Inverter Based Distributed Generator Islanding Detection Method using Under/Over Voltage Relay

E. Kamyab* and J. Sadeh*

Abstract: Islanded operation of distributed generators is a problem that can happen when they are connected to a distribution system. In this paper an islanding detection method is presented for inverter based Distributed Generation (DG) using under/over voltage relay. The method is an adaptive one and is based on the change of DG active power reference (P_{ref}) in inverter control interface. The active power reference has a fixed value in normal condition, if the Point of Common Coupling (PCC) voltage changes, P_{ref}, is determined as a linear function of voltage. The slope of P_{ref} depends on the load active power (P_{load}) and it should be changed if P_{load} changes. The Non-Detection Zone (NDZ) of the proposed method is zero. If changing of the PCC voltage is sensed, islanding will be detected when it occurs. Also, it does not have any negative effects on the distribution system under normal conditions. The proposed method is evaluated according to the requirements of the IEEE 1547 and UL 1741 standards, using PSCAD/EMTDC software.

Keywords: Adaptive islanding detection, Inverter based distributed generation, Non detection zone, Under/Over voltage relay.

1 Introduction

Electric generation facilities which are connected to the power system through a Point of Common Coupling (PCC) in the load site are called Distributed Generation (DG) [1]. In this situation, one of the inevitable events is the islanding phenomenon, which happens when the local load is fed by the DG and the grid system has been interrupted. When the DG feeds the load independently in absence of distribution system the reliability and power quality would be aggravated. Moreover, it may threaten the safety of operational personnel who are repairing the distribution equipments. Therefore, the fast detection of islanding phenomenon is very important [2]. There are two types of islanding detection methods, local and remote techniques. While local techniques rely on the information and data of DG site, remote techniques are based on the communication between utility and the DG.

Supervisory Control And Data Acquisition (SCADA) [3] and power line signaling scheme [4-6] are used in remote techniques. Although, these techniques are more reliable than local techniques, they are more expensive than them to be implemented especially for small DGs [7].

Local methods are divided into passive, active and hybrids methods. For the methods that detect islanding phenomenon passively, the upper and lower thresholds of a parameter of the power system should be defined in the DG site. If the parameter passes the threshold settings, the islanding is detected. The main advantages of passive methods are simplicity and inexpensiveness. These methods do not perturb the parameter of the system and have high accuracy when there is a large mismatch between generation and demand in the islanded system. Unfortunately, they have a serious problem of having relatively large Non Detection Zone (NDZ) and they may not be reliable in all loading conditions [8].

Active islanding detection techniques are utilized for increasing the reliability and reducing the NDZ. However, their use has some drawbacks which are shortly reported hereafter.

These methods introduce a small perturbation into the system. This small perturbation will make a severe change in system parameters in the absence of grid, whereas the change is insignificant when the DG is connected to the grid. Active methods are capable of detecting the islanding situation even if the DG generation matches the local load. Although active methods have a small NDZ, they can degrade the system power quality [9]. Moreover, the need for designing an additional controller in some active methods increases their complexity [10]. These methods can also cause problems under abnormal or transient grid conditions and can interfere among themselves in case of multiple generators.
Hybrid islanding detection techniques are a combination of active and passive methods. In these methods, the active technique is applied when islanding is undetectable by the passive method.

In [8], an active islanding detection method is presented for inverter based DG which drifts the PCC voltage to detect the islanding phenomenon. Based on the results of their study (Table I of [8]), it was pointed out that the NDZ of their presented method, is small but not zero. In [11], in order to detect the islanding phenomenon, a voltage positive feedback is designed in the synchronous d-q frame. It can be implemented on the inverter based DG and the method is based on the voltage drifting. However, the PCC voltage was unstable due to positive feedback in islanding condition.

Several active methods like Active Frequency Drift (AFD), Active Frequency Drift with Positive Feedback (AFDPF) [12] and slip mode frequency shift (SMS) [13] are presented and developed. In AFD method, for islanding detection, the current is slightly disturbed presenting a zero-current segment. So, it degrades the islanding detection, the current is slightly disturbed and relies on the change of P_{ref} of DG in inverter control.

In abnormal condition when the PCC voltage is in a range given in Table 1, the DG should be stopped to energize the power system within the clearing time as indicated in [18]. Clearing time is the time between the start of the abnormal condition and the DG ceasing to energize the power system. The purpose of the allowed

3 Proposed Islanding Detection Method

In abnormal condition when the PCC voltage is in a range given in Table 1, the DG should be stopped to energize the power system within the clearing time as indicated in [18]. Clearing time is the time between the start of the abnormal condition and the DG ceasing to energize the power system. The purpose of the allowed
Table 1: Response to abnormal voltages [9, 18, 20].

