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Abstract: The concepts of robust classification and intelligently controlling the search 
process of genetic algorithm (GA) are introduced and integrated with a conventional 
genetic classifier for development of a new version of it, which is called Intelligent and 
Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision 
hyperplanes in the feature space. 
It is shown experimentally that the proposed IRGA-classifier has removed two important 
weak points of the conventional GA-classifiers. These problems are the large number of 
training points and the large number of iterations to achieve a comparable performance with 
the Bayes classifier, which is an optimal conventional classifier. 
Three examples have been chosen to compare the performance of designed IRGA-classifier 
to conventional GA-classifier and Bayes classifier. They are the Iris data classification, the 
Wine data classification, and radar targets classification from backscattered signals. The 
results show clearly a considerable improvement for the performance of IRGA-classifier 
compared with a conventional GA-classifier. 
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1 Introduction1 
Genetic algorithms (GAs) have been shown to be an 
effective stochastic search algorithm in high 
dimensional spaces. They are inspired by the biological 
process of Darwin’s evolution theory, where selection, 
mutation and crossover play important roles [1]. 
GAs have been applied to solve pattern recognition and 
data classification problems by finding decision 
boundaries and hyperplanes. This new evolutionary 
classifier is called GA-classifier [2].  
It is shown theoretically and experimentally that the 
performance of a GA-classifier for sufficiently large 
number of iterations and infinitely number of training 
data points is comparable to Bayes classifier which is 
the optimal classifier [3]. It is important to mention that 
the optimal Bayesian classifier needs a priori knowledge 
but GA-classifier doesn't need any important priori 
knowledge. 
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Also a variable string length GA-classifier (VGA-
classifier) proposed evolving the number of hyperplanes 
automatically [4] and another VGA-classifier with 
chromosome differentiation (VGACD-classifier) 
designed for pixel classification in [5]. The fitness 
functions, defined in all of these researches are the 
number of misclassified training points. Although the 
designed GA-classifiers  may classify the training points 
as well as, or better than other conventional classifiers, 
e.g. multi-layer-perceptron (MLP), k-nearest neighbor 
and Bayes classifier, but its performance has not this 
strength against the test points. A multiobjective GA has 
been recently introduced in [6] for simultaneously 
optimization three objectives, which are number of 
misclassified points, class-accuracy and the number of 
hyperplanes. 
As mentioned above, the better performance of GA-
classifier, for all of these researches, happens for a large 
number of training points and a large number of 
iterations. In fact these are two conditions, which are 
necessary for conventional GA-classifier to reach a 
comparable performance with Bayes classifier as an 
optimal classifier [2-6].  
Obviously, if the number of training points is 
sufficiently large, the probability distribution functions 
(PDF) can be estimated and with known PDFs, Bayes 
classifier is the best candidate to find  the decision 
functions in feature space, because of its simple 
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structure and the best performance and it is not 
reasonable to use  the GA-classifier with low 
convergence rate. 
In this paper a novel approach is proposed to remove 
these two weak points. The basic idea is to maximize the 
margins of hyperplanes from the different classes using 
a proper definition of the fitness function. It has been 
shown mathematically in [7] that maximizing the 
margins of hyperplanes from different classes can 
minimize the risk of error in the classification. 
To show the stability of the method against the variation 
of the number of training points (n) a new index, named 
robustness index, is defined as a metric. A GA-classifier 
with a high value of robustness against the value of n, 
named in this article a Robust GA-classifier (RGA-
classifier).  
Another important concept introduced in this article is 
to steer the GA-classifier efficiently to the global 
solution while genetic algorithm is running. For this 
purpose, an intelligent mutation and crossover rate 
controller is designed using a fuzzy structure to develop 
an Intelligent and Robust GA-classifier (IRGA-
classifier). This intelligent fuzzy controller, not only can 
chase away the genetic algorithm from the local 
solutions, but also can reduce the necessary number of 
iterations considerably. Thus a common problem of 
conventional GA-classifiers in previous researches, i.e. 
poor convergence of the search process due to the large 
number of iterations, is improved.  
The rules for designing the fuzzy controller were 
extracted from some theoretical and experimental 
results have reported in researches on GA operators [8-
12].   
We used Fuzzy controlled and Robust GA-classifier 
(FCRGA-classifier), and a Simple GA-classifier (SGA-
classifier) for determining the hyperplanes for two 
common benchmark problems and a special problem in 
pattern recognition. Iris data and Wine data 
classification are common problems in pattern 
recognition researches with low and medium feature 
space dimensions, and automatic target recognition in 
continuous wave radars is a special pattern recognition 
problem with high feature space dimensions. We 
compared the scores of recognition and the number of 
iterations is needed for convergence for FCRGA-
classifier and SGA-classifier. To see the robustness of 
designed IRGA-classifier, we also compared its 
performance with the Bayes classifier for different 
training points, because it is optimal classifier when the 
probability density function of features is known. 
The results show that FCRGA-classifier has more 
accuracy compared with a SGA-classifier with a less 
number of iterations and high robustness value. Also the 
performance of this IRGA-classifier is comparable to 
Bayes classifier for a low number of training points. 
In this paper, Section 2 explains the structure of a real-
valued genetic algorithm based classifier (GA-
classifier). Intelligent robust genetic classifiers are then 

