Online State Space Model Parameter Estimation in Synchronous Machines

Z. Gallehdari*, M. Dehghani**(C.A.) and S. K. Y. Nikravesh*

Abstract: In this paper a new approach based on the Least Squares Error method for estimating the unknown parameters of the 3rd order nonlinear model of synchronous generators is presented. The proposed approach uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is considered as the input and the rotor angle and the active power are considered as the generator outputs. In fact, the third order nonlinear state space model is converted to only two linear regression equations. Then, easy-implemented regression equations are used to estimate the unknown parameters of the nonlinear model. The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results declare that the efficiency of the proposed approach.

Keywords: Identification, Nonlinear Model, Regression Equation, State Space Model, Synchronous Machine.

1 Introduction

As the power system becomes more complicated and more interconnected, modeling and identification of its elements become more essential. Synchronous generators play an important role in the stability of power systems, so the accurate modeling of synchronous generators is essential for a valid analysis of dynamic and stability performance in power systems [1].

There are many different methods for synchronous machine modeling [2-4], but we can categorize all modeling techniques to three classes: white box [5-6], grey box [7-9] and black box [10-12]. The first category assumes a known structure for the synchronous machine such as the traditional methods, which are specified in IEEE and IEC standards [13]. These approaches are often conducted under off-line condition. The parameters obtained by these methods may not truly characterize the synchronous machine under various loading conditions [8].

According to the disadvantages of off-line methods, on-line parameter estimation approaches are of more interest in the recent years. The second and the third categories both use online measurements to estimate synchronous generator parameters, but they act in different ways.

In the second type of identification methods, a known mathematical model for synchronous generator is assumed and on-line measurements are used to estimate machine’s physical parameters. In the third one, input data set is mapped to the output data set without considering any known structure for the model.

In synchronous generators modeling, we have two kinds of nonlinearities. The first kind of nonlinearities is structured nonlinearities, such as sine and cosine functions of the rotor angle, which are modeled in the well-known nonlinear structures of synchronous models. On the other hand, the unstructured nonlinearities e.g. magnetic saturation in the iron parts of the rotor and stator are not usually considered in the structure of the models and instead are reflected by adjusting the physical parameters of the nonlinear model based on the online measurements [14].

In this paper, an analytical identification procedure for the 3rd order model of synchronous generators is suggested. The proposed method estimates physical parameters of synchronous machine. In [1, 9, 14-15] different algorithms for estimation of physical parameters of synchronous machine are presented. In [9] an approach for synchronous generator parameter estimation is suggested which needs to apply a short circuit on the generator terminals. This short circuit test
will disturb the normal operation of the machine. In [14] a method is suggested for the synchronous machine parameter estimation, which results in some nonlinear set of equations. In each test, the nonlinear set should be solved numerically. Furthermore, the algorithm does not discuss the conditions in which the system of equations can be solved. In some situations, the algorithm may result in a singular set of equations and no solution can be found. In [15], an analytic approach is suggested which needs to perturb the field voltage with the PRBS signal. This signal is not harmful for the normal operation of the machine. The suggested method uses not only the mathematical relation between machine parameters, but also it needs to identify the system eigenvalues using the Prony approach. Here, we try to find an algorithm, which uses the mathematical relations of the parameters and the extra step of Prony is omitted. In other words, we try to extend the method of [15] and find a way to omit its disadvantage.

In this study, we introduce an analytical, straight forward and easy-implemented method, uses online measurements to estimate the unknown parameters. Here we only need to solve two regression equations. Then, using some simple relations all the unknown parameters of 3rd order nonlinear state space model are estimated.

The paper is organized as follows: the synchronous generator model and the identification method are described in Sections 2 and 3, respectively. The simulation results are provided in Section 4. Section 5 concludes the paper.

2 The Synchronous Generator Model

In this paper, the third order nonlinear synchronous generator connected to an infinite bus is considered as the system under study (Fig. 1). In this model, the stator’s dynamics and the effects of dampers are neglected, so we have only one electrical equation (the field dynamic). This model can be used for studying low-frequency oscillations and stability analysis of power systems [1, 14].

