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Abstract: Multi-constraint quality-of-service routing will become increasingly important as 
the Internet evolves to support real-time services. It is well known however, that optimum 
multi-constraint QoS routing is computationally complex, and for this reason various 
heuristics have been proposed for routing in practical situations. Among these methods, 
those that use a single mixed metric are the most popular. Although mixed metric routing 
discards potentially useful information, this is compensated for by significantly reduced 
complexity. Exploiting this tradeoff is becoming increasingly important where low 
complexity designs are desired, such as in battery operated wireless applications. In this 
paper, a novel single mixed metric multi-constraint routing algorithm is introduced. The 
proposed technique has similar complexity compared with existing low complexity 
methods. Simulation results are presented which show that it can obtain better performance 
than comparable techniques in terms of generating feasible multi-constraint QoS routes. 
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1 Introduction1 
Routing is one of the most basic and widely studied 
problems in computer networking. The current Internet 
however, uses only best-effort routing [1] and thus 
supports services without any quality of service (QoS) 
guarantees. For applications such as FTP and HTTP, it 
is clear that best-effort routing is sufficient. 
Applications such as real-time audio and video 
however, require strict performance guarantees in order 
to achieve acceptable performance. For these types of 
applications, a fundamental issue is how to find a 
feasible path that satisfies multiple constraints. This 
problem is known as multi-constraint QoS routing. 
QoS routing is very complex, and dealing with multiple 
QoS requirements makes this problem NP-Complete 
[2]. Link and path constraints are the two types of QoS 
constraints considered. Link constraints specify the 
restrictions on the use of the individual links, while path 
constraints focus on the end-to-end QoS attributes of the 
entire path. In the multi-constraint case, each network 
link has multiple weights which can be classified as 
additive, multiplicative or concave. For additive 
weights, the end-to-end weight of the path is the sum of 
the individual link values. Delay is an example of 
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additive weights. A multiplicative path weight is the 
product of the link weights  along the path. Path 
reliability is an example of multiplicative weights. 
Bandwidth belongs to the class of concave weights. The 
overall bandwidth of the path is equal to the minimum 
bandwidth of the links. Dealing with concave weights 
and constraints is very easy. In the bandwidth case for 
example, it is sufficient to delete the links with 
bandwidth less than the required value. It can be proven 
that optimum QoS routing with more than one 
constraint involving additive and/or multiplicative 
weights is an NP-Complete problem. For this reason it 
is difficult to have an algorithm which is 
computationally efficient in all possible situations [2]. 
In this paper we use weight and metric as synonymous. 
Since it is possible to transform the multiplicative 
weight case into the additive case by taking logarithms, 
we only consider cases with several additive constraints. 
Hence, the Multi-Constraint Path (MCP) problem can 
be stated as follows. 
 
Definition: Consider a network that is represented by a 
graph G=(V, E), where V is the set of nodes and E is the 
set of links. Each link E)j,i( ∈ has K additive non-
negative QoS weights, )j,i(w m , K,...,1m = . Given K 
constraints, mC , K,...,2,1m = , the MCP problem is to 
find a path P from a source node S to a destination node 
D such that, 

K,...,2,1mfor,C)j,i(wˆ)P(w m
P)j,i(

mm =≤= ∑
∈

 (1) 
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There are various methods for solving the MCP 
problem. Depth-First Search (DFS) is one approach. 
Although this method is able to find a feasible path if 
one exists, its worse-case time complexity is 
exponential. Shin and his coworkers have suggested a 
heuristic based on DFS which limits the number of 
crankbacks to control the worst case time complexity. 
Even though the time complexity is reduced it is 
possible that the algorithm will not find a feasible path 
even when one exists [3].  
There are a number of methods that use a single mixed 
metric instead of dealing with multiple link weights. 
According to Wang and Crowcroft [2], a single mixed 
metric method at best can be used as a criterion in path 
selection but it does not contain sufficient information 
alone to determine if QoS requirements are satisfied. 
However, using a mixed metric can reduce the time 
complexity because we can employ a single source 
single destination shortest path algorithm such as 
Dijkstra’s algorithm, but this is not as effective as it 
may appear. When a single mixed metric is used for 
routing, some information is lost [4][5][6][7]. The 
TAMCRA algorithm presented in [5] uses a single 
metric and a k-shortest path algorithm in order to solve 
a MCP problem. The k-shortest path algorithms are able 
to find multiple shortest paths between a given source 
and a destination. This method reduces the performance 
shortcomings of using a mixed metric. The H_MCOP 
algorithm presented in [6] uses mixed metrics. 
H_MCOP is used for solving a Multi-Constraint 
Optimal Path (MCOP) problem. The MCOP problem is 
a type of MCP, which tries to find a feasible optimal 
path based on a cost associated with each link and path.  
The algorithms presented in [8][9][10][11] also use a 
mixed metric such as 21 www α+=  for each link, where 