described in Section 3. Section 4 considers experimental 
results on three pattern recognition problems, which are 
Iris data classification, Wine data classification and 
radar target classification. Finally, Section 5 concludes 
the paper. 
 
2 Structure of a real- valued GA-classifier 
A general hyperplane is in the form 

1nnn2211 wxw....xwxw)X(d +++++=  (1) 

Where X= ( )'
n21 1,x,...,x,x and W= ( )'

1nn21 w,w,...,w,w +  are 
called the augmented feature (pattern) and weight 
vectors respectively. 
In a general case, there are a number of hyperplanes that 
separate the feature space to different regions, which 
each region distinguishes an individual class (Fig. 1). In 
Fig. 1, IR denotes the indeterminate region. 
 

 
Fig. 1 A general case, which each region can identify an 
individual class by its code obtained from the sign of 
hyperplanes. 
 
Some especial cases are described in the text books of 
Pattern Recognition course [e.g. 13].  
A real-valued GA–classifier should find iW  
(i=1,2,…,M) in solution space. We consider real-valued 
GA-classifier because binary coded GAs are less 
efficient when applied to multi dimensional problems. 
The bit-strings can become very long and the search 
space blows up. In real-valued GAs, the variables 
appear directly in the chromosome and are modified by 
mutation and recombination (crossover) operators. 
Various real-valued-GA were reviewed in [14].The 
basic steps for designing a real-valued GA-classifier are 
as follows: 
 
1-Generation 
At the first step a random initial population, S(0) is 
generated . S(0) includes N chromosomes and the i’th 
chromosome is of the form [ 0

iM
0
2i

0
1i W,...,W,W ] '  for M 

classes. 
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2-Fitness evaluation 
At the second step the value of fitness function of S(0) 
is computed . In a simple GA-classifier, which 
introduced in previous researches the fitness function is 
defined as the number of misclassified training points 
[2-6]. 
 
3-Basic loop 
      The body of a GA is: 
            While (Termination Condition) 
                   Loop : 
                               Compute fitness(S(q)); 
                               q=q+1; 
                               S(q)=Select (S(q-1)); 
                               S(q)=Crossover S(q); 
                               S(q)=Mutate (S(q)); 
                  End Loop; 
           End While; 
 
The termination condition can be implemented using the 
best fitness value or a default maximum number of 
iterations. In q’th iteration the fitness value is computed 
and then a new population is generated by three 
important genetic operators: selection, crossover 
(recombination), and mutation. These operators 
described as follows: 
 
-Selection  

Selection is the process of determining the number of 
times or trials that a particular individual is chosen for 
reproduction and, thus the number of offsprings that an 
individual will produce. Many selection techniques 
employ “roulette wheel” mechanism to probabilistically 
select individuals proportional to their fitness value. 
Also the best individuals are transmitted to the next 
generation without any additional process (elitism 
strategy). 
 