The third order nonlinear model derived in [16-18] is used in this paper. All the parameters are assumed to be in per unit values. The model is described by the following nonlinear equations:

\[
\delta = \omega \\
\dot{\omega} = \frac{1}{J}(T_m - T_e - D\omega) \\
\dot{e}_q = \frac{1}{T_{do}}(E_{fd} - e_q - (x_d - x_d')i_d)
\]

where:

\[
i_d = e_q' - V_q \cos \delta \\
i_q = V_q \sin \delta \\
T_e = \frac{V_q' e_q' \sin \delta + \frac{V_q^2}{2} \left(1 - \frac{1}{x_q'}\right) \sin(2\delta)}{x_q'}
\]

In this model, the influence of magnetic saturation is neglected, so \(x_d, x_q\) and \(x_d'\) are assumed to be constant. \(x_d, x_q\) and \(x_d'\) are the augmented reactance, i.e. the line and transformer reactances are added with them [15]. The definition of the variables and constants is given in the Appendix.

In our study, it is required to find the state space model of the system, so the above model is converted to the state space one. The system states, inputs and outputs are defined as follows:

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \omega \\ e_q' \end{bmatrix}, \quad U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} E_{fd} \\ T_m \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \dot{\delta} \\ \delta \end{bmatrix}
\]

The state space nonlinear model of the system is given in the following [15]:

\[
\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{D}{J} & 0 \\ 0 & 0 & -\frac{1}{T_{do}} \frac{x_d}{x_d'} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ \frac{1}{T_{do}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
\]

\[
+ \frac{1}{J} \begin{bmatrix} -V_q \sin x_q + V_q' \left(1 - \frac{1}{x_q'}\right) \sin 2x_q \\ \frac{1}{x_d} \cos x_q \end{bmatrix}
\]

From [15], the linearized model of Eq. (4), in the vicinity of an operating point ‘0’, will conclude the known Heffron-Philips model, which is given below:

\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{D}{J} & 0 & 0 \\ \frac{K_1}{T_{do}} & -\frac{K_2}{J} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ \frac{1}{T_{do}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
\]

\[
Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \Delta \delta \\ \Delta P_e \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ K_1 & 0 & K_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\]
where:
\[K_1 = \frac{x_{10}V_x}{x_q} \cos x_{10} + V_\phi^2 \left(\frac{1}{x_q} - \frac{1}{x_d} \right) \cos 2x_{10} \] (6)
\[K_2 = \frac{V_x}{x_d} \sin x_{10} \] (7)
\[K_3 = \frac{x_d}{x_d} \] (8)
\[K_4 = \frac{V_x}{x_d} (x_d - x_d) \] (9)

To avoid complexity in equations, we define unknown parameters in Eq. (5) as \(p_1, p_2, \ldots, p_7 \). The linear dynamical model can be written as follows:
\[
\begin{bmatrix}
 x_1(k+1) \\
 x_2(k+1) \\
 x_3(k+1)
\end{bmatrix} = \begin{bmatrix}
 1 & h & 0 \\
 0 & 1 + hp_2 & hp_3 \\
 0 & hp_4 & 0 + 1 + hp_5
\end{bmatrix} \begin{bmatrix}
 x_1(k) \\
 x_2(k) \\
 x_3(k)
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix} \begin{bmatrix}
 u_1(k) \\
 u_2(k)
\end{bmatrix}
\] (12)

The corresponding nonlinear model will be:
\[
\begin{bmatrix}
 x_1(k+1) \\
 x_2(k+1) \\
 x_3(k+1)
\end{bmatrix} = \begin{bmatrix}
 1 & \frac{1}{h} & 0 \\
 0 & 1 + \frac{hp_2}{p_3} & \frac{hp_3}{p_4} \\
 0 & \frac{hp_4}{p_5} & 0 + 1 + \frac{hp_5}{p_6}
\end{bmatrix} \begin{bmatrix}
 x_1(k) \\
 x_2(k) \\
 x_3(k)
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix} \begin{bmatrix}
 u_1(k) \\
 u_2(k)
\end{bmatrix}
\] (13)

Since our goal is to find the relation between the machine’s parameters and its outputs, we write the states in terms of the machine’s outputs.
\[x_1(k) = y_1(k) \] (14)
\[x_2(k) = \frac{y_1(k+1) - y_1(k)}{h} \] (15)
\[x_3(k) = \frac{-p_2}{p_3} (y_2(k) + p_1 y_1(k)) \] (16)

