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Abstract: Recently, Inner Permanent Magnet (IPM) synchronous machines have been 
introduced as possible traction motor in hybrid electric vehicle (HEV) and traction 
applications due to their unique merits. In this machines, in order to achieve maximum 
torque per ampere (MTPA) by minimum volume of motor, optimization of the motor 
geometry parameters is necessary. This paper presents a novel structure of IPM 
synchronous machines for traction applications with fragmental buried rotor magnets in 
order to achieve low torque ripple, iron losses and cogging torque, furthermore, an iteration 
method for IPM synchronous machine design is presented to achieve minimum volume, 
MTPA and low amplitude of cogging torque for this structure. Thus, simulation of this 
motor is done in order to extract the output values using 3D-Finite Element Method. This 
method has high accuracy and gives us a better insight of motor performance and presents 
back EMF, power factor, cogging torque, flux density, torque per ampere diagram, CPSR 
(constant power speed ratio), torque per speed diagram of this IPM synchronous machine. 
This study can help designers in design approach of such motors. 
 
Keywords: IPM Synchronous Sachine, Optimal Design, Maximum Torque Per Ampere, 
Hybrid Electric Vehicle, Traction. 

 
 
 
1 Introduction1 
IPM synchronous machine has many advantages such as 
high power density, efficiency and wide speed 
operation, these advantages make it particularly suitable 
for automotive, traction applications where space, 
weight and geometry dimensions are very important [1]-
[6]. Furthermore, rotor structure and geometry 
parameters have great impact on torque per ampere 
diagram, torque ripple, cogging torque and iron losses 
[3]-[9], so optimal design in order to achieve MTPA and 
low amplitude of cogging torque and iron losses is 
necessary. The main feature of IPM synchronous 
machines for HEV traction drive application is simple 
construction with conventional three phase stator 
winding, rotor with inner fragmental Permanent Magnet 
(PM) [2],[4]-[6], but this paper presents a novel 
structure of rotor to achieve low torque ripple, iron 
losses and cogging torque. 
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The performance of these motors in these 
applications is quite depending on CPSR which 
increased by improving the field weakening operation 
[3]: 

max

rated

CPSR ω
=
ω

 (1) 

Field weakening operation will be improved by 
increasing the linkage flux between rotor and stator 
which is increased by increasing the inductance of 
excitation axis and inductance of excitation axis will be 
increased by increasing the number of barriers in rotor 
structure (three barriers maximum) [6], [8]. So, this 
paper, presents a design method to achieve minimum 
volume, MTPA and low amplitude of cogging torque 
for IPM synchronous machines. As a result, presents 
back EMF, power factor, cogging torque, flux density, 
torque per ampere diagram, CPSR (constant power 
speed ratio), torque per speed diagram of this machine. 
Meanwhile, a 3D-finite element model is implemented 
in order to simulate IPM synchronous machine, which 
has high level of accuracy and gives a better insight of 
motor performance. This model can be used in the 
design approach and precise analysis of IPM 
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synchronous machines for HEV traction drive 
applications. 
 
2 Structure and Winding Configuration 

As shown in Fig. 1(a), a 80-kW, 8pole, 48 slots and 
6 slots per pole for possible hybrid electric vehicle 
application (in order to achieve harmonic reduction 
[10]) IPM synchronous machine has been designed with 
three layers of fragmental buried rotor magnet (in order 
to achieve MTPA), but all of these layers have a 
trapezoid structure as shown in Fig. 1(b) for reduce hot 
spots (zones that have maximum flux density). 

In this machine a kind of permanent magnet material 
in rotor structure has been used which has suitable 
reversible temperature coefficients as it can be seen in 
Table 1 [11]. Also, laminations of permendur-24 for 
constructing the stator and rotor cores, and a kind of 
stainless steel with very low relative permeability in 
shaft structure has been used. Soft magnetic material 
(permendur-24) characteristics are given in Table 2 
[12]. 
 

 
(a) 

 
(b) 

Fig. 1 (a) 8-pole, 48 slot inner permanent magnet synchronous 
motor structure for traction application with Three layers of 
fragmental buried rotor magnets, (b) Novel structure of rotor. 

Table 1 Permanent magnet characteristics. 

Parameters Sintered Sm2Co17 

Br (T) 1 

Hc (KA/m) 820 

rµ 1.05 

Tmax (°c) 300 

Tciure (°c) 750 

Tc of Br  -0.04 

Tc of Hc -0.3 

 
Table 2 Soft magnetic material characteristics. 

