 

become significant compared to the measurement error. 

Together with the fact that the inverse problem is ill-

posed, the approximation error may destroy the quality 

of the estimate of x. This dichotomy is one of the 

bottlenecks of diffuse tomographic methods, where the 

computational complexity is an issue even when 

relatively coarse meshes are used.  

To overcome this dichotomy, in [4], statistical inversion 

theory is employed such that represents computational 

model inaccuracy as a random variable and thus treat it 

as noise. Hence, instead of the model (8), an accurate 

model can be written as, 

 

[ ]h h h h

h h

b A x Ax A x e

A x (x) e,

= + − +

= + ε +
 (9) 

 

where the term (x)ε  is the modeling error. But in this 

method, the non-linearity nature of objective function 

has some disadvantages such as computational 

complexity and restriction of applying some criteria or 

constraints, e.g. regularized total least squares (RTLS). 

Another drawback of this method is blind reduction, for 

example, restriction of using principal components of 

priors to reduce the model size. This will fade small but 

important parts of the image, such as anomalies. Also 

lack of prior information in model reduction has some 

disadvantage such as space invariant model reduction. 

 

4 Implementation 

4.1  Statistics and Regularization as 

Preconditioners 

It is well-known that traditional DOT reconstruction 

algorithms do not produce satisfactory reconstructions 

when applied to sparse projection data or the poor 

model matrix. Besides, the optical property distributions 

within the studied domains usually contain distinct 

jumps at the boundaries of different organs. Despite this 

fact, the regularization schemes that are most commonly 

utilized in DOT carry the implicit assumptions that the 

optical property distribution is smooth (in the sense of 

Sobolev norms) and as a consequence the reconstructed 

images are often too smooth and the organ boundaries 

and anomalies are blurred. In recent years, many papers 

present and review results suggesting that statistical 

inversion methods can be successfully used for 

reconstruction in DOT. The statistical inversion 

approach has the following benefits: 

• Any collection or less informative projection data 

can be used for tomographic reconstruction. In 

particular, scattering geometry and truncated 
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projections are not more complicated to work with 

than non-scattering geometry and full projections. 

• Application-dependent a priori information on the 

target can be used in a natural and systematic way to 

recast the classically ill-posed problem in a well-

posed stochastic form. With a well constructed prior 

model one can obtain better improved image quality 

than in traditional methods. 

Although many statistical methods have been proposed 

for the restoration of tomographic images, their use in 

medical environments, especially in functional imaging, 

has been limited due to two important factors. These 

factors are the need for greater computational time than 

deterministic methods and the selection of the 

hyperparameters in the image models. In this section, a 

statistically based preconditioning framework which is 

basically used in [19] for numerical procedure, is 

introduced and improved in DOT based systems. From 

the point of view of regularization, the traditional 

preconditioners which only improve the speed of 

convergence seem to be of little use in DOT. Indeed, 

accelerated convergence by preconditioning may lead to 

an iterative method where the noise takes over 

immediately and the regularization property is lost. In 

this work, preconditioning is investigated from the point 

of view of Bayesian statistics. In this case, we consider 

the compatibility of prior assumptions of regularization 

scheme and the actual prior information on optical 

property distribution from a Bayesian perspective. In 

this paper, random variables are denoted by capital 

letters and their realizations are denoted by lowercase 

letters. In the Bayesian approach, the optical property 

distribution X and the measurements Y are assumed to 

be multivariate random variables with some joint 

probability density p(x, y) . Hence, instead of the 

deterministic equation (3), we consider its stochastic 

extension, 

 

m n n m

AX B E,

A R , X R , B,E R ,
×

= +

∈ ∈ ∈
 (10) 

where X, B and E are random variables instead of x, b 

and e in deterministic model respectively, and A is the 

deterministic model matrix. Most papers use the 

additive noise model E, but the ideas of this paper are 

more generally applicable, so that the model error in A 

can be added to E with good approximation. Let p(x)  

denotes the prior probability density of image X, which 

expresses the degree of information about the values of 

X prior to measuring B. The likelihood density, denoted 

by p(b | x) , is the probability density of B given the 

realization X=x. The probability density of X given B=b 

is called the posterior density and is denoted by 

p(x | b) , 

 

p(x)p(b | x)
p(x | b) .

p(b)
=  (11) 

 

This is the solution of equation (10) in the Bayesian 

frame of mind. Based on the posterior density, we may 

define various estimates of the image x. The most 

commonly used statistical estimates are the conditional 

mean (CM) and maximum a posteriori (MAP) 

estimates, 

 

MAP
x

CM

x argmax p(x | y),

x x p(x | y)dx,

=

= ∫
 (12) 

 

provided that such estimates exist. 