Substitute the values of \(x_2(k) \) and \(x_3(k) \) from Eqs. (15) and (16) in Eq. (12) to conclude the followings:
\[\frac{y_1(k+2) - y_1(k+1)}{h} = hp_1 y_1(k) + hp_2 u_2(k) \] (17)
\[+ \frac{1 + hp_2}{h} (y_1(k+1) - y_1(k)) \]
\[+ hp_3 (-\frac{p_2}{p_3} y_2(k) + \frac{p_1}{p_4} y_1(k)) \]
\[- \frac{p_2}{p_5} (y_2(k+1) + \frac{p_1}{p_6} y_1(k+1)) = hp_4 y_1(k) - \frac{hp_5}{p_7} (y_1(k) + \frac{p_1}{p_8} y_1(k)) \] (18)

The Eq. (17) can be written as follows:
\[\frac{y_1(k+2) - y_1(k+1)}{h} = \frac{y_1(k+1) - y_1(k)}{h} \left(\frac{1 + hp_2}{h} \right) \left(u_2(k) - y_2(k) \right) \] (19)

The discrete model of the system in Eq. (10) is given in the following:
From [20], we can estimate the parameters as follows:
\[\theta = (H' H)^{-1} H' Y \]
(21)

From Eqs. (20) and (21), the values of D and J can be calculated as follows:
\[J = \frac{1}{\theta_2(2)} \]
(22)
\[D = \frac{-\theta_1(1) + 1}{\theta_2(2)} \]
(23)

After estimating the mechanical parameters (D and J), consider Eq. (18) and divide it by \(p_0 \), then rewrite it in a suitable form for the LSE method, as follows:
\[hu(k) = \left[y_1(k) - y_2(k+1) \quad y_2(k) - y_1(k+1) \quad hy_2(k) \quad hy_1(k) \right] \times \left[\begin{array}{c} p_1 p_0 \n p_1 p_0 \n p_1 p_0 \n p_1 p_0 \end{array} \right] \]
(24)

To reduce the effect of measurement noise, the formula is considered for N different time points (see Eq. (25)).

Equation (25) is a linear regression equation. We can write:
\[\theta^* = \left[\begin{array}{c} p_1 p_0 \n p_1 p_0 \n p_1 p_0 \n p_1 p_0 \end{array} \right] \]
(25)

Now we use \(\theta_2 \) to estimate the unknown parameters of synchronous machine. Due to Eq. (22) and Eq. (27), we have:
\[p_3 p_6 = \frac{\theta_3(2)}{\theta_3(1)} \]
(28)
\[p_5 = \frac{\theta_5(3)}{\theta_5(1)} \]
(29)

From Eq. (5), Eq. (7), Eq. (8) and Eq. (10), \(p_5 \) and \(p_3 p_6 \) can be written in terms of the machine’s parameters. We can write:
\[p_5 p_6 = \frac{1}{K} \frac{1}{T_{d_0}} \frac{V_b \sin x_{10}}{x_j} = \frac{J}{T_{d_0}} \]
(30)

From the above equation we can estimate \(x_d \) as follows:
\[x_d = \frac{p_5 \frac{V_b \sin y_{10}}{J}}{p_3 p_6} \]
(31)

It should be noted that we can substitute the values of \(p_5, p_3 p_6 \) and \(J \) from Eq. (28), Eq. (29) and Eq. (22), respectively. Moreover, looking at \(\theta_2(2), \theta_3(1) \) and \(\theta_4(4) \) in Eq. (27), \(p_5 \) and \(p_3 p_6 \) can be calculated as follows:
$$p_1 = \frac{\theta_2(2)\theta_4(2)}{\theta_2(1)}$$
(32)

$$p_2 = \frac{\theta_2(3)\theta_4(2) - \theta_2(4)}{\theta_2(1)}$$
(33)

Using Eq. (33) and Eqs. (9)-(10), p_2 and p_6 can be written in terms of the machine’s parameters. Their ratio is given below:

$$p_4 = -(\frac{x_d - x_q}{x_q})$$
(34)

In the above equation, $V_y x_{10}$, x_d, and x_q, are known and x_d and p_4/p_6 are estimated before, so it can be used to estimate x_d'.