<table>
<thead>
<tr>
<th>Voltage (at PCC)</th>
<th>Maximum trip time</th>
</tr>
</thead>
<tbody>
<tr>
<td>V < 50%</td>
<td>6 cycles</td>
</tr>
<tr>
<td>50% < V < 88%</td>
<td>120 cycles</td>
</tr>
<tr>
<td>88% < V < 110%</td>
<td>Normal operation</td>
</tr>
<tr>
<td>110% < V < 137%</td>
<td>120 cycles</td>
</tr>
<tr>
<td>V > 137%</td>
<td>6 cycles</td>
</tr>
</tbody>
</table>

The following equations can be used for determining the NDZ considering before and after islanding PCC voltages:

\[
P_{I,Al} = P_{I,Al} = P_{DG} - \Delta P = \frac{V_p^2}{R} \left(V_0 + \Delta V \right)^2 \]

\[
P_{I,Al} = P_{DG} = \frac{V_p^2}{R} \]

where, \(V_p \) and \(V_0 \) are pre- and post-islanding PCC voltages, respectively. Also, \(P_{I,Al} \), \(P_{DG} \), \(\Delta P \) and \(R \) are pre- and post-islanding load active power, DG active power generation, active power exchange between DG and grid system and local load resistance, respectively. In Eq. (3) \(V_0 \) is the grid nominal voltage in the 380 V transformer side and \(\Delta V \) can be calculated as \(\Delta V = \Delta Z_0 \) where \(Z_0 \) is the Thevenin impedance of grid seen from 380V transformer side. If reactive power of DG is equal to zero and load power factor is almost 1, then \(\Delta V \) can be written as follows:

\[
\Delta V \approx \frac{\Delta P Z_0}{V_0^2}
\]

Substituting Eq. (5) into Eq. (3) and removing \(R \) between Eq. (3) and Eq. (4) and some manipulations, Eq. (6) can be written:

\[
1 - \frac{\Delta P}{P_{DG}} = \frac{(1 + \frac{\Delta P Z_0}{V_0^2})^2}{\frac{V_p^2}{V_0^2}}
\]

Using Eq. (3) and Eq. (4), the load active power can be calculated as Eq. (7).

\[
P_{I,Al} = P_{DG} = \frac{V_p^2}{V_0^2} P_0 \text{ or } P_{DG} = \frac{V_p^2}{V_0^2} P_0
\]

Also, from Eq. (6), if \(Z_0 = 0 \) (grid is considered as infinity bus) the active power exchange between DG and grid can be calculated as follows:

\[
\Delta P = P_{DG} (1 - \frac{V_p^2}{V_0^2})
\]

The NDZ can be obtained by substituting upper and lower bounds of voltage (\(V'_p/V_0 = 1.1 \) and 0.88) into Eq. (6); that results in the following inequality when \(Z_0 = 0 \) [8, 10]:

\[
-29.132 < \frac{\Delta P}{P_{DG}} < 17.355
\]

It is important to note that, Eq. (9) is correct if the short circuit capacity of grid is assumed to be infinity and \(V_0 = 380 \) V, otherwise, NDZ should be calculated from Eq. (6). If active power exchange between the DG and the grid is in the non-detection zone, the islanding phenomenon cannot be detected. To detect the islanding phenomenon, \(P_{ref} \) is determined adaptively based on the values of DG generation and active power of local load. It is worth noting that the worst case of islanding detection happens when the power mismatch between the load active power and DG generation is almost zero. In such condition, there is no power exchange between the DG and the grid in nominal voltage. In order to clarify the subject, suppose \(P_{I,ref} = P_0^0 - P_{DG} \) (\(\Delta P = 0 \)) in nominal voltage \(V_0 \). Besides, suppose that the system voltage changes to \(V_1 \) due to non-islanding phenomena. Then, \(P_{I,ref} = P_0(V_1/V_0)^2 \) and \(\Delta P = P_{DG} (1 - V_1^2/V_0^2) \). In such condition, if islanding occurs, the PCC voltage changes from \(V_1 \) to \(V_0 \) after islanding. On the other hand, by the conventional islanding detection method, islanding detection is not possible. But as the pre- and the post-islanding PCC voltage are not equal, it is possible that the islanding phenomenon occurs. Using the proposed method, the islanding will be detected even in such cases. In other words, the PCC voltage variation is sensed by the voltage measurement and \(P_{ref} \) switches from \(P_{ref} \) to a new \(P_{ref} \) and as a result, the proposed method drifts the voltage deviation to settle out the above mentioned limits, i.e. islanding is detectable.

To explain the proposed method more precisely, refer to Fig. 2. In this figure, the load active power characteristic and DG active power reference are drawn in respect to \(P_{ref} = V_p/V_0 \). The curves \(C_1, C_2, C_3 \) and \(C_4 \) are loads with \(P_0^0 = P_{ref0}, P_0 = 1.03P_{ref0}, P_0 = 1.1P_{ref0} \) and \(P_0 = 0.95P_{ref0} \), respectively.

By measuring the post-islanding PCC voltage and voltage deviation from nominal voltage, the curve of the load active power in normal condition \(P_0 \) can be determined. For instance, as shown in Fig. 2, if the voltage deviation is equal to \(\Delta V > 0 \), then, the load active power curve is matched with curve \(C_4 \). In this...
condition, \(P_{ref} \) is determined as a linear function of voltage that passes through point A(1, \(P_{ref0} \)) and a point like B. The \(r_{iv0} \) of point B should be equal or greater than 1.1. Therefore, the PCC voltage is deviated to point B in islanding condition. Since the islanding voltage ratio of this point is equal or greater than 1.1, the islanding phenomenon will be detected. If \(r_{iv0} \) of point B is assumed to be 1.1, i.e. B(1.1, 1.21\(P_0 \)), the \(P_{ref} \) is determined as Eq. (10) for \(\Delta V > 0 \).