Consider the linear additive noise model (10) under the 

assumption that X and E are mutually independent 

Gaussian random variables with X XX ~ N( , )µ Γ  and 

eE ~ N(0, )Γ , that is, the random variable X has mean 
n

x Rµ ∈  and its covariance matrix n n

x R ×Γ ∈  is 

symmetric, positive definite, and E is zero mean 

Gaussian noise with covariance m

e RΓ ∈ . Then, Bayes’ 

formula implies that the posterior density is 

 

( )

T 1 T 1
x x x e

2 2

x x e

1
p(x | b) exp (x ) (x ) (b Ax) (b Ax)

2

1
exp L (x ) L (b Ax) exp (x | b) ,

2

− −     

  
    

∝ − −µ Γ −µ + − Γ −

= − −µ + − = −Ψ
 (13) 

 

 

where the Cholesky factors of 1

x

−Γ  and 1

e

−Γ  are denoted 

by xL  and eL , respectively, i.e., T 1

x x xL L −= Γ , with 
x

L  

upper triangular. The value of x which maximizes (13) 

is the MAP estimate. Under these assumptions, MAPx  

coincides with the conditional mean estimate CMx , 

which is the centre point of the posterior density given 

above, and they are the solutions to the minimization 

problem, 

 

MAP CMx x arg min ( (x | b)).= = Ψ  (14) 
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In order to have a linear equation which its solution is 

equivalent to the non-linear MAP estimator, a new 

random variable is introduced: 

 

x xW L (X ).= −µ  (15) 

 

It is shown that W is a Gaussian white noise with 

W ~ N(0, I) , since 

 

W

T T

W x x x

E{W} 0,

E{WW } L L I.

µ = =

Γ = = Γ =
 (16) 

 

where I is the identity matrix. Therefore, the upper 

triangular matrix xL  is a whitening matrix for X and 

owing to the above properties of W, the resulting 

equation has a better convergence property. Then, for a 

given realization of the image x, if we define 

0 x
b b A= − µ , we can write 

 

22 1

e 0 x

2
1

e 0e x

(x | b) w L (b AL w)

L bL AL
w .

0I

−

−

Ψ = + −

   
= −   

  

 (17) 

 

Also, it is shown that the MAP estimator is the solution 

of this linear system in the least square sense, in the 

context of iterative solvers with appropriate 

regularization: 

 

1

e x e 0 x xL AL w L b , w L (x ).− = = −µ  (18) 

 

In this equation, 1

x
L−  and 

e
L  are named right and left 

preconditioners respectively, or as is inferred from their 

nature, are named priorconditioners [19]. A central 

challenge in statistical modeling of inverse problems is 

constructing informative and reliable prior densities. For 
further details on constructing prior, see [4]. In this 

paper, we discuss sample-based estimation of the prior. 

Sample-based priors have been discussed in [19,25]. 

Another equally important question concerning priors is 

how to avoid typical  priors that are biasing towards a 

reasonable, but incorrect, solution. In particular, in 

medical imaging, the prior should favor the typical or 

normal solutions that we expect to see, but at the same 

time it should allow the appearance of abnormalities or 

anomalies that are often of central interest. This issue 

has been previously addressed in [26]. Our approach to 

all of these issues is based on random sampling. In this 

method, it is assumed that a sample of realizations of 

the random variable X is accessible, as well as of the 

corresponding set of data. This sample of pairs are 

named a training set and denoted by 

 

{ }0 1 1 2 2 N N

n m

j j

(x , b ), (x , b ),..., (x , b ) ,

x R , b R ,

ϑ =

∈ ∈
 (19) 

 

with nN ≥ . If the prior is Gaussian or another standard 

parametric distribution, efficient random vector 

generators can be used. More generally, the sample can 

be generated by using Markov chain Monte Carlo 

(MCMC) techniques [25]. In DOT, the training set 

could consist, e.g., of previous measurements jb  

combined with information obtained by surgical or 

experimental interventions, or it could have been 

generated, e.g., by using a computational anatomical or 

physiological model such as previous MRI or CT 

image. This set is used to set up a prior model that is 

adjusted to the estimation method of choice. Here, we 

assume that the vectors jx are represented as discretized 

approximations. If N is large and the sample is 

representative, it is possible to estimate the probability 

density of the underlying variable X using this sample. 

