Effective transient stability assessment based on composite indices

S. Jadid and S. Jalilzadeh

Abstract: This paper presents a new composite index to analyze power system transient stability. Contingency ranking in power system transient stability is a complicated and time-consuming task. To prevail over this difficulty, various indices are used. These indices are based on the concept of coherency, transient energy conversion between kinetic and potential energy and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using two practical 230 kV Sistan and 400 kV Khorasan power system in Iran, and 9 bus IEEE test system demonstrates that combination of indices provides better ranking than a single one. In this paper two composite indices (\(CI \)) is presented and compared. One composite index is based on Least Mean Square algorithm (LMS) and other based on summing indices by equal weights. Numerical simulations of the developed index demonstrate that composite index is more effective than other indices.

Keywords: composite index, transient stability, energy margin.

1 Introduction

In recent years, power systems have been operated under more stressed conditions close to their stability limits. Also for recent blackouts, power system security has become a major concern. Under these circumstances, an important problem that is frequently considered for secure operation is the problem of transient stability. This concerns the maintenance of synchronism between generators following a severe disturbance.

In system operation, dynamic security analysis encompasses a large class of problems, such as finding the security levels of the power system, the power transfer limit in a transmission line, the worst contingency in some specified area of the system, etc. Dynamic Security Analysis (DSA) is the evaluation of the ability of the system to withstand contingencies by surviving the transient conditions to acceptable steady-state operation and gives indications about the remedial actions when necessary. These studies provide necessary information to select the proper set of relays and circuit breakers such that a fault is cleared in time without losing system stability. Two of the main features of the DSA function are:

- Contingency screening: to rank a large number of contingencies and select those, which are likely to cause dynamic security violations.
- Contingency evaluation: to carry out time domain simulation based transient and dynamic stability assessment, and, if necessary, to propose preventive/remedial actions to improve system security according to the contingency severity.

For large complex power systems, it is impractical and unnecessary to perform full detail analysis on the influence of every contingency. This is because of time consuming process associated with the detail analysis.

Therefore, a screening algorithm that filters out very stable cases and selects more severe contingencies, has been adopted as a key function in the transient stability monitoring. Accurate but fast contingency screening indices can be used to reduce the computation burden on the computer. For successful screening, the indices should be a good measure of system severity in the transient condition.

Many researchers have worked on this area of contingency screening. Fouad [1] determined an index by evaluating the individual machine energy function along the system trajectory generated by the time domain simulation method. This method requires the computation of corrected kinetic energy. Haque [2] suggested the hybrid method to find the stability margin, but only one of the machines in the system is considered. Padilha [3] tested a hybrid method using time domain simulation and the individual machine energy function. Fu and Bose [4] have compared three different screening methods, which are based on the concepts of coherency, transient energy conversion between kinetic energy and potential energy, and three dot products of the system variables. In that work, each index is assigned the same weight to test the overall performance of all indices and composite index have been computed by tuning the weights for a particular power system. Chan [5] estimated dynamic stability by using hybrid transient energy function and clustering analysis. The method outlined by Chan classifies contingencies into four categories and ranking contingencies with a descending system severity index.
The four categories are transiently unstable, oscillatory unstable, stable but poorly, and stable and well damped. Bettiol [6] used an artificial neural network filter for selecting severe cases on the ranking list. This may be achieved by computing the values of the performance index for each line outage and subsequently, ranking the contingencies from the most important (largest value of performance index) to the least important (smallest value of the performance index). Lee et al. [7] developed an index based on the angle variation of each generator for fast contingency screening. This method evaluates the first swing stability of a large number of contingencies in a short time. The maximum amplitude of a rotor angle swing in the post-contingency period can be used as a measure of the transient severity of a contingency. Utility operational guidelines usually recommend that large rotor swings should be avoided to maintain security of operation. For this reason the maximum rotor swing amplitude was used as the transient stability index [8]-[9]. All researches [1]-[3] and [5]-[9] present an index for security analysis and in [4] five indices is presented and composite index is obtained by adding these indices with equal weights. In this paper a novel severity index for contingency ranking in power system stability analysis is presented that is based on combination of indices is presented. This index assigns different weights to each individual index based on LMS method and adds them together. As shown in next section this index provides a better ranking for severely insecure cases in test systems. This paper also shows that combination of indices provide better ranking than a single index. This paper is organized as follows. Section 1 presents the motivation and justification of the developed scientific research work. Section 2 describes the formulation of problem. In section 3 numerical results and effect of load variation, change of network configuration and type of generator in transient stability indices is presented.