-Crossover 
The basic operator for producing new chromosomes in 
the GA is the crossover. Like its counterpart in nature, 
crossover produces new individuals that have some 
parts of both parent’s genetic material. We used a 
simple arithmetic form of crossover, which is single 
point crossover, described as follows:  
Assume q

ikW  and q
jpW  are the i’th and j’th hyperplane of 

k’th and p’th chromosomes in the q’th iteration 
respectively. Then q

ikW  and q
jpW  are crossed over at the 

l’th position. The resulting offsprings are 

)w,...,w,w,w,...,w,w(W 1jn2jl1jlil2i1i
1q

ik +++
+ =  (2) 

)w,...,w,w,w,...,w,w(W 1in2il1iljl2j1j
1q

jk +++
+ =  (3) 

Where l is a random number from {2,…,n} and n is the 
feature space dimension. Crossover rate (CR) is the 
number of times that crossover operator is applied to the 
population. 

-Mutation 
In GAs, mutation is randomly applied with a known 
probability. It modifies elements in the chromosomes. It 
means that a position in an individual is selected 
randomly and the value in this position is changed. 
We used Gaussian mutation mechanism that mutates 
some elements of an individual such that   

)w,...,w,...,w,...,w,w(W 1inilil2i1i
1q

ik 21 +
+ ′′=  (4) 

Where rl  belongs to [1,n+1] interval and is randomly 
selected. Also 

rrr lilil zww +=′ . Here 
rl

z is a random 
number drown from a Gaussian distribution with zero 
mean and adaptive variance. 
 
3 What is intelligent and robust GA-classifier 
(IRGA-classifier)? 
As it mentioned in Section 1 the large number of 
training points and iterations are two necessity, which 
are necessary for conventional GA-classifier to reach a 
comparable performance with Bayes classifier as an 
optimal classifier. 
In this article it has been tried to remove the aforesaid 
problems in GA-classifiers. For this reason at first a 
review on optimal hyperplane for separation of two 
classes is presented. Then we define an efficient fitness 
function for obtaining these optimal hyperplanes by a 
GA-classifier. At the next step a new concept is defined 
and is called the robustness of performance of a GA- 
classifier against the number of data points. 
Eventually designing an intelligent mutation rate and 
crossover rate controller is considered to help GA-
classifier to obtain near the optimal hyperplanes. 
 

A. Optimum Hyperplanes 
A conceptual problem for computing a linear decision 
function to separate two different classes is determining 
a hyperplane which has a better performance against 
receiving the next data points (or test points).  
Since we suppose, there is no priori knowledge about 
the distribution of data points in feature space, the 
optimal hyperplanes are defined as the linear decision 
function with maximal margin between the feature 
vectors of different classes this margin is calculated 
based on the available training points of the classes. 
This strategy is similar to what has been done in 
Support Vector Machine (SVM) studies [7].  
Fig. 2 shows three hyperplanes ( )x(d1 , )x(d 2  and 

)x(d opt ) that all of them can be considered as the 
decision functions, which separate two Class1 and 
Class2 successfully. It can be seen from this figure that 
if any small noise is added to training points, as a test 
data (or a new training point) near this decision 
functions, it can impair the recognition score ( or change 
the position) of )x(d1  and )x(d 2 . 
Among )x(d1 , )x(d 2  and )x(d opt , only )x(d opt  separates 
the training data with a maximal margin from two 
classes. Since the margins of two classes from the 

)x(d opt are equal, the new noisy testing points in the 
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classes (or new training points in them) can have a little 
effect on the recognition score (or variation of) )x(d opt . 
 

B. Fitness Function Definition 
It should be mentioned that the fitness function, which 
has been used in previous researches [2-6] is "the 
number of miss-classified data points". Thus a 
conventional GA-classifier may converge to each of  

)(1 xd  or )(2 xd  in Fig.2 that have the minimum miss-
classified data points, but are not optimal decision 
functions. In fact, fitness function definition as the 
misclassified data points, need to have many data points 
in the training phase for convergence to the best 
hyperplanes in a simple GA-classifier. This is a 
weakness aspect for conventional GA-classifiers, which 
has been proved theoretically and experimentally. 
 

 
Fig. 2 )x(d opt  is the optimal decision function among other 
decision functions. 
 