For constructing priorconditioners, we must seek a 

Gaussian approximation of the prior density. The 

Gaussian distributions are completely characterized by 

the second-order statistics. Based on the available 

sample, the sample mean (
x

µ� ) and the sample 

covariance (
x

Γ� ) which are estimation of real mean and 

covariance obtained as 

 

N

x j x

j 1

N
T T T T

x j j x x x x x

j 1

1
x E{X} ,

N

1
x x E{XX }

N

=

=

µ = ≈ = µ

Γ = −µ µ ≈ −µ µ = Γ

∑

∑

�

� � �

 (20) 

 

4.2  Model Reduction by Error Marginalization 

In medical applications, the vectors 
j

x  represent typical 

features of the random variable X. For this reason, the 

vectors can not be very dissimilar. Consequently, the 

space spanned by the realizations may be a proper 

subspace even if N n≥ , and hence 
xΓ  is rank deficient 

or of ill-determined rank with the satisfactory 

approximation of its real value. Without loss of 

generality, also in linearized perturbation DOT 

problems, we may assume that the mean of X vanishes. 

Considering the singular value decomposition of the 

matrix 
x

Γ , 

 

T

x

1 2 n 1 2 n

VDV ,

V [v ,v ,..., v ], D diag[d ,d ,...,d ],

Γ =

= =
 (21) 

 

where the orthonormal singular vectors 
j

v  correspond 

to the singular values 
j

d  so that we have;  
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1 2 r r 1 n
d d ... d d ... d 0,+≥ ≥ ≥ ≥ ε > ≥ ≥ ≥  (22) 

 

where ε is a threshold value. Further, we split X in parts 

as 

 

T T

0 0 1 1 0 0 1 1

r n r

0 1

X V (V X) V (V X) V X VX ,

X R , X R .−

= + = +

∈ ∈
 (23) 

 

In the PCA method, after zero approximation of small 

singular values which provided that deleting the second 

term in equation (23), the original problem is 

transformed into a simplified linear equation that is well 

posed. This approximation which is particularly 

attractive for computations, leads to some 

disadvantages. Specially, if the forward model is 

inaccurate, the model reduction error may become 

significant compared to the measurement error. 

Together with the fact that the inverse problem is ill 

posed, the approximation error may destroy the quality 

of the image.  

For treating errors in the forward model while reducing 

its size, we employ the Bayesian statistical inversion 

theory. The key idea in this paper is to represent not just 

the measurement noise, but also less important parts of 

model components as a random variable. The aim is to 

obtain an analogous formulation for the compensation 

by marginalization model. Hence, we don’t ignore small 

singular values. For this reason, the second term in the 

right hand side of equation (23) must be considered as 

noise, so that: 

 

0 0 1 1 0 0

B AX E

A X A X E A X U,

= +

= + + = +
 (24) 

 

where:  

 

0 0 1 1 1 1
A AV , A AV , U A X E.= = = +  (25) 

 

We consider now the general case when 
0X  and 

1X  are 

not independent. We write equation (24) as 

 

[ ] 0

0

X
B A I .

U

 
=  

 
 (26) 

 

If we define 

T

ij i j
E{X X }, i, j 0,1Γ = =  (27) 

 

the joint covariance matrix becomes 

 

0 0 T T

0

T

00 01 1

T

1 10 1 11 1 e

X X
cov E X U

U U

A
R .

A A A

        =               

 Γ Γ
= =  

Γ Γ +Γ 

 (28) 

 

A decomposition for 1R −  can be written as 

 

111 T

21 22

L 0
R L L, L .