Parameters Permendur-24 

Saturation flux density (T) 2.34 

Remanence (T) 1.5 

Initial permeability 250 

maximum permeability 2000 

 
The stator slots are embedded with double layer 

fractional-slot (5/6) windings with 18 conductors per 
stator slot and each phase contains eight turns of 
windings (to achieve harmonic reduction), current 
density in windings is 4.2 A/mm2 and radius of each 
naked wire is 2.936 mm by using insulators F-class. The 
winding diagram and terminal connection mode of the 
8-pole stator winding has been shown in Fig. 2. 
Analysis of model have been performed at one half pole 
by 3D-finite element method (FEM). 
 
3 FEM Model 

As mentioned before, a 3D-finite element model 
which gives a better insight of motor performance is 
implemented in order to simulate of proposed motor. 

In order to have high level of accuracy the automatic 
mesh diagram is not used and a mesh diagram is 
designed manually and node congestion is higher 
around the air gap. The total number of nodes is about 
190000 which lead to high accuracy. Meanwhile, for 
boundary conditions, the homogenous Dirichlet 
condition has been adopted on the infinite box that 
encompasses the motor. 

This simulation has been based on circuit coupled 
model using the phase voltage as input. Fig. 3 shows the 
circuit coupled model which has been used in this study, 
for each phase eight coil winding is considered, four 
coils of them send the current in motor and four coils 
return current from midpoint of winding in star 
connection. Coil winding connection in each phase is 
exactly the same that is illustrated in Fig. 2(b). 
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which in this equation, Q is the reactive power, ns is 
speed (r.p.s) and C0 is output coefficient of machine 
which in the first iteration of flowchart Fig. 6 is 
obtained by: 

2 3
0 av wC 1.11 B acK 10 .−= π  (4) 

Bav is specific magnetic loading and approximated 
between 0.35 T to 0.6 T, ac is specific electric loading 
and approximated between 8000 to 25000 AT/m and kw 
demonstrate the winding coefficient. 
 
 
 

 
Fig. 6 Iteration method for optimal dimension design. 
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It’s clear that axial length of motor and axial length 
of PM in IPM synchronous machines are equal to each 
other and by increasing the inductance of PM, 
inductance of excitation axis will be improved [4],[15]. 
Also, it’s clear that by increasing the inductance of 
excitation axis, electromagnetic torque will be 
improved. Magnetic circuit of a PM and its equivalent 
electrical circuit are shown in Fig. 7. Equations that 
demonstrate these terms are as bellow: 

m
rc

0 r m

l
P .

A
=
μ μ  (5) 

0 c mF H .l .= (6) 

r r mB A .φ =  (7) 

where lm and Am respectively are axial length and pole 
cross section of PM, µ0 and µr respectively denotes 
permeability of free space and relative permeability of 
PM [13], so by increasing the axial length of motor, 
inductance of excitation axis and therefore torque per 
ampere diagram will be improved [13], [15]. 
In order to optimal dimension design an iteration 
method has been used that illustrated with a flowchart in 
Fig. 6. 

The main achievements of this iteration method are: 
• Reaching to rated torque more than 990 N.m. 
• Reaching to cogging torque less than 2% of 

rated torque. 
Cogging torque is the consequence of 
interaction (magnetic attraction) between rotor-
mounted permanent- magnets field and the 
stator teeth, which produces reluctant 
variations depending on the rotor position; it is 
stator current independent. It manifests itself 
by rotor tendency to align with the stator in a 
number of stable positions (where the 
permeance of the permanent magnets’ 
magnetic circuit is maximized), even when 
machine is unexcited, resulting in a pulsating 
torque, which does not contribute to the net 
effective torque. Optimizing cogging torque to 
a low value can be obtained a low torque ripple 
and harmonic reduction [9]-[11], [16]-[18]. 

• Flux density of hot spots must be less than 
saturation flux density of permendur-24. 

In this flowchart, in each step, results of flux density 
in motor structure and cogging torque will be checked, 
the value of C0, will be increased step by step in order to 
achieve minimum volume of machine. For optimization, 
the ratio of axial length on diameter of motor (L/D) 
must takes its maximum value until the maximum flux 
density in hot spots is less than saturation flux density of 
permendur-24 and amplitude of cogging torque is less 
than 2% of rated torque. 
 