2 Problem formulation

In the operation of a modern electric power system, a contingency filtering and ranking analysis should be carried out. The purpose of this study is to identify, usually from a very large list of probable contingencies, the severe ones (or potentially severe) that should be analyzed in detail in order to assess system security after the occurrence of a large disturbance. The mathematical model of a multimachine power system for transient stability analysis consists of non-linear differential equations and algebraic equations. The differential equations describe the time varying properties of all generator variables, which account for both fast dynamics and slow dynamics, while the algebraic equations incorporate the power flow equations of the transmission networks and loads as well as the generator static equations. The effects of possible contingencies are presented by a severity or Performance Index (PI). The calculated performance indices are then sorted in such a way to provide an ordered list of contingencies according to their severity.

The index in [9] is based on critical clearing time and generation margin with considering coherency concept. The coherency concept is stated as follows: for very stable cases, the angle of each machine will move coherently with the Center Of Inertia (COI). For unstable cases, there are some machines whose angles will move from the COI. The following performance indices are defined based on coherency concept [10].

\[
PI_i = \max \left[\max \left(\delta_i(t) - \min \delta_i(t) \right) \right] \\
PI_j = \max \left[\max \left(\delta_j(t) - \delta_j^0 \right) \right]
\]

for : \(i = 1, 2, \ldots, NG \)

and : \(t = t_i \leq t \leq t_i + T \)

where:

\(\delta_i \) : generator rotor angle relative to COI,

\(NG \) : total number of generators,

\(t_i \) : fault clearance time,

\(T \) : length of short period after fault clearing (0.5-0.6 second),

\(\delta_i^0 \) : rotor angle in beginning of the fault.

By defining new angles and speeds relative to COI reference, the state equations become:

\[
\frac{d\delta_i}{dt} = \omega_i \\
\frac{d\omega_i}{dt} = \frac{P_m - P_a - P_{COI}}{M_i} \\
\]

The swing equation then becomes:

\[
M_i \frac{d^2\delta_i}{dt^2} = P_m - P_a - \frac{M_i}{M} P_{COI} \\
\]

A dot product was defined for detecting the exit point. The exit point is characterized by the first maximum of transient potential energy with respect to the post-fault network.

\[
f = \sum_{i=1}^{NG} \left[P_{m_i} - P_{a_i} - \frac{M_i}{M} P_{COI} \right] \\
\]

\[
\omega = [\omega_1, \omega_2, \ldots, \omega_{NG}]^T
\]

The dot product is presented as:

\[
dot{\omega}_i = \sum_{i=1}^{NG} f_i \omega_i \\
\]

\[
f_i = P_m - P_a - \frac{M_i}{M} P_{COI} \\
\]

\[
P_{COI} = \sum_{i=1}^{NG} (P_{m_i} - P_{a_i})
\]

for : \(i = 1, \ldots, NG \)

where:

\(f_i \) : accelerating power of generator \(i \) referred to the center of inertia.

\(M_i \) : inertia constant of each generator.
M_t : total inertia constant of all generators.

P_m : mechanical power input for each generator.

P_e : electrical power output for each generator.

ω_i : rotor speed with respect to COI.

The dot product can give the measure of total accelerating power and the power system response to this accelerating power, thus it could be a good index for ranking dynamic contingencies. The rotor angle and speed are significant measures, thus the following two dot product are defined:

$$\dot{\omega}_2 = \sum_{i=1}^{NG} f_i \delta_i$$ \hspace{1cm} (9)

$$\dot{\omega}_3 = \sum_{i=1}^{NG} \omega_i (\delta_i - \delta_i^f)$$ \hspace{1cm} (10)

where:

δ_i^f : rotor angle at fault clearing time for generator i.