$$x_d' = \frac{x_d}{1 - (\frac{p_4}{p_6})(\frac{1}{V_y x_{10}})}$$
(35)

Since x_d' and x_q' are known, Eq. (5)-(10) can be used to calculate T_{do}' as follows:

$$T_{do}' = -\frac{x_d'}{p_6}$$
(36)

The only unknown remained parameter is x_q' from Eq. (2), we have:

$$P_x = \frac{V_y^2}{x_q'} e_i'^q \sin \delta + \frac{V_y^2}{2} (\frac{1}{x_q'} - \frac{1}{x_d'}) \sin(2\delta)$$
(37)

$$e_i' = V_y \cos \delta + x_i'd$$

Substituting e_i' into P_x and rewrite it into the following form:

$$P_x - V_y^2\sin \delta = \frac{V_y^2}{2} \frac{1}{x_q'} \sin(2\delta)$$
(38)

Thus we will achieve the following formula:

$$x_q' = \frac{V_y^2 \sin(2\delta)}{2(P_x - V_y^2\sin \delta)}$$
(39)

Writing Eq. (39) in operating point α, x_q is calculated as follows:

$$x_q = \frac{V_y^2 \sin(2x_{10})}{2(P_0 - V_y i_{d0}\sin x_{10})}$$
(40)

In the above equation, P_0 is the active power, i_{d0} is the direct axis current and x_{10} is the value of rotor angle at the operating point. It is assumed that the value of P_0 and x_{10} are measured and i_{d0} is calculated from the following relations [16, 17]:

$$\phi = \arctan(\frac{Q}{P}), I = \sqrt{P^2 + Q^2}, i_d = I \sin(\delta + \phi)$$
(41)

$$i_d = \sqrt{\frac{P_0^2 + Q_0^2}{V_y^2}} \sin(x_{10} + \tan^{-1}(\frac{Q_0}{P_0}))$$
(42)

In the above equation, Q_0 is the reactive power at the operating point.

Since the equations in Eq. (20) and Eq. (25) can be updated online, we can use the whole algorithm for online identification of the machine parameters. It means that we can estimate the machine parameters when it is in service and we do not need to turn it off.

4 Simulation Results

In this section, the proposed approach is evaluated by simulating the system presented in Fig. 1. The estimated parameters are compared to the simulated ones and the model is validated under different operating conditions. Finally, the effect of noise on the parameters is examined.

4.1 Model Simulation

Our goal is to find a practical approach for synchronous generator model identification, so the mechanical torque is assumed to be constant and only the field voltage, which can be perturbed more easily, is perturbed. To evaluate the proposed method, a Pseudo-Random Binary Sequence (PRBS) with amplitude of 5% of the nominal value is applied to the field voltage [18]. Since the change in the field voltage is very small compared to the nominal value, it will not disturb the normal operation of the system too much.

When the field voltage is perturbed with the PRBS, the active output power, the rotor angle and the field voltage are sampled with sample time $h=2$ millisecond. The operating point is considered to be $P=0.9$, $Q=0.1$, $V_f=0.98$. The input/output data collected from the system model in this operating point are shown in Fig. 2.

After simulating the model at operating point $P=0.9$, $Q=0.1$ and $V_f=0.98$, the field voltage, the rotor angle and the active power signals are sampled, then matrices in Eq. (20) and Eq. (25) are obtained. Afterward, θ_1 and θ_2 are estimated using LSE method. Finally, using the procedure of the previous section, the machine parameters can be calculated. The results of this procedure are given in Table 1.

According to the third column of the Table 1, we can conclude that the estimation error is acceptable. In reality, we don’t know the real value of the parameters. To validate the results, the outputs of real model and the identified one are compared. In the next part, the procedure of model validation is discussed.

4.2 Model Validation

In this section the state space model, achieved in the previous section is validated. For this purpose, several different input signals are applied to the field voltage and the model performance in different operating conditions is observed. The first operating point is considered as $P=0.8$ pu, $Q=0$, $V_f=1.05$ pu. The system is excited by a PRBS input and the power and the rotor angle are measured. The results are presented in Fig. 3.