If the voltage deviation is \(\Delta V < 0 \), then, the curve of the load active power is fitted to the curve C with \(P_0 = 1.1 P_{ref0} \), as shown in Fig. 2. In this condition, \(P_{ref} \) is determined as a linear function of voltage that passes through points A(1, \(P_{ref0} \)) and a point like D. The \(r_{iv0} \) of point D should be equal or less than 0.88. Therefore, the PCC voltage is deviated to point D in islanding condition. Since the islanding voltage ratio of this point is equal or less than 0.88, the islanding will be detected. If the \(r_{iv0} \) of point D is assumed to be 0.88, i.e. D(0.88, 0.7744\(P_0 \)), the \(P_{ref} \) is determined as Eq. (11) for \(\Delta V < 0 \).

\[
P_{ref} = P_{ref0} + \frac{-P_{ref0} + 1.21 P_0}{0.1} (r_{iv0} - 1) \quad \Delta V > 0 \quad (10)
\]

\[
P_{ref} = P_{ref0} - 0.12 (r_{iv0} - 1) \quad \Delta V < 0 \quad (11)
\]

Note that point B or point D should be the first point of the intersection between \(P_{ref} \) and \(P_{load} \) characteristics. Additionally, these points should be stable ones, too.

The stability conditions of the operating points are discussed in Appendix A.1. For \(\Delta V > 0 \), point B is the first intersection between \(P_{ref} \) for any load that \(P_0 \) is less than \(P_{ref0} \). Also, because the slope of the \(P_{ref} \) characteristic at point B is greater than that of the \(P_{ref} \) characteristic, it is a stable operating point as explained in Appendix A.1.

Therefore, if islanding phenomenon occurs and \(\Delta V \) is positive, the islanding will be detected. However, if islanding occurs and \(\Delta V < 0 \), the first stable intersection point between curves Pl and Pref has a \(r_{iv0} \) that is greater than 0.88 and also is a stable point for some loads. This means that \(r_{iv0} \) reaches to this stable point and settle, i.e. the islanding is not detectable, and the NDZ of the method is not zero in islanding conditions.

To determine the NDZ of the method, the active load characteristic has been written as Eq. (12):

\[
P_l = P_{10} \left(\frac{V'}{P} \right)^2 = P_{10} r_{iv}^2 \quad (12)
\]

As mentioned before, for \(\Delta V < 0 \), the proposed method can detect islanding phenomenon if the first stable intersection point between curves PI and Pref takes place at a point that \(riv0 \) is less than 0.88. This is possible if the slope of Pref is less than that of load curve at D(0.88, 0.7744P0). The slope of the load active power characteristic can be determined as follows:
\[
\frac{d}{d\tau} (P_{DG, \tau}) \bigg|_{\tau=0.88} = 2P_{DG, 0} \bigg|_{\tau=0.88} = 1.76P_0
\] (13)

In order to detect the islanding, the slope of the active power load at point that has \(r_{iv0}=0.88\) should be greater than that of \(P_{ref}\).

1.76\(P_0 > \frac{P_{ref0} - 0.7744P_0}{0.12}\) or \(P_0 > 1.0146P_{ref0}\) (14)

Then, for \(P_0\leq 1.0146P_{ref0}\), the islanding phenomenon is not detectable by the method. In other words, the NDZ of the proposed method is as follows:

\[
0 \leq \frac{\Delta P}{P_{DG}} \leq 1.46\%
\] (15)

The \(P_{ref}\) that is shown in Eq. (11) cannot detect the islanding phenomenon for \(P_{ref} < 1.0146P_{ref0}\). In order to reduce the NDZ to zero, the \(P_{ref}\) is determined as two linear functions of voltage for \(P_{ref} < aP_{ref0}\) which \(a\) is a coefficient and should be greater than 1.0146. As previously mentioned, for load with \(P_{ref} < 1.0146P_{ref0}\), \(P_{ref}\) as defined in Eq. (11) intersects the load curve at two points. The \(s_{iv0}\) of the first point is greater than 0.88 and is stable; the \(s_{iv0}\) of the second point is less than 0.88 and is an unstable operating point. Therefore, the PCC voltage decreases and reaches to the stable operating point \((s_{iv0}=0.88)\) in islanding condition. If \(a\) is greater than 1.0146, the \(s_{iv0}\) of the intersection points of the load curve and \(P_{ref}\) are less than 0.88; the first point that has a greater \(s_{iv0}\) is stable operating point and the other one is unstable. Note that if \(a\) is a little greater than 1.0146, these two points are near together. Therefore, because of the transient behavior of islanding phenomenon, \(s_{iv0}\) may pass through the \(s_{iv0}\) of the unstable operating point. In other words, instability will occur in the PCC voltage. Simulation results show that if \(a\) is selected 1.05 or greater, the PCC voltage will be settled in the stable intersection point and then instability will not occur. Also for detecting the islanding phenomenon with high reliability, \(s_{iv0}\) of point D can be selected less than 0.88 (for instance 0.86, as it is specified in Fig. 2). In this case, \(P_{ref}\) for \(\Delta V < 0\) and \(P_{ref} > 1.05P_{ref0}\), which is defined in Eq. (11), will change to Eq. (16).