1w and 2w are the weights for the two-constraint case, 
and w is the mixed weight of a link. These algorithms 
employ a method called Lagrange Relaxation and try to 
find the best value for α , leading to a feasible path 
after applying Dijkstra’s algorithm. These methods 
however, need multiple runs of Dijkstra’s algorithm in 
order to find α . 
Yuan and Liu use a different definition of an optimal 
QoS path [12]. They present an extended version of the 
Bellman-Ford Algorithm to find all of the optimal QoS 
paths between a source and a destination. Then a 
feasible path is selected if one exists. In [13] all metrics 
except one are changed to quantized integer values and 
then a polynomial time solution is presented for these 
new metrics. There are also methods that are based on 
distributed routing and flooding [14][15]. 
In order to improve the performance of the routing 
algorithm, different single mixed metrics have been 
presented in the literature. Khadivi et al. have proposed 
in [16] to take into account variations among different 
weights of a path in the routing procedure. Simulation 
results show that this improves the success ratio of the 
algorithm. 

In this paper, we propose a novel algorithm for the MCP 
problem using a single mixed metric. Simulation results 
show that our proposed method can have better 
performance than the existing algorithms with a similar 
computational complexity. We compared our results 
with those works that have used similar routing 
strategies to that of ours.  The remainder of the paper is 
organized as follows. In Section 2 a brief review is 
presented of MCP routing based on a single mixed 
metric. In Section 3 our new algorithm is proposed. 
Simulation results are presented in Section 4 and some 
concluding remarks are given in Section 5. 
 
2 Routing Based on a Single Mixed Metric 
In [4] the following mixed metric was introduced for the 
two-constraint problem, 

)e(wd)e(wd)e(W 2211 += , (2) 

where e is a link with two different metrics, )e(w1  and 
)e(w 2 . Here, 1d  and 2d  are two constants and )e(W  is 

the mixed metric associated with link e. This 
formulation is known as Jaffe’s method. If a graph has 
weights given by )e(W , and a shortest path algorithm 
such as Dijkstra Algorithm is used, then for a path 

)D,v,...,u,S(p = , the path weight )p(W  can be written as 
follows, 

)],D,v(w...)u,S(w[d)]D,v(w...
)u,S(w[d)]D,v(wd)D,v(wd[

...)]u,S(wd)u,S(wd[)p(W

2221

112211

2211

++
+=++

++=
 (3) 

where )p(W  is minimal. Equation (3) describes parallel 
lines such as, 

c)p(wd)p(wd 2211 =+ . (4) 

Figure 1 illustrates the parallel lines of Equation (4) and 
shows how this method searches for a feasible path. In 
this figure the horizontal axis is associated with the 1w  
metric and the vertical axis is associated with 2w . The 
objective is to find a path, *p , such that, 

( ) ( ) 2
*

21
*

1 CpwandCpw ≤≤ . (5) 

Constraints 1C  and 2C  are shown in Figure 1 as dashed 
lines. Each path p between source S and destination D 
has weights )p(w1  and )p(w 2 . Therefore, associated 
with each path is an achievable point in the )p(w1 -

)p(w 2  plane. In Figure 1 there are some examples of 
these paths shown as black points. Clearly all of the 
points inside the rectangular region are associated with 
feasible paths and the Jaffe method searches for a path 
with the minimum )p(W . Figure 1(a) illustrates a 
situation where the Jaffe method finds a feasible path, 
i.e., the point shown closest to the origin. Since using 
mixed metrics discards some useful information, it is 
possible for the Jaffe method to fail. Figure 1(b), shows 
a simple case where this happens, i.e., the right-most 
path found does not satisfy the constraints. 
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Fig. 1 Use of a single mixed metric. (a) feasible solution is found (b) algorithm fails. 
 