Maximizing the minimum value of the average of the 
Euclidean distances of all data points in each class is a 
good algorithm, which can displace )x(d1  and )x(d 2  
toward )x(d opt . We named this algorithm Max-Min 
algorithm. To see the efficiency of Max-Min algorithm 
for chancing away )x(d1  and )x(d 2  toward )x(d opt , 
suppose that a conventional GA-classifier converged to 

)x(d1 , which has minimum average distance from 
Class2. By entering the Max-Min algorithm in fitness 
function, GA-classifier must maximize the margin of 

)x(d1 from Class2. Thus )x(d1  tends to )x(d opt . Same 
condition is appeared if GA-classifier is converged 
to )x(d 2 .  
Due to above descriptions, we defined a modified 
fitness function as: 

)d,dmin(penalty)W(fitness ji ΣΣ+=  (5) 

In (5), fitness (W) is the value of fitness function for the 
chromosome W. The penalty is a negative, absolutely 
large value, which is used if the hyperplane obtained by 
W, doesn't classify all data points in different classes 

iC and jC . In this paper penalty is defined as 
10*min( idΣ , jdΣ )*Miss, which Miss is the number of 
misclassified data points by hyperplanes obtained by a 
chromosome W. idΣ is the average of the Euclidean 
distances of all data points in class i from the 
hyperplane W , and min( idΣ , jdΣ ) is the minimum 
value of idΣ and jdΣ . The GA-classifier proposed in 
this article maximizes the fitness function (or minimize 
its negative value). 
Obviously, when the second term in definition of fitness 
(W) is set to zero, the same fitness of a conventional 
GA-classifier is obtained.  
The first and necessary condition for a good 
performance of Equation 5 is that the classes are 
separable from each other. Your comment is correct 
when classes have overlap in some patterns. In this case 
we attach the misclassified patterns to one class and 
then we use Equation 5 as the fitness function. It means 
that we accept a little error to adjust decision 
hyperplanes just between classes. 
 

C. Robust GA-classifier (RGA-classifier) 
To evaluate the performance of modified fitness 
function defined by (5) and compare it with 
conventional fitness function definition in previous 
researches, a new concept of robustness is introduced.  
In this article the concept of robustness is defined as the 
inverse of the sensitivity of the solutions (hyperplanes) 
of a GA-classifier against the variation of number of 
data points for each class. More robustness for a GA-
classifier concludes more stability for the obtained 
optimum solution. We defined the robustness of a GA-
classifier as follows: 

Robustness= 1]
Perf

n*
n

)Perf([ −

∆
∆  (6) 

In (6) Perf  is the performance of the best hyperplanes 
have been found by GA-classifier. n is the number of 
data points and ΔPerf is defined as the difference 
between two obtained performance in two different 
number of training points. A robust GA-classifier 
(RGA-classifier) has a low sensitivity against changing 
the number of training points. 
In fact the robustness is a good metric to see how the 
modified fitness function can remove one of the 
important defects in conventional GA-classifier, which 
is need to a large number of training points to reach to 
an optimal performance. 
 
D. Intelligent and Robust GA-classifier (IRGA-

classifier) 
The search mechanism of an evolutionary algorithm 
likeness GA is based on three important operators: 
Selection, Mutation and Crossover. All of these 
operators have probabilistically events, but by different 
effects on search process, thus intelligently controlling 
them can help the genetic algorithm to escape from 
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local solutions and converge to global solution by a 
faster rate.  
A RGA-classifier with an intelligent CR and MR 
controller is called intelligent and robust genetic 
classifier (IRGA-classifier). In this paper, we designed a 
fuzzy structure to control adaptively CR and MR in 
each iteration and called it Fuzzy Controlled and Robust 
GA-classifier (FCRGA-classifier). The fuzzy controller 
is constructed on some fuzzy (IF antecedents THEN 
consequents) rules. Each input and output variable are 
defined with their membership functions.  
We defined three inputs for fuzzy controller in a 
FCRGA-classifier as follows: 
Fit-dist: the distance between fitness value of the best 
individual in q’th iteration and maximum of fitness 
function. Based on Equation (5) the fitness of each 
chromosome is related to the number of misclassified 
training points and margins between different classes. 
The number if training points is known and the 
minimum distance of the patterns which exist in each 
class can be found. Thus an approximated value of Fit-
dist is available in each problem. 
 UN: The number of iterations whose fitness value is 
constant. 
 t: the number of iterations. 
Two outputs of fuzzy controller are crossover rate (CR) 
and mutation rate (MR). 
The normalized membership functions of Fit-dist, UN 
and t are shown in Fig. 3. 
 

 
Fig. 3 Membership functions of inputs (Fit-dist, UN, and t) 
and outputs (CR, MR) in fuzzy controller. 
 