\[
P_{ref} = P_{ref0} + \frac{P_{ref0} - 0.7396P_0}{0.14}(r_{iv0} - 1) \quad \Delta V < 0
\] (16)

In order to reduce the NDZ to zero, \(P_{ref}\) is selected as piecewise linear function of voltage for \(P_{ref} < aP_{ref0}\), the first section of \(P_{ref}\) for loads that \(P_{ref} < 1.05P_{ref0}\) is determined in such a way that passes through \(A(1, P_{ref0})\). The slope of this line (i.e. \(m\)) at point \(A\) should be greater than that of the load curve at this point (\(m=2P_0\)). In this situation the operating point of \(A\) is unstable in islanding condition as discussed in Appendix A.1. If \(m\) takes 2.1 \(P_0\), the first section of \(P_{ref}\) for \(P_0\leq 1.05P_{ref0}\) is determined as Eq. (17). Point E along this section of \(P_{ref}\) is determined in such a way that the first intersection point of the second section of \(P_{ref}\) with load active power curve passes through point like \(D'\); the \(r_{iv0}\) of \(D'\) should be greater than or equal to 0.88. Point \(E\) is not unique and a lot of points can satisfy the above condition. In other words, the above condition can be satisfied if point \(E\) is on line L and \(0.88 < r_{iv0} < 0.95\). For example, if the \(r_{iv0}\) of point \(D'\) is assumed to be 0.88 and \(E\) is selected with \(r_{iv0} = 0.9\), the line that passes through points \(E\) and \(D'\) is formulated as Eq. (18).

\[
P_{ref} = 0.79P_{ref0} - 0.7744P_0(r_{iv0} - 0.9) + 0.79P_{ref0}
\] (18)

where \(0.9 < r_{iv0} \leq 1\) and \(r_{iv0} < 0.9\) in Eqs. (17) and (18), respectively.

Note that if point \(D'\) (as shown in Fig. 3) is selected as \(D'(0.86, 0.7396P_0),\) Eq. (18) changes to Eq. (19) for \(r_{iv0} < 0.9\).

\[
P_{ref} = 0.79P_{ref0} - 0.7396P_0(r_{iv0} - 0.9) + 0.79P_{ref0}
\] (19)

In Fig. 2, line L which is drawn as Eq. (17) is the first section of \(P_{ref}\) for loads that their active powers are between \(P_{ref0}\) and \(1.05P_{ref0}\). The second section of \(P_{ref}\) is line \(L_1\) for curve \(C_1\) which is drawn as Eq. (19).

Therefore, if \(P_{ref}\) is determined as Eq. (10) for \(P_{ref} < P_{ref0}\), Eq. (16) for \(P_{ref} > 1.05P_{ref0}\) and Eq. (17) and Eq. (19) for \(P_{ref} < P_{ref0}\), the NDZ of the proposed method reduces to zero. In fact, the NDZ is only one point in which \(P_0\) is exactly equal to \(P_{DG}\). Note that, the slope of line L is only dependent on \(P_{ref0}\) for loads that satisfy the inequality \(P_{ref} < 1.05P_{ref0}\). For example, in Fig. 2, lines L and \(L_2\) are \(P_{ref}\) for load \(C_2\) \((P_{ref} = 1.03P_{ref0} < 1.05P_{ref0})\) in which line \(L_2\) passes through point \(E\) on line L and point \(D'(0.86, 0.7396P_0)\) on curve \(C_2\). Line \(L_1\) is \(P_{ref}\) for load \(C_3\) that passes through points \(A\) and \(D\). Also, line \(L_4\) is \(P_{ref}\) for load \(C_4\) that passes through points \(A\) and \(B\).

In order to determine the equation of \(P_{ref}\) first, the load active power in nominal voltage \((P_0)\) should be calculated. If islanding phenomenon occurs, the post-islanding PCC voltage is different from the pre-islanding PCC voltage, depending on the difference between the DG active power generation \((P_{DG} = P_{ref0})\) and the local load active power \(\Delta P\). Equation (20) will result by substituting \(r_{iv0}\) in Eq. (7):

\[
P_{DG} = P_{ref0} = \frac{P_{DG}^2}{r_{iv0}} \quad P_0 = \frac{P_{ref0}}{r_{iv0}}
\] (20)

In normal condition, if the PCC voltage does not vary, then \(r_{iv0} = 1\) and \(P_0 = P_{ref0}\). However, if the voltage varies, then \(r_{iv0} \neq 1\) and \(P_0 \neq P_{ref0}\). Then, \(P_0\) and \(P_{ref0}\) can be computed from Eq. (20).
In the proposed method, when the active power imbalance between DG and the local load in nominal voltage is high enough that the voltage deviation in post-islanding is less/more than U/O voltage relay settings, the islanding is detected by this relay. On the other hand, when the active power imbalance is low, application of the proposed method is highlighted. So, in the simulation results which are presented in the next section, some cases are considered in which the power change is 100 msec after change PCC voltage change?