An approach for improving the chance of finding a 
feasible path is to modify the path weight in order to 
influence the search region. For example, if 1d  and 2d  
are selected based on the following equation, 

1

2

2

1

C
C

d
d

= , (6) 

then before leaving the feasible path region, half of it 
will be searched [5]. It is also possible to define the 
following weight for a path, 

2

2

2

2

1

1

C
)p(w

C
)p(w)p(W 








+








= . (7) 

Figure 2 illustrates how the feasible path search region 
is affected by an algorithm that uses Equation (7) to find 
its mixed weights. It is clear from this figure that when 
we use squaring in the mixed weight computation, it 
will take longer for the algorithm to leave the feasible 
path region. Accordingly, for a K-constraint problem 
the following mixed weight can be defined as, 

∑
=

λ

λ 









=

K

1j j

j

C
w

)p(W , (8) 

where p is a path that minimizes the mixed metric λW  
for a given 1≥λ . It was proven in [6] that after using a 
mixed metric algorithm for a MCP problem in order to 
find a path p, when a feasible path *p  exists then, 







≤

≤

λ othersforK)p(

jsomefor)p(

Cw

Cw

jj

jj  (9) 

The larger values of λ , lead to a higher probability 
of obtaining feasible results. The reason is that routing 
based on 1>λ  is naturally nonlinear. Therefore, it is 
impossible to find a polynomial time algorithm for this 
problem. For this reason heuristic methods are 
necessary for the routing procedure. It has also been 
proven that when ∞→λ  the following metric can be 
used [6], 









=∞
K

K

1

1
C

)p(w
,...,

C
)p(w

max)p(W

 

(10) 

In the following section, a new mixed metric is 
proposed which can improve the performance of the 
routing strategies based on single mixed metrics. 

 

w p
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Fig. 2 Use of a quadratic single mixed metric. 
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Fig. 3 A feasible path exists but is not found. 
 
3 Proposed Method 
When mixed metric routing is used a part of the 
information is lost due to the process of mixing the 
metrics. Therefore, it is possible that while feasible 
paths do exist in the network none of them are 
discovered. In this section we propose a routing strategy 
that circumvents this shortcoming when mixed metrics 
are used.  
Let us consider the mixed metric routing method when 
there are only two constraints and 1=λ . As shown in 
Figure 3 we assume a situation where two paths, t and q, 
exist between the source and destination nodes. Path t is 
a feasible path since it satisfies the constraints. On the 
other hand, path q minimizes the mixed metric but it 
does not satisfy the constraints. The mixed metric of 
path t is as follows, 

2

2

1

1

C
)t(w

C
)t(w)t(W += , (11) 

D
ow

nl
oa

de
d 

fr
om

 ij
ee

e.
iu

st
.a

c.
ir 

at
 1

2:
14

 IR
D

T
 o

n 
F

rid
ay

 A
ug

us
t 1

7t
h 

20
18

http://ijeee.iust.ac.ir/article-1-53-en.html


 

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 3, July 2005  14 

and for the path q we have 

2

2

1

1

C
)q(w

C
)q(w)q(W += . (12) 

Since )t(W)q(W < , it is clear that 

2

2

1

1

2

2

1

1

C
)t(w

C
)t(w

C
)q(w

C
)q(w

+<+ . (13) 

Path t satisfies both constraints and therefore 

1
C

)t(wand1
C

)t(w

2

2

1

1 ≤≤ . (14) 

Based on Equation (9), path q at least satisfies one of 
the constraints, hence 

1
C

)q(wand1
C

)q(w

2

2

1

1 >≤ . (15) 

By rearranging Equation (13) we can write 

2

2

2

2

1

1

1

1

C
)q(w

C
)t(w

C
)t(w

C
)q(w

−+< , (16) 

but since 

2

2

2

2

C
)q(w

C
)t(w

< , (17) 

therefore, 

1

1

1

1

C
)t(w

C
)q(w

< . (18) 

Figure 4 shows the relative position of these four values. 
We now define the average of 11 C/)t(w and 22 C/)t(w as 