L L

−  
= =  

 
 (29) 

 

Now the multivariate Gaussian white noise can be 

defined as 

0
W X

L .
V U

   
=   

   
 (30) 

 

Writing the inverse of L in the form 

 

1

1 11

1 1 1

22 21 11 22

L 0
L ,

L L L L

−
−

− − −

 
=  

− 
 (31) 

 

and expressing (24) in terms of the newly defined white 

noise variables, we obtain 

 

[ ] ( )1 1 1 1

0 0 22 21 11 22

W
B A I L A L L L W L V,

V

− − − − 
= = − + 

 
 (32) 

 

which, by multiplication with 
22

L  from the left, yields 

the whitened equation 

 

( )1 1

22 22 0 22 21 11

11 0

L B L A L L L W V,

W L X .

− −= − +

=
 (33) 

 

Note that if 
0

X  and 
1

X  are mutually independent, the 

matrices R and L are block diagonal, and therefore (33) 

reduces to (18). 
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Fig. 1 Flow chart of the proposed model reduction method. 
 

 

4.3  Flow Chart of PCAME Algorithm 

Based on the proposed methods in Section 4, a flow 

chart which is named PCAME algorithm is drawn in 

figure (1) to illustrate the detailed computational steps 

for a complete reconstruction. From the flow chart, five 

proposed key steps can be identified: (a) computation of 

priors with random sampling, (b) extraction of 

preconditioners from priors or data covariance matrix, 

(c) Marginalize less important parts of priors as noise 

and rebuild the new preconditioners for model reduction 

and refinement, (d) updating the reconstruction 

equations by applying new preconditioners to them and 

(e) solving preconditioned linear equations using CGLS 

iterative method. 

 

5 Numerical Results 

5.1  Simulated Test Phantom 

A multi-layered phantom is simulated in a circular 

object of diameter 100 mm and of infinite height. A 

two-dimensional cross-section of this phantom is shown 

in figure 2(a). In this figure, three regions are shown, 

Region 0 ( 1

a
0.015mm−µ = and 1

s
1.5mm−′µ = ) and 

Region 1 ( 1

a
0.15mm−µ =  and 1

s
15mm−′µ = ) with 

typical prior information and finally Region 2 

(
a

0.01µ =  and 1

s
1mm−′µ = ), which is simulated as a 

anomaly with few prior information. 

The 16 optical channels are simulated, as is the standard 

practice in human imaging studies. They are used to 

collect data using 16 sources and 16 detectors (giving 

240 measurements) in a single plane geometry so that 

there are one source and one detector together for each 

16 optical channels. Sources are considered to be 

intensity modulated with a frequency of 100 MHz, and 

measurements consisting of the logarithmic modulation 

amplitude Ab  and phase shift bϕ , so that the target data 

( )A
b b , b

ϕ=  is calculated by the FEM diffusion 

forward model. With this model, the object is 

discretized into 2880 non-overlapping triangular 

elements connected with 1501 nodes, defining a 

piecewise quadratic unstructured basis expansion. Both 
Ab  and bϕ  are then contaminated with 2% zero mean 

additive Gaussian noise, which is always considered in 

practical simulations. For a priori information, pixels of 

similar intensity as segmented MRI are assumed to 

represent the same material or tissue such as [12]. 
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Fig. 2 (a) The simulated test phantom, (b) the reconstructed 

image with traditional MAP estimator, (c) the reconstructed 

image with preconditioning, (d) preconditioning and RTLS 

criteria, (e) preconditioning and traditional TSVD for 

dimension reduction, (f) preconditioning and dimension 

reduction with PCA, (g) preconditioning, dimension reduction 

with PCA and then RTLS criteria, (h) Proposed PCAME 

algorithm, (i) Compensation by marginalization  with MAP 

estimator (with coarse meshes). 

 

 

5.2  Phantom Imaging: Image Quality 

Figure 2(b) gives the reconstructed image of 
a

µ  when 

using the traditional MAP estimator with sample based 

image and noise covariance matrixes as in Section 4.1. 