Calculate: riv0, P0

Based on Eq. (1), at the nominal system frequency and voltage, the active power of the load is \(P_0 \). When the system frequency is changed the load active power will be changed too, and in nominal voltage, it is equal to \(P_d(1+k_p\Delta f) \). As mentioned earlier, the method has been formulated for \(k_p=0 \). The active power reference \((P_{ref}) \) formula is a function of \(P_{ref0} \), \(r_{01} \) and \(P_0 \). When \(k_p=0 \), the value that is computed from Eq. (20) is \(P_0 \). However in condition that \(k_p\neq0 \), the computed value will be equal to \(P_d(1+k_p\Delta f) \). Regardless of the value of \(k_p \), the method uses the computed value of Eq. (20) for determining the active power reference of DG. In other words, the method formulation is irrelevant to the value of \(k_p \). In general, if the voltage change is sensed, the active power reference will be switched from \(P_{ref0} \) to the new designed \(P_{ref} \). Then, islanding phenomenon is detected if it takes place.

It is generally accepted that the parallel RLC load \((p=2) \) which has a high quality factor and operates at resonance condition (unity power factor) is the worst case for islanding detection [9, 18, 20]. Therefore, in the simulation results, the DG is designed to operate at unity power factor and the local load is modeled as a constant RLC load.

4 Evaluation of the Proposed Method

In abnormal conditions, the voltage variation has a transient behavior. When the voltage deviation is sensed by the voltage measurement equipment and the relay, a little time is required until the voltage reaches to a new stable value. Various simulations in different conditions show that a delay of 100 msec is sufficient for this purpose in islanding conditions. Therefore, during simulation results, the PCC voltage will be considered as post-islanding PCC voltage and is denoted by \(V_r'_{PB} \). 100 msec after sensing of voltage changes. Also, the islanding voltage ratio in this situation \((r_{01}=V_r'/V_0) \) is named \(r_{010} \). Using measured data \((V_r', r_{010}) \), \(P_0 \) will be calculated from Eq. (20). Therefore, the active power reference of DG is determined as Eq. (10) for \(P_d<P_{ref0} \) \(\Delta V>0 \) and as Eq. (16) for \(P_d>1.05P_{ref0} \) \(\Delta V<0 \). Also, it is determined as Eq. (17) and Eq. (19) for \(P_d\leq1.05P_{ref0} \) dependent on \(r_{010} \). In order to evaluate the proposed method, islanding and non-islanding conditions are simulated. In non-islanding phenomena, if the proposed method is used and the PCC voltage changes, the DG active power generation changes according to Eq. (10), Eq. (16), Eq. (17) and Eq. (19). In such cases, if the PCC voltage stays between the thresholds and remains stable for more than 500msec, the \(P_{ref} \) of DG can change into initial setting \((P_{ref0}) \). The obtained results are presented and discussed in the following subsections.

4.1 Islanding Conditions

The proposed method is implemented on the study system shown in Fig. 1. The islanding phenomenon occurs at \(t=3 \) sec. The DG active power generation \((P_{DG}) \) is considered to be 50 kW while the local load is assumed to have different values like 50 kW (fully matched), 49.5 kW and 50.5 kW (a little mismatch), 64.5 kW (lower bound of U/O voltage relay setting or
\(\Delta P=0.2913P_{DG}, 41.32\)kW (upper bound of U/O voltage relay setting or \(\Delta P = 0.17355P_{DG}\)) at nominal voltage. Note that \(k_P\) and \(k_Q\) are considered to be zero in the simulation results.

If \(P_{load}\) is assumed to be 50kW in nominal voltage (380 V) and islanding phenomenon occurs, then before voltage deviation and 100msec after that, the PCC voltage is equal to 379.949V and 378.217V, respectively. The \(r_{ref}\) and \(P_0\) can be computed and are equal to 0.997 and 50.25kW, respectively. The \(P_0\) is less than 1.05\(P_{ref}\) and then \(P_{ref}\) should be determined from Eq. (17) until \(r_{ref}\leq0.9\), and from Eq. (19) when \(r_{ref}\leq0.9\).

The variation of PCC voltage and DG active power using the proposed method for loads in Table 2 (50, 50.5, 64.5, 49.5 and 41.32 kW) are depicted in Fig. 4. If the proposed method is not used, the PCC voltage variations will not be enough to detect islanding \(r_{ref}\) in Table 2 less than 1.1 or greater than 0.88) for local loads that inequality (9) is satisfied. However, by using the proposed method, the voltage variations are enough for U/O voltage relay to detect the islanding phenomenon, which is shown in Fig. 4. Also, the DG active power variation is zero if the proposed method is not used. However, if the proposed method is used, the DG active power variation depends on the PCC voltage. The DG active power decreases or increases until the PCC voltage exceeds from U/O voltage relay thresholds.

For different load active powers, \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 2.