)t(µ , i.e., 









+=µ

2

2

1

1

C
)t(w

C
)t(w

2
1ˆ)t( , (19) 

and we define 
2

2

2

2

1

1 )t(
C

)t(w)t(
C

)t(wˆ)t( 







µ−+








µ−=∆ . (20) 

In the following Theorem, it is shown that for the 
example of Figure 3 we have: 

)q()t(and)q()t( ∆<∆µ>µ . (21) 

Theorem 1: If in a two-constraint MCP problem a 
routing algorithm based on )p(W1  finds an unfeasible 
path π∈q  where a feasible path π∈t  exists, then the 
following condition must hold: 

)q()t( ∆<∆  (22) 

Proof: Because path t is feasible it satisfies both 
constraints. On the other hand, path q is unfeasible and 
based on Equation (9) in a two-constrained case, only 
one of the constraints is satisfied. Without loss of 
generality let us assume that: 

1
C

)t(wand1
C

)t(w

2

2

1

1 ≤≤  

1
C

)q(wand1
C

)q(w

2

2

1

1 >≤  
(23) 

The routing algorithm based on )p(W  finds path q. 
Therefore, )t(W)q(W < . Hence, it can be shown that 
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Fig. 4 Relative positions of the parameters in Equations 14 
and 15. 
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1

1

C
)t(w,

C
)t(wmin

C
)q(w  

(24) 

Therefore it is obvious that the normalized weights of 
path t are closer to each other than those of q. In other 
words 









−








>
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2
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1

2

2

1

1

C
)t(w

C
)t(w

C
)q(w

C
)q(w  (25) 

 By manipulating functions defined by Equations (19) 
and (20), it can be shown that: 

2

2

2

1

1

C
)p(w

C
)p(w

2
1)p(




















−








=∆  (26) 

Therefore, based on (25) and (26), )q()t( ∆<∆ .■ 
In existing algorithms, routing for a path, p, is based 
only on )p(µ . We propose to use )p(∆  as well as )p(µ  
in the routing decisions. In the general multi-constraint 
case we define 

∑
=

=µ
K

1i i

i

C
)p(w

K
1)p( , (27) 

and 

∑
=









µ−=∆

K

1i

2

i

i )p(
C

)p(w)p( . (28) 

Now we define the following mixed metric, 

[ ]ε+∆µ= )p()p(ˆ)p(G , (29) 

where ε  is a constant and 10 ≤ε≤ . By using )p(G  as a 
single metric, both )p(µ  and )p(∆  are considered. A 
constant coefficient such as ε  allows )p(µ  to have a 
direct effect on the solution found. In addition, the 
product )p()p( ∆µ is taken into account and obviously 
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larger values of )p(µ  and )p(∆  increases )p(G . The 
constant ε  achieves the proper weighting for the role of 

)p(µ . The best value of ε  is dependent upon network 
size and its weights. In the next section simulation 
results are presented which give an indication of how ε  
should be chosen in practical situations.  
A complete description of the routing algorithm is 
shown in Figure 5. The algorithm operates as a modified 
version of Dijkstra shortest path algorithm, however in 
this case )p(G  is used only as an indicator function. An 
alternative is to apply Equation 29 for each link, e, i.e., 
and then use )e(G  as the link weight for e. Simulation 
results that are presented in the next section show that 
using )p(G  is advantageous over )e(G .  
In the algorithm description shown in Figure 5, SRC 
and DEST are the source and destination nodes. In each 
node V of the network, Wj[V] is the j-th weight of the 
selected path between SRC and V. Also, µ[V] is the 
average of Wj[V] for all j’s. The corresponding ∆  
function is Δ(V) . We define PREVIOUS[V] to hold the 
previous node of V when traversing on the path between 
SRC and V. The parameter Lj(V,B) gives the j-th weight 
of the link between the nodes V and B. Initially all 
nodes are tentative, and when it is discovered that a link 
represents the shortest possible path from the source to 
that node, it is made permanent. PERMANENT[V] 
indicates if V is a permanent node. This description is 
similar to that commonly used for Dijkstra’s algorithm. 
The routing starts at the SRC node and all of the 
weights are initialized to infinity. Also we initially 
assign a zero weight and average to the source node.  
TAG is the node whose neighbors are currently being 
examined. 
The main part of the algorithm is between lines 16 to 
39. The FOR loop begins at line 22, and the statements 
in lines 24 and 26 have an )K(O  complexity. The 
complexity of the overall algorithm is ( )2KNO  where N 
is the number of network nodes. The complexity of the 
single mixed metric algorithms with 1>λ  is not better 
because their structure does not differ from the new one 
and the difference is in the mixing functions. Hence, our 
new algorithm is comparable with existing low 
complexity algorithms in terms of time complexity. 
 