By comparison, figure 2(c) gives the reconstructed 

image with the preconditioners which are introduced in 

equation (18). The preconditioners are constructed by 

assumption covariance matrices of noise, typical data 

and anomaly. These kinds of preconditioners with 

inherent regulator and MAP estimator properties lead to 

flexible and less computational operations with 

traditional iterative algorithms. The details of how 

RTLS criteria can improve the quality of image is 

shown in figure 2(d). Furthermore, the better results 

when using RTLS appears where applied to the reduced 

model by PCA method which approximates the 

subspace associated with the small singular values of 

preconditioners with zero which provided that deleting 

the second term in equation (23). It is shown by 

comparison of next three images. Figure 2(e) gives the 

reconstructed image when traditional TSVD (truncated 

singular value decomposition) model reduction is 

applied to preconditioned equation (18), without using 

RTLS [17]. In this method, the subspace spanned by 

small singular values is truncated such that the model 

dimension is reduced with well posed behavior. In this 

image, the regions are faded. Also ‘bumps’, ‘valleys’ 

and pseudo objects are observed. Figure 2(f) gives the 

reconstructed image by proposed PCA method for 

dimension reduction with zero approximation of small 

singular values of data covariance matrix (without error 

marginalization which is yielded with zero 

approximation of the second term in equation (23)). 

Comparison of figures 2(e) and 2(f) would demonstrate 

that dimension reduction with PCA method has the 

superior quality in anomaly detection than TSVD. The 

better results are available when RTLS is used to the 

previous PCA method, shown in figure 2(g). But when 

using the proposed PCAME algorithm which is based 

on the Compensation by marginalization method that is 

presented in (4.2), the best results especially for 

computational efficiency are observed. Figure 2(h) 

shows that the reconstructed image with PCAME 

algorithm is almost identical to figure 2(g). This is 

because equation (33) acts as a simple model refinement 

while model reduction with preconditioning perspective, 

which has a better computational efficiency. Also the 

image quality and computational efficiency of the 

proposed method is observed as compared with the 

method that is stated in [4]. In the latter, which its 

related image is shown in figure 2(i), some deterministic 

information is eliminated to reduce the model size, for 

example replacing fine meshes with coarse meshes, and 

the approximation error is compensated by 

marginalizing it as noise. This method for model 

reduction is somewhat computational expensive and 

faded, due to the nonlinear nature of Bayesian formula 
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and leaving out some important parts of data 

respectively. 

 

5.3  Phantom Imaging: Computational Efficiency 

Table 1 represents the reconstruction time and iteration 

numbers required for the iterative algorithm. Each rows 

of the table corresponds to one of the images from 

figure 2(b) to 2(i), respectively. In this paper, we have 

used CGLS iterative method on a 2.8 GHz Pentium 4 

processor with 1 GB RAM. The performance of 

proposed model reduction method, which is marked 

with asterisk, can be inferred from this table. 

 

Table 1 The convergence time and number of iterations to 

reconstruct the images shown in figure 2. 
 

Method 
Related 
figure 

Converge 
time (sec) 

Iteration 
number 

Traditional MAP 
estimator 

2(b) 6270 18 

Preconditioning 2(c) 4976 19 

Preconditioning with 
RTLS 

2(d) 3012 14 

Preconditioning with 
TSVD 

2(e) 1647 12 

Preconditioning with 
PCA 

2(f) 1470 11 

Preconditioning with 
PCA and RTLS 

2(g) 1562 9 

Proposed PCAME 
algorithm* 

2(h) 931 10 

Compensation by 
marginalization 

with coarse meshes 
2(i) 1543 12 

 

6 Conclusion 

We used a preconditioning scheme for the linearized 

DOT problem which is constructed by covariance 

matrices. This help us to use the proposed model 

reduction method with advantages as constructing only 

important parts of the image or estimating only the 

required portion of the image in the field of view as the 

new preconditioners. Moreover, we treat the 

contribution coming from other parts, with less 

important properties, as noise. In this method, the 

approximated error in the model or covariance matrices 

is marginalized and evaluated as noise. For these 

reasons, the proposed method is named compensation 

by marginalization. We found that the preconditioning 

and model reduction by error marginalization is fairly 

robust to small absorption and scattering perturbation 

levels. Quantitatively, model reduction based on 

proposed PCAME algorithm is close to the expected 

results with respect to other modalities. 
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