The variation of PCC voltage and DG active power using the proposed method for loads in Table 2 (50, 50.5, 64.5, 49.5 and 41.32 kW) are depicted in Fig. 4. If the proposed method is not used, the PCC voltage variations will not be enough to detect islanding \(r_{ref}\) in Table 2 less than 1.1 or greater than 0.88) for local loads that inequality (9) is satisfied. However, by using the proposed method, the voltage variations are enough for U/O voltage relay to detect the islanding phenomenon, which is shown in Fig. 4. Also, the DG active power variation is zero if the proposed method is not used. However, if the proposed method is used, the DG active power variation depends on the PCC voltage. The DG active power decreases or increases until the PCC voltage exceeds from U/O voltage relay thresholds.

For different load active powers, \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 2.

For case 5 of Table 3, load active power is 49 kW in islanding condition and frequency, but 100msec after islanding; its calculated value is 50.3kW. This value is equal to \(P_0\) for case 3. This can be seen in curves 2 and 3 of Fig. 6 that islanding is detected almost in the same time for these cases after islanding. On the other hand, because of the load frequency dependency, the case 5 in Table 3 is also the worst case for islanding detection, as case 3.

Table 2 Determining \(P_{ref}\) for different loading cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>(P_{load}) (kW)</th>
<th>(V_P)</th>
<th>(V_{P_0})</th>
<th>(r_{ref})</th>
<th>(P_0) (kW)</th>
<th>(P_{ref}) (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>379.9</td>
<td>379.0</td>
<td>0.9975</td>
<td>50.2</td>
<td>58.4(r_{ref}=13)</td>
</tr>
<tr>
<td>2</td>
<td>50.5</td>
<td>379.8</td>
<td>377.4</td>
<td>0.9932</td>
<td>50.6</td>
<td>50.3(r_{ref}=57.6)</td>
</tr>
<tr>
<td>3</td>
<td>64.5</td>
<td>376.4</td>
<td>336.0</td>
<td>0.8843</td>
<td>63.9</td>
<td>19.3(r_{ref}=30.1)</td>
</tr>
<tr>
<td>4</td>
<td>49.5</td>
<td>380.0</td>
<td>380.1</td>
<td>1.0022</td>
<td>49.7</td>
<td>102.3(r_{ref}=52.5)</td>
</tr>
<tr>
<td>5</td>
<td>41.3</td>
<td>381.8</td>
<td>414.8</td>
<td>1.0918</td>
<td>4.19</td>
<td>7.54(r_{ref}=42.5)</td>
</tr>
</tbody>
</table>

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.

For different \(p\) and \(k_P\), \(r_{ref}\) and \(P_0\) are calculated and summarized in Table 3; \(P_{ref}\) for these cases will be calculated as explained in section 3. \(P_0\) in the cases 1 to 6 are less than 1.05\(P_{ref}\) and greater than \(P_{ref}\); therefore, \(P_{ref}\) is piecewise linear function of voltage for these cases which is determined from Eq. (17) as \(105\(r_{ref}\leq0.9\) and from Eq. (19) for \(r_{ref}\leq0.9\) that are shown in Table 3.
Table 3 Determining P_{ref} for different p and k_P.

<table>
<thead>
<tr>
<th>Cases</th>
<th>f (Hz)</th>
<th>Q_f</th>
<th>P_{ref} (kW)</th>
<th>V_P</th>
<th>V_{Pm}</th>
<th>$r_{ newPos}$</th>
<th>P_f (kW)</th>
<th>P_{ref} (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ($p=0$, $k_P=0$)</td>
<td>60</td>
<td>2.5</td>
<td>50</td>
<td>379.63</td>
<td>377.32</td>
<td>0.993</td>
<td>50.7</td>
<td>50.05</td>
</tr>
<tr>
<td>2 ($p=1$, $k_P=0$)</td>
<td>60</td>
<td>2.5</td>
<td>50</td>
<td>379.63</td>
<td>378.33</td>
<td>0.996</td>
<td>50.4</td>
<td>55.66</td>
</tr>
<tr>
<td>3 ($p=2$, $k_P=0$)</td>
<td>60</td>
<td>2.5</td>
<td>50</td>
<td>379.63</td>
<td>378.75</td>
<td>0.997</td>
<td>50.3</td>
<td>57.43</td>
</tr>
<tr>
<td>4 ($p=2$, $k_P=1$)</td>
<td>60.4</td>
<td>2.5</td>
<td>50</td>
<td>378.54</td>
<td>375.21</td>
<td>0.987</td>
<td>51.2</td>
<td>40.81</td>
</tr>
<tr>
<td>5 ($p=2$, $k_P=3$)</td>
<td>60.4</td>
<td>2.5</td>
<td>49</td>
<td>378.16</td>
<td>376.85</td>
<td>0.997</td>
<td>50.3</td>
<td>59.30</td>
</tr>
<tr>
<td>6 ($p=2$, $k_P=6$)</td>
<td>60.4</td>
<td>2.5</td>
<td>50</td>
<td>378.54</td>
<td>378.05</td>
<td>0.995</td>
<td>50.5</td>
<td>53.75</td>
</tr>
<tr>
<td>7 ($p=2$, $k_P=9$)</td>
<td>60.4</td>
<td>2.5</td>
<td>49</td>
<td>378.16</td>
<td>381.64</td>
<td>0.993</td>
<td>49.6</td>
<td>100.16</td>
</tr>
</tbody>
</table>