To calculate the estimation error, we use the following indexes [20]:

$$I = \frac{1}{N} \sum_{k=1}^{N} (y(k) - \hat{y}(k))^2$$
(43)
The values of I, FPE and P_{re} FPE for PRBS input would be:

\[
I_e = 1.8521e-005, \quad I_p = 4.1009e-006 \\
FPE_e = 1.8576e-005, \quad FPE_p = 4.1132e-006
\] \hspace{1cm} (46)

\[
P_{re} \cdot \delta = 100\%, \quad P_{re} \cdot P = 100\%
\]

In order to investigate the proposed approach capability in covering the system non-linearities, more studies were carried out. The performance of the identified model and the system at $P=1.1$ pu, $Q=0.2$ pu, $v_i=1.02$ pu, when the system is excited by a step signal in the generator field voltage is compared in Fig. 5. The autocorrelation functions for the collected data in Fig. 5 are given in Fig. 6.

The value of I, FPE and P_{re} for the step input would be:

\[
I_e = 2.4416e-006, \quad I_p = 4.1764e-006 \\
FPE_e = 2.4637e-006, \quad FPE_p = 4.2142e-006
\] \hspace{1cm} (47)

\[
P_{re} \cdot \delta = 100\%, \quad P_{re} \cdot P = 100\%
\]

As mentioned in the beginning of this section, we apply the PRBS to the input of the system. Although, in some papers [14, 21], it is shown that PRBS is applied to the input of real power plants, it is not necessary to use this kind of signal. In another example, we apply a triangular signal, which is the integral of PRBS, to the field voltage. The collected data are shown in Fig. 7. The identification procedure is done again and the results are presented in Table 2.

The estimation error in the Table 2 is satisfactory, so one can conclude that the triangular signal can be used in practice.

In order to perform further, the field voltage is excited by the pulse input with period $T=4$ sec. at operating point $P=1.2$ pu, $Q=0.15$ pu, $v_i=0.9$. Comparison of the performance of the identified model and the system at $P=1.2$ pu, $Q=0.15$ pu, $v_i=0.9$ when the system is excited by a pulse signal is shown in Fig. 8.

Table 1: Synchronous Machine Parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real Values</th>
<th>Estimated Values</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>0.0252</td>
<td>0.0252</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0.500</td>
<td>0.507</td>
<td>1.400</td>
</tr>
<tr>
<td>x_d</td>
<td>2.072</td>
<td>2.1132</td>
<td>1.988</td>
</tr>
<tr>
<td>x_q</td>
<td>1.559</td>
<td>1.5589</td>
<td>0.006</td>
</tr>
<tr>
<td>X_d'</td>
<td>0.568</td>
<td>0.592</td>
<td>4.22</td>
</tr>
<tr>
<td>T_{pu}^r</td>
<td>0.131</td>
<td>0.1304</td>
<td>0.06</td>
</tr>
</tbody>
</table>

\[
FPE = \frac{N + n}{N (N - n)} \sum_{i=1}^{N-n} (y(k) - \hat{y}(k))^2
\] \hspace{1cm} (44)

\[
P_{re} = \%R_{re} \cdot \left(\frac{1}{\sqrt{N}}, \frac{2}{\sqrt{N}} \right)
\] \hspace{1cm} (45)

where, n is the number of estimated parameters, N is the number of samples and R is the autocorrelation function. In the P_{re} index, we calculate the autocorrelation function of error. If more than 95% of data remain in the range $\left(\frac{1}{\sqrt{N}}, \frac{2}{\sqrt{N}} \right)$, the estimation procedure accuracy is called satisfactory.
The value of I and FPE for pulse input would be:

$$I = \delta = 9.2595e-007, \quad I = P = 1.6253e-007$$

$$FPE = \delta = 9.2817e-007, \quad FPE = P = 1.6292e-007$$

(48)

Since in most real cases the measurements are noisy, in the next Section the effect of noise is studied.

4.3 Noise Effect

In this part, the effect of white noise on the proposed approach is examined by adding the white noise with different SNR (Signal to Noise Ratio) to the measured outputs. The estimation procedure is done for noisy measurements and the results are presented in Table 3.

According to Table 3, we conclude that for SNR more than 110 the estimated parameters are close to the real values, but for less than it, the estimation error is increased especially for parameters D and J. In addition, we see that the value of x_q is robust with respect to the noise.