There are three indices defined from the concept of these three dot products.

$$PL_1 = \max \{ \dot{\omega}_2(t) - \min \dot{\omega}_2(t) \}$$

$$PL_2 = \max \{ \dot{\omega}_3(t) - \min \dot{\omega}_3(t) \}$$

$$PL_3 = \max \{ \dot{\omega}_2(t) - \min \dot{\omega}_2(t) \}$$ \hspace{1cm} (11)

During the simulation, sign change in $\dot{\omega}_2$ or $\dot{\omega}_3$ mean that the projection of accelerating power vector f on the rotor angle space vector changes its direction. A change in sign of $\dot{\omega}_2$ is an indication that the trajectory is crossing the Potential Energy Boundary Surface (PEBS) and a change in the sign of $\dot{\omega}_3$ is an indication that the system is swinging back.

Fig. 1 to 3 show curve of $\dot{\omega}_1$, $\dot{\omega}_2$ and $\dot{\omega}_3$ in IEEE 9-bus test system respectively. For unstable cases (for example outage of line 2-7) variation in $\dot{\omega}_1$, $\dot{\omega}_2$ and $\dot{\omega}_3$ is very large and for stable cases (for example outage of line 8-9) the respective values are small. As seen in these Figs, in unstable cases there is no change in sign of $\dot{\omega}_2$ and $\dot{\omega}_3$.

Transient energy function is probably the best-known direct method for fast transient stability assessment, which is obtained by considering the balance between kinetic and potential energy. The total kinetic energy (V_{ke}) is given by:

$$V_{ke} = \frac{1}{2} \sum_{i=1}^{NG} M_i \dot{\omega}_i^2$$ \hspace{1cm} (12)

The total potential energy is defined as:

$$V_{pe} = \sum_{i=1}^{NG} \left(P_{mi} - P_{ei} - \frac{M_i}{M} P_{col} \right) \delta_i$$ \hspace{1cm} (13)

$$V_{cl} = V_{pe} + V_{ke}$$

$$\Delta V = V_{ce} - V_{cl}$$ \hspace{1cm} (14)

where:

δ_i^f : post fault steady state value of δ_i.

V_{ce} and V_{cl} represent the value of potential energy on the boundary and V_{cl} represent the value of energy at the instant of fault clearing time. Both the kinetic and potential energies calculated numerically using the data generated directly from a time domain simulation. This involves additional computing time due to the critical unstable point (UEP) determination.

The direct method of transient stability based on the transient energy function (TEF), can provide the users a stability index of power system. ΔV is used as a benchmark to compare the results to other performance indices.

Indices PL_1 to PL_3 may not reliably capture all the severely unsecured outages. Each index can’t rank the severity of contingencies for different systems under...
In order to determine the vector of weight coefficients, output vector (here vector of composite indices) is greater than (or equal to) the number of unknown parameters. Thus:

\[\frac{\partial J}{\partial X} = 0 \Rightarrow \hat{X} = (A' A)^{-1} A' Y \]

(20)

Substituting \(\hat{X} \) in eqn. (16), \(\hat{Y} \) will be calculated, which is a reasonable estimate of final combination of indices.

3 Numerical results

Three systems were used for testing the developed indices: IEEE 9-bustest system, Sistan 9 bus 230 kV and Khorasan 18-bus 400 kV power systems in Iran. Data for these systems are constructed based on PSS/E raw data format.

Three-phase short circuit fault was applied on the selected bus in all the systems and then removed after 8 cycles (0.16 second). To study the stability of the above test systems, the generator’s rotor angle, electrical power, mechanical power and speed of the rotor were obtained through PSS/E simulator and then performance indices \(PI_1 \) to \(PI_5 \) were calculated by IPLAN programs and then by applying LMS algorithm to these performance indices, composite index was obtained.

Transient energy function index \(\Delta V \) is used as a benchmark to compare and demonstrate the effectiveness of the composite index. For the three sample power systems, initially line outage contingency ranking is done based on \(\Delta V \) for each outage and then \(PI_1 \) to \(PI_5 \) is calculated separately using IPLAN. In the developed algorithm, the determined \(\Delta V \) vector is substituted in vector \(Y \) of eqn. (15). Now having indices matrix \(A \) and vector \(Y \) eqn. (20) calculates the required weighting factors, \(\hat{X} \). Finally the computed \(\hat{X} \) is substituted in eqn. (16) to obtain the composite index (CI).