4.2 Non-islanding Conditions

In this section the performance of the proposed method has been tested on the system under study in non-islanding phenomena. The load is a 50 kW RLC load. The phenomena like system voltage variation, capacitor bank switching and variation of local load have been considered. Results of the examining of the phenomenon are presented in Fig. 7. The Fig. 7(a) shows the PCC voltage variation when the system voltage decreases and increases 10% and 5% at $t=3$sec as a step function, whether the proposed method is used or not. The voltage deviation is sensed, then P_{ref} switches to the determined P_{ref} at $t=3.1$sec, as mentioned above. Fig. 7(b) shows the curve of the PCC voltage variation for capacitor switching; at $t=3$sec a 400µF capacitor bank (21.78 kVAR) has been paralleled to the local load and at $t=4$sec it is switched off. At $t=3$sec the voltage variation has been sensed, therefore P_{ref} changes from P_{ref0} to the determined P_{ref} at $t=3.1$sec. The PCC voltage deviation is not enough for islanding detection and also it is constant; after 500 msec, P_{ref} jumps to P_{refg}. At $t=3$sec, because of the capacitor bank switching off, another voltage deviation is sensed; after 100msec, P_{ref} is switched to a new one. The simulation is done in condition whether the proposed method is used or not. Also, Fig. 7(c) illustrates the results when another 50 kW load with $Q_f=1.8$ is switched on in parallel with the existing load at $t=3$sec and switched off at $t=4$sec. Note that, P_{ref} changes like capacitor bank switching case, at $t=3.1$sec, $t=3.5$sec and $t=4.1$sec. In Table 4 r_{new}, V_{Pm} and P_{ref} are calculated and summarized for non-islanding conditions.

The simulation results in non-islanding conditions show that in all cases (decreasing or increasing of system voltage, switching the capacitor bank and load), only operating point has been changed and the condition has not been detected as islanding. It can be seen from Fig. 7 that there is a small difference on the PCC voltage variation in the condition that the proposed method is used or not. However, because the DG active power reference depends on the PCC voltage, the impact of the proposed method on the DG active power generation is significant. So, if the PCC voltage changes, DG active power generation changes too. If necessary, the DG active power generation can be returned to the previous setting.

Table 4 Determining P_{ref} for non-islanding conditions.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Conditions</th>
<th>V_P</th>
<th>V_{Pm}</th>
<th>r_{new}</th>
<th>P_f (kW)</th>
<th>P_{ref} (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5% increase in system voltage</td>
<td>379.613</td>
<td>397.765</td>
<td>1.0467</td>
<td>45.6</td>
<td>52.2</td>
</tr>
<tr>
<td>2</td>
<td>10% increase in system voltage</td>
<td>379.613</td>
<td>416.331</td>
<td>1.097</td>
<td>41.6</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>5% decrease in system voltage</td>
<td>379.613</td>
<td>361.86</td>
<td>0.952</td>
<td>51.2</td>
<td>62.8</td>
</tr>
<tr>
<td>4</td>
<td>10% decrease in system voltage</td>
<td>379.613</td>
<td>343.119</td>
<td>0.9029</td>
<td>61.3</td>
<td>33.1</td>
</tr>
<tr>
<td>5</td>
<td>400 µF capacitor switch on at $t=3$sec</td>
<td>379.613</td>
<td>400.381</td>
<td>1.0536</td>
<td>45</td>
<td>45.0</td>
</tr>
<tr>
<td>6</td>
<td>400 µF capacitor switch off at $t=4$sec</td>
<td>398.891</td>
<td>379.613</td>
<td>0.999</td>
<td>50.1</td>
<td>61.1</td>
</tr>
<tr>
<td>7</td>
<td>50kW load switched on at $t=3$sec</td>
<td>379.613</td>
<td>368.927</td>
<td>0.971</td>
<td>53</td>
<td>76.9</td>
</tr>
<tr>
<td>8</td>
<td>50kW load switched off at $t=4$sec</td>
<td>368.927</td>
<td>379.458</td>
<td>0.9986</td>
<td>50.1</td>
<td>51.9</td>
</tr>
</tbody>
</table>