4 Simulation Results 
A large variety of simulation experiments have been 
performed using a wide range of different parameter 
values. In this section some representative results are 
presented which illustrate the relative performance of 
the proposed algorithm. In the results to be presented, 
the performance measure used for comparison is the 
Success Ratio (SR), which is defined as the percentage 
of time that the algorithm finds a feasible path when at 
least one exists. Single mixed metric routing methods 
introduced in Section 2, for 41 ≤λ≤  are simulated as 
well as our proposed algorithm. In addition, the method 
based on Equation (10) is simulated. In all of the 
existing algorithms of Section 2, the single mixed 

metric is used only as a path indicator. In the 
followings, “Wi(P)” indicates the routing performance 
based on a mixed metric, determined by Equation (8) 
with i=λ . Also, “Maximum” indicates the routing 
performance based on Equation (10). Results related 
with the proposed strategy are indicated by “G(P)”. 
Random network topologies for the simulations were 
generated using Waxman’s method [17]. After 
generating each topology, weights for each link were 
selected randomly. A wide range of different link 
weights have also been considered. In the results 
presented below, some representative examples are 
given. For a link e, )e(w1  is a uniformly selected 
random number from [ ]5,0  or from [ ]50,0 , and )e(w 2  is 
uniformly selected from [ ]10,0  or [ ]200,0 . Source, 
destination and constraints are generated based on the 
method of [6]. The source and destination are randomly 
generated such that the minimum hop-count between 
them is at least three. If p and q are the two shortest 
paths between the source and destination, and using 
weights 1w  and 2w , then the constraint 

1C  is uniformly 
selected from [ ])q(w2.1),q(w8.0 11

 and 
2C  is uniformly 

selected from [ ])p(w2.1),p(w8.0 22 . Networks with 10, 
15, 20, 25, 30, 35 and 40 nodes are used and simulation 
results are shown for the 2-constraint cases. 
Figure 6 compares the four existing methods with 

41 ≤λ≤ . It is clear from this diagram that the routing 
method with 4=λ  has the largest SR. In most of the 
other diagrams our proposed method is compared with 
this existing algorithm. Figure 7 shows the importance 
of the parameter, ε . When ε  is zero, the performance 
of our method is very poor compared with the linear 
combination of weights. Also, the effect of ε  is shown 
in Figures 8 and 9 where the value of the single mixed 
metric function (G) is shown for a two-constraint case. 
It is clear from these figures that when 5.0=ε , the value 
of the single metric function inside the feasible solution 
area is always less than its value outside of this area. 
This is not true when 0=ε . 
Figure 10 shows that there is a range for ε where better 
performance of the proposed algorithm is observed 
compared with existing algorithms. Figures 11, 12 and 
13 indicate that the proposed algorithm achieves better 
performance than the other mixed metric methods with 

4<λ  and is comparable with the algorithm that uses 
4=λ . In Figure 13 the proposed algorithm is compared 

with the one that uses Equation (10) as a path indicator. 
Figure 14 shows the case where the new mixed metric is 
not used as a path indicator but is used for computing a 
single weight for each link. This situation is compared 
with the one that deploys a mixed metric only as a path 
indicator. When the mixed metric function that is a non-
linear function of the weights is used as a path indicator, 
better performance is obtained. Single mixed metric 
methods work better when they use their mixed metric 
function as a path indicator. 
Coefficient ε  can take any value between 0 and 1.  It is 
shown in Figure 7 that choosing ε  to be zero does not 

D
ow

nl
oa

de
d 

fr
om

 ij
ee

e.
iu

st
.a

c.
ir 

at
 1

2:
14

 IR
D

T
 o

n 
F

rid
ay

 A
ug

us
t 1

7t
h 

20
18

http://ijeee.iust.ac.ir/article-1-53-en.html


 

Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 3, July 2005  16 

produce good results.  By scanning the whole range of 
ε  values through simulations, we found out that in 
networks with certain number of nodes specific values 
of ε  produce better results than others.  These results 
are illustrated in Table (1) from which Figure 15 is 
produced. Even though the performance of the routing 
algorithm based on these values are satisfactory, but 
these results are not necessarily optimum. The 
simulation results show that ε  may depend on the size 
of the network. However, in-depth studies are required 

to analytically determine the effect of different 
parameters on the optimum value of ε  and the behavior 
of the routing algorithm. 
 