3.1 IEEE 9-bus test system

IEEE 9-bus test system has three generators of GENROE and three exciter of IEEEET1 type. The above procedure is carried out on this power system. Table 1 shows the line outage ranking results in descending order (the worst outage has the highest value in the table). Table 1 demonstrates that contingency ranking using \(PI_1 \) to \(PI_5 \) have properly pointed out severity of the first two outages only and rest of them are incorrectly ranked. Similarly, CI with equal weighting factors of 0.2 (ref. [4] method) can determine the first two contingencies ranking appropriately. But, the proposed method, has correctly pointed out the contingency up to fourth order. To consider network configuration and fault clearance time changes and effect of these modifications on output, load in bus no.4 is increased by five percent and fault clearance time is decreased to 0.32 seconds. The consequences of these changes are shown in table-2. Note that the simulations were carried out without normalized indices, so the values of \(\Delta V \) are high as compared to [4].
3.2 Practical power systems
The Sistan-9 bus power system has three generators of GENCLS type (constant internal voltage generator model). This system has 10 transmission lines in which outage of four lines causes instability in the system. Table-3 and 4 show the results of simulations for different indices. As mentioned earlier, CI using the developed LMS method has computed more accurate contingency ranking order. Fig. 4 and 5 shows indices, composite index and (TEF) or ΔW for contingencies. As seen in figures composite index is very similar to ΔW in ranking of contingencies (Note that values is normalized and then plotted).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Ranking result with IEEE 9 bus power system with fault clearance time=0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line tripped</td>
<td>P_{I1}</td>
</tr>
<tr>
<td>2-7*</td>
<td>4.75</td>
</tr>
<tr>
<td>3-9*</td>
<td>2.63</td>
</tr>
<tr>
<td>4-5</td>
<td>0.62</td>
</tr>
<tr>
<td>4-6</td>
<td>0.529</td>
</tr>
<tr>
<td>8-9</td>
<td>0.51</td>
</tr>
<tr>
<td>7-8</td>
<td>1.01</td>
</tr>
<tr>
<td>6-9</td>
<td>0.76</td>
</tr>
<tr>
<td>5-7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*(faulted bus)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Ranking result with IEEE 9 bus power system with fault clearance time=0.32 and change in load of bus no.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line tripped</td>
<td>P_{I1}</td>
</tr>
<tr>
<td>2-7*</td>
<td>4.75</td>
</tr>
<tr>
<td>3-9*</td>
<td>2.63</td>
</tr>
<tr>
<td>4-5</td>
<td>0.7</td>
</tr>
<tr>
<td>4-6</td>
<td>0.62</td>
</tr>
<tr>
<td>8-9</td>
<td>0.55</td>
</tr>
<tr>
<td>7-8</td>
<td>1.03</td>
</tr>
<tr>
<td>6-9</td>
<td>0.78</td>
</tr>
<tr>
<td>5-7</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Fig. 4 Ranking contingencies with PI1 to PI5 indices in Sistan power system.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Ranking result with Sistan-230 kV power system with fault clearance time=0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line tripped</td>
<td>P_{I1}</td>
</tr>
<tr>
<td>1740*-1741</td>
<td>1.53</td>
</tr>
<tr>
<td>4231-4230*</td>
<td>0.756</td>
</tr>
<tr>
<td>1811-1810*</td>
<td>0.667</td>
</tr>
<tr>
<td>1810*-1830</td>
<td>0.279</td>
</tr>
<tr>
<td>1740*-4230</td>
<td>0.227</td>
</tr>
<tr>
<td>4230*-3720</td>
<td>0.169</td>
</tr>
<tr>
<td>1810*-1740</td>
<td>0.207</td>
</tr>
<tr>
<td>1740*-3540</td>
<td>0.28</td>
</tr>
<tr>
<td>1740*-3720</td>
<td>0.23</td>
</tr>
<tr>
<td>1810*-3540</td>
<td>0.158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Ranking result in Sistan power system with fault clearance time=0.26 and change in load of bus no.1810</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line tripped</td>
<td>P_{I1}</td>
</tr>
<tr>
<td>1740*-1741</td>
<td>1.87</td>
</tr>
<tr>
<td>4231-4230*</td>
<td>0.75</td>
</tr>
<tr>
<td>1811-1810*</td>
<td>0.66</td>
</tr>
<tr>
<td>1810*-1830</td>
<td>0.316</td>
</tr>
<tr>
<td>4230*-3720</td>
<td>0.182</td>
</tr>
<tr>
<td>1740*-4230</td>
<td>0.267</td>
</tr>
<tr>
<td>1740*-3540</td>
<td>0.343</td>
</tr>
<tr>
<td>1810*-1740</td>
<td>0.262</td>
</tr>
<tr>
<td>1740*-3720</td>
<td>0.27</td>
</tr>
<tr>
<td>1810*-3540</td>
<td>0.217</td>
</tr>
</tbody>
</table>
4 Conclusion