The selection of the shapes of membership functions 
and their locations are based on widely study on 
researches were related to GA and appeared as a survey 
in [8] and other references (some of them are [9-12]).  
To extract some effective fuzzy rules, we know that 
crossover facilitates exploration while mutation 
facilitates exploitation in solution space. This means 

that when the best fitness stuck at one value for a long 
time (UN is High), the GA is often stuck at a local 
minimum, so the crossover rate should be decreased and 
mutation rate should be increased. Low fitness values 
(or High values of Fit-dist) often happen in the start of 
GA (t is low) and we need more exploitation and less 
exploration. Thus crossover rate should be decreased 
and mutation rate should be increased and contrariwise 
if fitness value is increased (Fit-dist tends to Low 
values) crossover rate should be increased and mutation 
rate should be decreased. 
On the other hand it should be mentioned that although 
all of the theoretical and experimental researches have 
been done on the optimal MR and CR were constructed 
under some conditions or for a few test functions, but 
they have a common aspect, which is a decreasing 
schedule for MR and CR as the number of iterations (t) 
is increased. Specially in [11], Schmitt presented an 
annealing schedules for MR and CR with respect to t 
which guaranty the convergence to global solution: 

2
1t.)t(MR pL.

1

m <φ= κ
−

 (7) 

m
1

c )]t(MR.[)t(CR φ=  (8) 

Where mφ ∈  +R \ {0} and κ∈[1, ∞) can be chosen and 
pL is the population size and both cφ ∈  (0, m

1
2 ] and 

m∈[1, ∞) can be chosen. 
Of course decreasing the MR and CR must be based on 
an improvement in fitness values (or decreasing the Fit-
dist).  
From above linguistic descriptions seven rules for the 
fuzzy controller are defined as below: 
a) IF (t) is low and (Fit-dist) is high THEN (MR) is 

high and (CR) is low. 
b) IF (t) is medium and (Fit-dist) is high THEN (MR) 

is medium and (CR) is low. 
c) IF (t) is high and (Fit-dist) is low THEN (MR) is low 

and (CR) is high. 
d) IF (Fit-dist) is high and UN is low THEN (MR) is 

medium and (CR) is medium. 
e) IF (Fit-dist) is high and UN is high THEN (MR) is 

high and (CR) is low. 
f) IF (Fit-dist) is low and UN is high THEN (MR) is 

medium and (CR) is low. 
g) IF (Fit-dist) is low and UN is low THEN (MR) is 

low and (CR) is high. 
It must be mentioned that another inputs, outputs, 
membership function shapes and fuzzy rules may be 
introduced and even these parameters can be optimized 
by another optimization algorithm [15-17]. 
 
4 Implementation and Results 
Three pattern recognition problems with different 
augmented feature vectors dimensions (5,4,129) were 
used to demonstrate the effectiveness of the IRGA-
classifier. A description of the data sets is given here: 
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A. Data Sets 
 Iris Data: Iris Data contains 50 measurements of four 
features from each three species Iris setosa, Iris 
versicolor, and Iris virginica [18]. Features are sepal 
length, sepal width, petal length and petal width. 
 Wine Data: Wine data contains the chemical analysis 
of wines grown in the same region in Italy but derived 
from different cultivars [19]. The 13 continuous 
attributes are available for classification. Total number 
of instances is 178 which we classified them in five 
classes. 
 Radar Targets: An application of pattern recognition is 
Automatic Target Recognition (ATR) for continuous 
wave radars. In this paper Jet Engine Modulations 
(JEM) is used for this purpose. In this approach the 
modulation of the radar wave by rotating propellers and 
jet engine blades of targets is considered [20,21]. Ten 
different flying objects were chosen as introduced in 
[21] for classification in 20 º elevation angle. After 
sampling from backscattered signals and data reduction 
preprocess, we took a 128 points FFT as feature vectors 
for each target. 
 