Table 1 Value of ε  used in the simulations of Figure 15. 

Number 
of Nodes 

10 15 20 25 30 35 40 

ε  Value 0.3 0.3 0.4 0.5 0.5 0.6 0.6 
 

 
 ROUTING ALGORITHM (NETWORK, SRC, DEST, CONSTRAINTS) 

{SRC is the source node. DEST is the destination node} 
{ Lj(U,V) is the j-th weight of the link between nodes U and V} 
{Number of Constraints is K} 
BEGIN 
01  FOR (all nodes V)  DO 
02  BEGIN 
03   FOR (j=1 to K) DO 
04    Wj[V] ← ∞; 
05   µ(V) ← ∞; 
06   ∆(V) ← ∞; 
07   PREVIOUS(V) ←NULL; 
08   PERMANENT(V) ←FALSE; 
09  END; 
10  FOR (j=1 to K) DO 
11   Wj[SRC] ← 0; 
12  µ[SRC] ← 0; 
13  PREVIOUS[SRC] ← NULL; 
14  PERMANENT[SRC] ← TRUE; 
15  TAG ← SRC; 
16  WHILE (TAG ≠DEST) DO 
17  BEGIN 
18   FOR (all nodes, V, neighbors of TAG) DO  
19   BEGIN 
20    IF Not (PERMANENT[V]) THEN 
21    BEGIN 
22     FOR (j=1 to K) DO 
23      Wj[TEMP] ← Wj[TAG]+ Lj(TAG,V) 
24    FIND µ[TEMP] and Δ[TEMP] 
25     G(TEMP) ← µ[TEMP]*(Δ[TEMP]+ε); 
26    FIND µ[V] and Δ[V] 
27     G(V) ← µ[V]*(Δ[V]+ε); 
28     IF (G(TEMP) < G(V)) THEN 
29     BEGIN 
30      FOR (j=1 to K) DO 
31       Wj[V] ←  Wj[TEMP]; 
32      PREVIOUS[V] ← TAG; 
33     END; 
34    END; 
35   END; 
36   FIND NON-PERMANENT NODE V WITH SMALLEST G(V); 
37   TAG ← V; 
38   PERMANENT[TAG] ← TRUE; 
39  END; 

END. 
 

 
Fig. 5 Proposed Multi-Constraint routing algorithm 
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Fig. 6 The performance of existing methods 
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Fig. 7 The effect of ε  
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Fig. 8 Single mixed metric function in a two constraint case for 5.0=ε  
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Fig. 9 Single mixed metric function in a two constraint case for 0=ε  
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Fig. 10 SR vs. change in ε  in a 25-node network 
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Fig. 11 SR with fixed ε  
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Fig. 12 SR with fixed ε  
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Fig. 13 SR of the new method compared with existing 
algorithms 
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Fig. 14 Comparison between link-based and path-based 
routing, i.e. G(e) and G(P). 
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Fig. 15 SRs for different size networks. 
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5 Conclusions 
In this paper a new single mixed metric routing 
algorithm was presented for solving the MCP problem. 
The proposed method takes into account variations of 
the link weights in performing path selection, and the 
results suggest that this is as important as the linear 
combination of these weights. A wide range of 
simulation results show that this new method has better 
performance in terms of success ratio than existing 
algorithms with comparable time complexity. The 
proposed algorithm uses a parameter, ε, that helps 
control the region over which searching is performed 
and simulation results were presented which indicate 
how this parameter should be selected in practice. It is 
possible to use the single mixed metric function as 
either a path indicator or for computing a single weight 
for each link.  Simulation results show that if the single 
mixed function is used as a path indicator, better results 
may be obtained. 
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