4.3 Effects of Load Quality Factor on the Performance of the Proposed Method

Quality factor (Q_f) is an important parameter in the islanding detection behavior techniques. Therefore, this has been mentioned in different references. For instance, it is emphasized that for loads with Q_f less than 1.8, the islanding should be detected in less than two seconds [10, 18, 20-22]. In fact, islanding detection is difficult for the load with high Q_f [10]. Also based on IEEE Std. 929, the islanding should be detected in case of the loads with Q_f less than 2.5 [18]. In addition, the applied method should be capable to detect the islanding for loads with Q_f greater than 0.5, as stated in [23]. In this paper, in order to investigate the performance of the proposed method, different load quality factors have been considered. Islanding phenomenon is simulated for 50 kW load active power and different Q_f like 0.5, 1.5, 2.5 and 4. In these conditions, r_{new}, P_{ref}, V_{Pm}, V_{Pn} and P_{ref} are calculated and presented in Table 5. For cases of Table 5, P_{ref} has been calculated from Eq. (19) until r_{new}0.9 and from Eq. (21) when r_{new}<0.9. Fig. 8 shows the simulation results. It can be seen that for all considered quality factors, islanding phenomenon is detected at the permitted time.
between 49.68 kW and 49.95 kW. The active power generation of DG is assumed to be 50 kW, while local load is considered in the NDZ of [8] with \(Q_f = 1.8 \) and islanding simulation will be done for two mentioned cases. Fig. 9 illustrates the results when islanding phenomenon occurs at \(t = 3 \) sec. It is evident that the proposed method in [8] is failed; meanwhile, islanding is detected by the proposed method in all loading conditions.

5 Conclusion

In this paper a new islanding detection technique for inverter based DG is presented. The method is based on the change in DG active power reference and is an adaptive one. If the PCC voltage does not change, \(P_{ref} \) is equal to \(P_{r-ref} \). If the PCC voltage changes, the \(P_{ref} \) will change, too. The \(P_{ref} \) is determined adaptively by computing load active power and post-islanding PCC voltage. The DG active power reference is determined as a linear function of PCC voltage. When islanding phenomenon occurs, the proposed method reaches the PCC voltage to the upper or lower thresholds of the U/O voltage relay. The proposed method does not have any NDZ. If the PCC voltage is changed due to non-islanding phenomena, the effect of the proposed method in voltage variation will be almost zero. Also, the proposed technique is reliable, i.e. it detects islanding when it is and it does not detect when it is not. The effectiveness of the proposed algorithm is demonstrated by simulation results. In addition, it is shown that for all cases, islanding phenomenon is detected at the permitted time.

Appendix

A.1 Stability Conditions of the Operating Point

If the slope of the load characteristic \((P_l) \) at the operating point is greater than that of the load active power reference \((P_{ref}) \), this point will be a stable operating point. Also, if the slope of \(P_l \) at the operating point is smaller than that of the \(P_{ref} \), this point is unstable. More details can be found in Fig. A.1.
Suppose P_{ref} is the P_{ref} characteristic. The slope of the load characteristic is greater than that of the P_{ref} characteristic at point E, then this point is a stable operating point. For showing the stability of point E, suppose this point to be the operation point and a small positive deviation takes place in voltage. Therefore, in this case $P_l>P_{\text{ref}}$, P_l is decreasing to reduce the difference between P_l and P_{ref}. In order to decrease P_l, voltage should decrease, too. It means that for positive voltage deviation, operating point will come back to point E.

The same procedure will be applied if the voltage deviation is negative. Hence, it can be concluded that point E in Fig. A.1 is stable. On the other hand, if P_{ref} is the P_{ref} characteristic at point E', the slope of the load characteristic is smaller than that of the P_{ref} characteristic. Therefore, this point is an unstable operating point. For showing the instability of point E', suppose this point to be the operating point and a small positive deviation take place in voltage. Therefore, in this case $P_l<P_{\text{ref}}$, P_l is increasing to reduce the difference between P_l and P_{ref}. In order to increase the P_l, voltage should increase too. It means that operating point will have more deviation from E'. The same procedure will be applied if the voltage deviation is negative. Thus, point E' is an unstable operating point.

A.2 System Parameters

The parameters of the grid system, line and transformer are presented in Tables A-1 and A-2.

<table>
<thead>
<tr>
<th>Table A-1</th>
<th>Parameters of the grid system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>380 V</td>
</tr>
<tr>
<td>System frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Internal inductance</td>
<td>0.06 Ohm</td>
</tr>
<tr>
<td>Internal resistance</td>
<td>0.9 mH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A-2</th>
<th>Line and transformer characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>380V line reactance</td>
<td>0.2734Ω</td>
</tr>
<tr>
<td>380V line resistance</td>
<td>0.05937Ω</td>
</tr>
<tr>
<td>Transformer short circuit impedance</td>
<td>4%</td>
</tr>
</tbody>
</table>

References

Ebadollah Kamyab was born in Larestan, Iran. He received the B.Sc. and M.Sc. both from Ferdowsi University of Mashhad, Mashhad, Iran. He served as a high voltage Electrical Engineer at the Khorasan Regional Electric Company, Mashhad, Iran from 1992. Since 2007 he has been studying toward his Ph.D. degree at Ferdowsi University of Mashhad, Mashhad, Iran. His research interests are Distributed Generation, Power System Protection and Transformer.

Javad Sadeh was born in Mashhad, Iran in 1968. He received the B.Sc. and M.Sc. with honour both in Electrical Engineering from Ferdowsi University of Mashhad, Mashhad, Iran in 1990 and 1994, respectively and obtained his Ph.D. in Electrical Engineering from Sharif University of Technology, Tehran, Iran with the collaboration of the electrical engineering laboratory of the Institut National Polytechnique de Grenoble (INPG), France in 2001. He is currently an associate professor in the Department of Electrical Engineering at Ferdowsi University of Mashhad, Mashhad, Iran. His research interests are Power System Protection, Dynamics and Operation.