6 Simulation Results and Discussion 

Based on the above respects, finite element 
simulation for the IPM synchronous machine has been 
done and the simulation research has been made for the 
8 poles IPM synchronous machine. Optimum dimension 
parameters of the IPM synchronous machine and the 
output quantities of machine are given in Table 3. It 
must be noted that one half pole is analyzed because of 
the magnetic symmetry and alternation of the motor. As 
it can be seen in Fig. 8, nodes congestion becomes 
higher near the air gap, in order to accurate simulation. 
Fig. 9 shows the distribution of flux at rated current. As 
discusses the sections, flux lines are center of poles and 
distances between PM and air gap. Fig. 10 shows 
isovalues diagram of flux density at rated power and as 
it can be seen from this diagram, maximum flux density 
is less than saturation flux density of permendur-24 and 
it’s close to the saturation point of this material. Air gap 
flux density over a predefined path (for 4 poles) has 
been shown in Fig. 11 at rated power and back EMF for 
one phase has been shown in Fig. 12. It can be seen, 
amplitude of back EMF per phase is equal to amplitude 
of input voltage per phase. 

 

 
    (a)                      (b) 

Fig. 7 Magnet's equivalent circuits (a) magnetic circuit (b) 
electrical circuit. 

 
Table 3 Motor features. 

Quantity Value Quantity Value 
Rated voltage (V) 900 Outer diameter of stator (mm) 734 
Rated power (Kw) 80 Inner diameter of stator (mm) 498 

Frequency (Hz) 50 Stator stack height (mm) 560 
Speed (r.p.m) 750 Type of Winding Concentric with consequent poles 

Phase connection Y Number of turns per slot 20 
Pole pairs 4 Core material (stator and rotor) Permendur-24 

Number of stator slots 48 Air gap length (mm) 1.6 
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Fig. 8 Mesh diagram of simulated machine. 

 

 
Fig. 9 Distribution of flux at rated current. 

 

 
Fig. 10 Isovalues diagram of flux density at rated power. 

 
Table 4 verifies suitable performance of this IPM 

synchronous machine at rated speed. As it can be seen 
from this table, with this novel structure (trapezoid form 
fragmental buried magnet), cogging torque is less than 
2% of rated torque, but cogging torque in conventional 
IPM synchronous machines is about 5% of rated torque. 

Torque per ampere diagram at maximum and rated 
speed has been shown in Fig. 13. It can be seen, by 
increasing the inductance of excitation axis that 
achieved by increasing the number of barriers in rotor 

structure, torque per ampere diagram will be more 
suitable. 

At last, torque per speed diagram has been shown in 
Fig. 14, and performance of the machine in constant 
power area of this diagram shows the advantage of this 
novel structure and authenticity of this iteration method. 
 
Table 4 Optimized IPM synchronous machine performance at 
rated speed. 

Parameters Optimized IPM 
synchronous machine 

Torque (N.m) 994.1 

Cogging torque (N.m) 18.1 

Power factor % 97 

CPSR 4>  

Torque ripple % 4.7 

Efficiency % 93.6 

Copper loose (w) 2036 

Iron loose (w) 3090 

 
 

 
(a) 

 

 
(b) 

Fig. 11 (b) Air gap flux density diagram over the path (4 pole) 
(b) Air gap path belong a pole. 

 

 
Fig. 12 Back EMF for phase a. 



 

Soleimani et al: Inner Permanent Magnet Synchronous Machine Optimization for HEV …                                          247 

 
(a) 

 

 
(b) 

Fig. 13 Torque per ampere diagram (a) at rated speed (b) at 
maximum speed. 
 
 

 
Fig. 14 Torque per speed diagram. 
 
7 Conclusion 

This paper presents a novel structure of rotor to 
achieve decreasing the torque ripple, iron losses and 
cogging torque for IPM synchronous machines. In this 
structure, 3 layers of PM have been used and each layer 
has a fragmental trapezoid structure as shown before, 
with this structure, hot spots (zones that have maximum 
flux density) will be reduced. Furthermore, in order to 
optimal dimension design an iteration method has been 
used that illustrated with a flowchart. The main 
achievements of this iteration method are reaching to 
minimum volume, maximum torque per ampere and 
minimum value of cogging torque by checking the 

maximum flux density. The simulation has been done 
based on optimal dimensions and a 3D-finite element 
model implemented in order to simulate the IPM 
synchronous machine, at last presents back EMF, power 
factor, cogging torque, flux density, torque per ampere 
diagram, CPSR and torque per speed diagram on this 
IPM synchronous machine. Simulation results verify the 
authenticity of this iteration method and advantages of 
this novel structure. Torque per speed diagram shows 
the suitable performance of the machine in constant 
power area, furthermore, cogging torque and torque 
ripple results and decreasing of the hot spot area shows 
the advantages of this novel structure. Torque per speed 
diagram and torque per ampere diagrams shows the 
increasing the inductance of excitation axis that 
achieved by increasing the number of barriers in rotor 
structure and authenticity of this iteration method. 
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