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in Fig. 2 due to the corresponding demagnetizing field. 
The proposed method to determine the distance between 
wires is to measure the x-component of magnetic flux 
density around the wires using a GMR sensor that scans 
in the direction transverse to the wire array. The 
proposed row spacing measurement in a wire array 
using GMR sensor is applicable to the Multi-wire slurry 
slicing. 
 
2 Theoretical Derivations 

Fig. 3 depicts schematically the principle of 
operation of the proposed method to detect the position 
of the wire. It is noteworthy that the direction of the 
external magnetic field, sensing direction and the wire 
axis, are perpendicular. The magnetic flux density 
components can be written as [13]: 
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then, the component x of the magnetic flux density 
along the scanning direction is derived as: 

θ+θ= θ cosBsinB)x(B rx                                            (3) 
 
 

 
Fig. 2 Parallel wires under an applied external magnetic field. 
 

 
Fig. 3 Schematic illustration of the measurement method. 

 
Fig. 4 x-component of magnetic flux density versus distance. 

 
 

 
Fig. 5 x-component of magnetic flux density along different 
paths. 
 
 
where, µ0 and µ are the magnetic permeability of air and 
the wire, respectively. Putting the external magnetic 
flux density B0=1 mT, frequency f=100 Hz the wire 
radius a=100 µm, the relative permeability of the wire 
µr=4000 and the lift-off y0=150 µm, would result in the 
magnetic flux density distribution depicted in Fig. 4. It 
is seen that the direction of Bx is reversed by passing 
above the wire by which the location of the wire is 
detected. 

In case of variations in the lift-off due to the 
vibration of the sensor, the magnetic flux density has 
been calculated using finite element method and Fig. 5 
shows the x-component along a path with an inclination 
angle of 12o regarding the normal sensing direction. 
Again, the direction of Bx is reversed by passing above 
the wire and shows the insensitivity of the proposed 
method to the lift-off variation in order to detect the 
location of the wire. 
 
3 The Experimental Setup and the Measurements 

As shown in Fig. 6, Helmholtz coil is built in order 
to produce uniform fields. Typical Helmholtz coil 
consists of two identical circular coils of 106 turns that 
are placed along common axis and separated by the 
height equal to their radius of 12.5 cm. Uniformity of 
magnetic field is limited to the second order. It means 
that it minimizes the non-uniformity in the centre of the 
coils. 
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Fig. 10 The amplitudes and phases of the output signal along the scanning direction. 
 
 

The tip of the needle type probe was placed in the 
geometrical center of the coils. The resulting output 
signal of the GMR element at the tip of the needle was 
supplied to the oscilloscope and transferred by GPIB 
interface to a computer. The data collected by a 
measurement in X, Y, and Z axes are presented in Fig. 
9. It can be noticed that in X and Y axes the sensor do 
not react on externally applied field. In Z axis sensor 
linearly changes it’s amplitude with the magnetic field. 
Hence, the sensor bridge presents high sensitivity in Z 
axis. 

Four acupuncture needles with diameter 100 µm 
were placed in the center of the Helmholtz coil in which 
a current of 100 mA produces a uniform magnetic flux 
density of 0.1 mT at the frequency of 100 Hz, as the 
GMR element is only sensitive to AC magnetic field. 

As well as, the acupuncture needles are 
ferromagnetic and their relatively high value of 
permeability causes more nonuniformity in the magnetic 
field due to the shape induced anisotropy in the 
direction transverse to the acupuncture array as shown 
in Fig. 2. In other words, the variation in x-component 
of magnetic field at the vicinity of the acupuncture 
needles would be higher due to the higher 
demagnetization field and actually this provides a direct 
measurement of the anisotropy caused by the 
acupuncture array. As a result, in this case of 
ferromagnetic needles, the experiments are done under 
the magnetic field with the low frequency of 100 Hz 
despite the majority of ECT techniques that employ 
high frequencies applied to the conducting materials. It 
is noteworthy that increasing the frequency demands a 
more powerful power supply to maintain the current of 
coil at 100 mA. 

The lift-off distance was not measured and by eye it 
can be said it is about 300-500 µm. The bridge output 

signal Vout-Vref was supplied to the amplifier and then to 
the lock-in amplifier as depicted in Fig. 8, in which the 
phase difference between the external magnetic field H 
(A/m) and the measured magnetic flux density B (T) by 
GMR sensor is derived, in addition to the amplitude of 
the output signal Vout-Vref . 

Fig. 10 shows that the phase signal changes 180o 
rapidly as the tip of sensor passes an acupuncture needle 
and its corresponding location is detected. The inter-
wire spacings are: 900, 950 and 700 µm. In the 
waveform of amplitude versus distance of Fig. 10, the 
left and right peak heights are not same, because of the 
proximity effect between needles. 

To demonstrate clearly that the proposed method is 
able to measure the inter-wire spacing with reasonable 
accuracy, a small piece of PCB as shown in Fig. 11, was 
used in which the width and the pitch of the parallel 
conductors is 200 µm and 400 µm, respectively. After 
inserting the PCB in the Helmholtz coil and scanning it 
by GMR sensor, the corresponding phase signal was 
derived and shown in Fig. 12 that exhibits suitable 
accuracy in spatial detection of wires. 
 
4 Conclusion 

The proposed method for the inter-wire spacing 
measurement was successfully tested using an array of 
acupuncture needles that is based on the shape induced 
anisotropy and measuring the corresponding changes in 
the magnetic field using a GMR sensor. It was observed 
that the phase signal provided by the lock-in amplifier, 
changes 180o rapidly as the tip of GMR sensor passes an 
acupuncture needle by which the distances between the 
wires in a wire saw can be measured. The proposed 
technique is insensitive to lift-off variation and also is 
able to measure the inter-wire spacing with excellent 
accuracy. 
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Fig. 11 Parallel conductors of the PCB. 
 
 

 
Fig. 12 The phase of the output signal along the scanning 
direction. 
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