Table 2 Synchronous machine parameters when the input signal is triangular.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real Values</th>
<th>Estimated Values</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>0.0252</td>
<td>0.0252</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0.500</td>
<td>0.511</td>
<td>2.2</td>
</tr>
<tr>
<td>x_d</td>
<td>2.072</td>
<td>2.0117</td>
<td>2.91</td>
</tr>
<tr>
<td>x_q</td>
<td>1.559</td>
<td>1.5592</td>
<td>0.0012</td>
</tr>
<tr>
<td>x_d'</td>
<td>0.6068</td>
<td>0.5544</td>
<td>2.39</td>
</tr>
<tr>
<td>T_{d0}</td>
<td>0.131</td>
<td>0.1344</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Table 3 estimated parameters for noisy measurements with different SNR.

<table>
<thead>
<tr>
<th>SNR Parameters</th>
<th>500</th>
<th>150</th>
<th>120</th>
<th>100</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.0511</td>
<td>0.0511</td>
<td>0.0523</td>
<td>0.134</td>
<td>0.26</td>
</tr>
<tr>
<td>J</td>
<td>0.0252</td>
<td>0.0252</td>
<td>0.0250</td>
<td>0.0174</td>
<td>0.0048</td>
</tr>
<tr>
<td>x_q</td>
<td>1.5588</td>
<td>1.5588</td>
<td>1.5588</td>
<td>1.5588</td>
<td>1.5588</td>
</tr>
<tr>
<td>x_d'</td>
<td>0.6068</td>
<td>0.6068</td>
<td>0.6068</td>
<td>0.6091</td>
<td>0.631</td>
</tr>
<tr>
<td>x_d</td>
<td>2.1164</td>
<td>2.116</td>
<td>2.116</td>
<td>2.1207</td>
<td>2.1575</td>
</tr>
<tr>
<td>T_{d0}'</td>
<td>0.1299</td>
<td>0.1299</td>
<td>0.1299</td>
<td>0.1283</td>
<td>0.115</td>
</tr>
</tbody>
</table>
5 Conclusion

In this paper, the theoretical relation based approach, which uses the known least square error method, has been presented to identify the nonlinear 3rd order synchronous generator state space model parameters. The most important point about the method is to use the linear least square error method to estimate the nonlinear model. In this paper, the field voltage is considered as the machine’s input and the rotor angle and active powers are as the outputs of the machine. Simulation results show that the proposed method has good accuracy for estimation of state space synchronous generator parameters.

Appendix

The main variables of the model in Eq. (1) are:

- J, D: rotor inertia and damping factor
- T_{d0}^b: direct-axis transient time constant
- x_d: direct axis reactance
- x_{d}^t: direct axis transient reactance
- x_q: quadrature axis reactance
- δ: rotor angle with respect to the machine terminals
- ω: rotor speed
- T_m: input mechanical torque
- T_e: output electric torque
- E_{FD}: The equivalent EMF in the excitation coil
- E_{iq}^t: transient internal voltage of armature
- P, Q: terminal active and reactive power per phase
- v_i: generator terminal voltage
- V_B: Infinite bus voltage
- i_d, i_q: direct and quadrature axis stator currents

References

Maryam Dehghani received her B.Sc. and M.Sc. degrees in electrical engineering from Shiraz University, Shiraz, Iran, in 1999 and 2002, respectively and her Ph.D. from Amirkabir University of Technology, Tehran, Iran in 2008. She is currently an assistant professor in school of electrical and computer engineering, Shiraz university, Shiraz, Iran. Her research interests include dynamics and control of power systems, system identification and phasor measurement units.

Seyed Kamaleddin Yadavar Nikravesh received the B.Sc. degree in electrical engineering from Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, in 1966 and the M.Sc. and Ph.D. degrees from the University of Missouri at Rolla and Columbia in 1971 and 1973, respectively. Currently, he is a Professor in the Electrical Engineering Department at Amirkabir University of Technology. His research interests include dynamical and biomedical modeling, system stability, and system optimization.

Zahra Gallehdari received the B.Sc. degree and M.Sc. degree in Electrical Engineering in 2005 and 2009 respectively. She is currently pursuing the Ph.D. degree in Control at Concordia University, Montreal, Canada. Her research interests are control, system identification, optimization and their applications in power systems.