This paper demonstrated that various performance indices couldn’t reliably capture all the unstable cases individually. Each index can’t rank the severity of contingency for different system under different conditions, but the combination of indices can give a
better results in ranking especially for worst cases. Results on three test systems showed that combination of indices CI with use of LMS will provide a better ranking for worst cases and with respect to equal weight factor method is closer to benchmark.

5 References

Appendix

Table A1 generator dynamic data in 9 bus system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>bus1</th>
<th>bus2</th>
<th>bus3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{do}</td>
<td>8.96</td>
<td>8.5</td>
<td>3.27</td>
</tr>
<tr>
<td>T_{do}'</td>
<td>0.05</td>
<td>0.037</td>
<td>0.032</td>
</tr>
<tr>
<td>T_{do}''</td>
<td>0.31</td>
<td>1.24</td>
<td>0.31</td>
</tr>
<tr>
<td>T_{do}''</td>
<td>0.05</td>
<td>0.074</td>
<td>0.079</td>
</tr>
<tr>
<td>H</td>
<td>23.64</td>
<td>6.4</td>
<td>5.047</td>
</tr>
<tr>
<td>D</td>
<td>1.24</td>
<td>0.67</td>
<td>0.48</td>
</tr>
<tr>
<td>X_d</td>
<td>0.146</td>
<td>1.75</td>
<td>2.201</td>
</tr>
<tr>
<td>X_q</td>
<td>0.0969</td>
<td>1.72</td>
<td>2.112</td>
</tr>
<tr>
<td>X_{d}'</td>
<td>0.0608</td>
<td>0.427</td>
<td>0.556</td>
</tr>
<tr>
<td>X_{q}'</td>
<td>0.0608</td>
<td>0.65</td>
<td>0.773</td>
</tr>
<tr>
<td>X_{d}''</td>
<td>0.025</td>
<td>0.275</td>
<td>0.327</td>
</tr>
<tr>
<td>X_{q}''</td>
<td>0.01</td>
<td>0.22</td>
<td>0.246</td>
</tr>
</tbody>
</table>

X_d: d-axis synchronous reactance
X_{d}': d-axis transient reactance
X_q: q-axis synchronous reactance
X_{q}': q-axis transient reactance
X_{q}'': q axis subtransient reactance
T_E: field circuit time constant
K_A: amplifier gain
k_f: stabilizer gain
T_F: stabilizer time constant
T_{do}: d-axis open circuit transient time constant
T_{do}' : d-axis open circuit subtransient time constant

Table A2 Exciter parameter in 9 bus system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>bus1,2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_E</td>
<td>0.00</td>
</tr>
<tr>
<td>K_A</td>
<td>20.0</td>
</tr>
<tr>
<td>T_F</td>
<td>0.2</td>
</tr>
<tr>
<td>V_{heav}</td>
<td>7</td>
</tr>
<tr>
<td>V_{heas}</td>
<td>0.0</td>
</tr>
<tr>
<td>K_E</td>
<td>1</td>
</tr>
<tr>
<td>T_E</td>
<td>0.314</td>
</tr>
<tr>
<td>k_f</td>
<td>0.063</td>
</tr>
<tr>
<td>T_F</td>
<td>0.35</td>
</tr>
<tr>
<td>E_1</td>
<td>4.1</td>
</tr>
<tr>
<td>$S(E_1)$</td>
<td>2.5484</td>
</tr>
<tr>
<td>E_2</td>
<td>2</td>
</tr>
<tr>
<td>$S(E_2)$</td>
<td>0.5884</td>
</tr>
</tbody>
</table>