B. Comparison with Existing Methods 
The performance of proposed IRGA-classifier is 
compared with the performance of a simple GA-
classifier (SGA-classifier) and Bayes classifier. The 
genetic parameters in SGA-classifier were selected as 
conventional GA-classifiers were proposed in previous 
researches [2-6]. The crossover probability is fixed at 
0.8. Available value of mutation probability is selected 
from the range [0.015, 0.333]. A fixed population size 
of 20 is chosen for both SGA-classifier and IRGA-
classifier. For Bayes classifier, a priori probabilities 
equal to trtri , for itr  patterns from class i, and totally 
tr training samples , and a multivariate normal 
distribution of the samples are considered. This is 
similar to Bayesian classifier is used in [2-5] to show 
the improvements compared to SGA-classifiers 
introduced in these researches. 
 

C. Experimental Results 
The proposed IRGA-classifier (i.e. FCRGA-classifier), 
SGA-classifier and Bayes classifier are tested on the 
data sets described in section 4-A. We implemented 
different classifiers for ten times with random selected 
of training sets. Thus the results report the average score 
of recognition for ten times repeats. Table 2 and Table 3 
present the results corresponding to Iris data and Wine 
data classification for different number of training 
samples (n=5,10,15), for  5 number of hyperplanes 
(H=5). 
The calculated robustness (defined by (6)) in some 
different number of training points for Iris data and 
Wine data are given in Table 4 and Table 5, respectively 
. The robustness of the IRGA-classifier and a SGA-
classifier are appeared in these Tables, with respect to 5 
training points as a reference for (n, Perf). 

The results in Table 2 to Table 5 have some meaningful 
concepts: 
i) The performance of an IRGA-classifier is better than 

or comparable with the Bayes classifier, which is an 
optimal classifier, for any number of training points, 
appeared in Table 2 and Table 3, for both Iris data 
and wine data classification. 

ii) The performance of a SGA-classifier for these two 
benchmark problems depends on the number of 
training points [Table 2 and Table 3]. The larger 
number of training points, the better performance for 
SGA-classifier. (It is compatible to the theorem 1 in 
[3] and other experimental results in [2-6]. It shows 
low robustness of SGA-classifier [Table 4 and Table 
5]. 

iii) On the contrary, IRGA-classifier have a good 
robustness [Table 4 and Table 5], because a low 
dependence on the number of training points. Thus 
the large number of training points is not necessary 
for good performance of an IRGA-classifier. In fact 
it has robustness comparable to Bayesian classifier. 

 
Radar targets classification is done by ten hyperplanes 
(H=10) and for ten numbers of training points (n=10). 
In this experiment we waited until the IRGA-classifier 
and SGA-classifier converged to their optimum 
solutions for different signal to noise ratios (changing 
the variances of Gaussian noise produces different 
powers of noise). Table 6 shows obtained results. 
Table 6 shows that the hyperplanes have been found by 
IRGA-classifier perform more accurate than a SGA-
classifier and are comparable to Bayesian classifier.  
This means that designed intelligent fuzzy controller 
steers the GA- classifier to find better hyperplanes, near 
those have been found by Bayesian classifier for a low 
number of training points (n=10). 
 
At another experiment, to show the effective role of 
fuzzy controller in the reduction of the number of 
iterations, 10 out of 50 measurements are considered as 
training data and the rest as the test data. The average 
scores of recognition (%) with respect to the number of 
generations for FCRGA-classifier and a SGA-classifier 
have been shown in Figures 4,5,6 for each case study. In 
this figures the numbers of generations are normalized 
by 10. In Fig. 6 the SNR is 10 dB. 
These also mean that the convergence rate of an IRGA-
classifier has a considerable improvement compared 
with a SGA-classifier. 
Since the Equation 5 is more complex than the fitness 
definition in a SGA-classifier, the number of 
generations for a RGA-classifier is more than a SGA-
classifier and in turn for FCRGA-classifier and FCSGA-
classifier. Thus comparing the performances of a 
FCRGA and FCSGA classifiers we found the better 
reduction of number of generations than it has been 
shown in Figures 4-6. 
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Table 2 Recognition scores (%) for Iris data classification with H=5. 
training points=5 training points=10 training points=15 

 SGA IRGA Bayes SGA IRGA Bayes SGA IRGA Bayes 
class1 89.1 98.1 91.2 97.7 97.5 96.4 100 100 100 
class2 92.2 93.3 95.4 87.9 95.1 97.3 96.3 96.5 97.1 
class3 78.8 95.1 85.1 96.2 98.2 98.6 92.1 98.2 96.1 
average 86.7 95.5 90.6 93.9 96.9 97.43 96.1 98.2 97.7 

Table 3 Recognition scores (%) for Wine data classification with H=5. 
training points=5 training points=10 training points=15 

 SGA IRGA Bayes SGA IRGA Bayes SGA IRGA Bayes 
class1 70.1 88.2 83.1 83.2 92.1 95.2 89.1 95.3 95.4 
class2 73.2 90.2 92.1 87.2 93.5 90.1 90.1 92.3 91.5 
class3 80.2 89.1 95.2 87.6 92.3 92.7 86.3 97.3 98.1 
class4 65.7 78.4 80.9 73.5 82.3 84.5 89.2 91.1 90.6 
class5 71.0 89.1 81.5 87.1 92.3 95.3 89.1 97.8 96.0 
average 72.0 87.0 86.6 83.7 90.5 91.6 88.8 94.8 94.3 

 
Table 4 The robustness for different training points (n) for Iris data with respect to n=5 as a reference. 

 n=10 n=15 n=20 n=25 
SGA-classifier 6.52 6.81 6.95 7.01 
IRGA-classifier 34.60 24.24 32.05 29.33 
Bayesian classifier 7.13 9.17 25.34 32.11 

 
Table 5 The robustness for different training points (n) for Wine data with respect to n=5 as a reference. 

 n=10 n=15 n=20 n=25 
SGA-classifier 3.58 3.52 4.76 5.36 
IRGA-classifier 12.92 8.10 11.67 13.33 
Bayesian classifier 9.16 8.16 12.15 15.38 

 
Table 6 Recognition scores (%) with respect to different SNRs with n=10 and H=10. 

different SNRs(dB) 
 -15        -10        -5        0        5        10        15 
SGA 17.9      25.5     33.4    43.7    57.5    70.7     82.5  
IRGA  23.5      33.4     40.2    65.5    77.2    93.3     96.3 
Bayes 25.8      31.6     43.2    63.7    78.8    92.5     95.1 

 

 
Fig. 4 The average scores of recognition (%) with respect to 
the number of generations(*10) for Iris data classification 
(n=10 and H=5). 

 
Fig. 5 The average scores of recognition (%) with respect to 
the number of generations (*10) for Wine data classification 
(n=10 and H=5). 
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Fig. 6 The average scores of recognition with respect to the 
number of generations (*10) for radar targets classification 
(n=10, H=10 and SNR=10 dB). 
 
5 Conclousion 
An evolutionary computation method is proposed for 
obtaining optimal hyperplanes in feature space, 
designing intelligent and robust GA-classifier (IRGA-
classifier). 
Conventional GA-classifiers, which have been 
introduced in previous researches, have two important 
defects. They need a large number of training points 
and a large number of iterations to converge to 
optimum hyperplanes. Both of these two prerequisites 
are usually unreachable in practice and can restrict the 
performance of conventional GA-classifiers. 
In this article a new concept, named the robustness of a 
GA-classifier, has been proposed. It has been defined as 
the insensitivity of performance of a GA-classifier 
under increasing the number of training points, to 
remove the first weakness aspect of conventional GA-
classifiers. On the other hand the idea of designing the 
intelligent controllers for adapting the crossover and 
mutation rate in a GA-classifier has been proposed to 
steer the GA-classifier to optimum solution and to 
escape it from local solutions. It can remove another 
weakness of usual GA-classifiers, which is the need for 
large number of iterations to converge to optimum 
hyperplanes. The IRGA-classifier find the decision 
hyperplanes which are fine tuned between different 
classes, no closer to one class.  
The performance of designed IRGA-classifier, which is 
FCRGA-classifier compared with a simple GA-
classifier and Bayesian classifier for three pattern 
recognition problems with low, medium and high 
feature space dimensions. The experimental results 
show a better robustness, performance and convergence 
rate for IRGA-classifier compared with a SGA-
classifier. Also similar performances have been 
obtained for IRGA-classifier and Bayesian classifier for 
low number of data points. Both of these results are two 
evidences of removing two essential problems in 
conventional GA-classifiers using IRGA-classifier. 

Other intelligent controllers (e.g. Neural Network 
structures) and other evolutionary classifiers (e.g. 
Particle Swarm classifier) should be studied to 
investigate their performance compared with proposed 
IRGA-classifier in this paper. 
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