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Abstract: Gaussian Mixture Models (GMMs) of power spectral densities of speech and 
noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No 
assumption is made about the nature or stationarity of the noise. No Voice Activity 
Detection (VAD) or any other means is employed to estimate the input SNR. The GMM 
mean vectors are used to form sets of over-determined system of equations whose solutions 
lead to the first estimates of speech and noise power spectra. Based on the selected noise 
model from the initial noise power spectrum estimate, the noise source type is identified 
and the input SNR estimated in this first step. The first power spectra estimates are then 
refined using approximate but, explicit MMSE and MAP estimation formulations. The 
refined estimates are then used in a Wiener filter to reduce noise and enhance the noisy 
speech. The proposed filtering schemes show good results. Nevertheless, it is shown that 
the MAP explicit solution, introduced here for the first time, reduces the computation time 
to less than one third in comparison to the MMSE solution. Slight higher improvements in 
SNR and PESQ score and less distortion are also noted. 
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1 Introduction1 
Nowadays, the vast use of mobile communication in 
different environments with different background 
noises, asks for powerful and accurate noise reduction 
algorithms to ensure the quality of communicated voice 
and the performance of coding algorithms. Wiener filter 
is vastly used for noise reduction due to its simplicity. 
The performance of the Wiener filter is hinged on the 
accuracy of estimation of speech and noise Power 
Spectral Densities (PSDs). We proposed a codebook 
constrained Wiener filtering algorithm in which we 
solved a set of over-determined equations on codebook 
elements representing speech and different noise PSDs 
[1, 2]. The modeling by examples was used. Codebooks 
were created by clustering the PSDs of speech and noise 
signals of a training data-base using the k-means 
algorithm. No mathematical modeling was involved. To 
attain good results with the codebook constrained 
method we needed to use large codebooks resulting in 
long processing times. In fact, despite obtaining very 
good results, the processing time remained an issue. In 
the algorithm outlined in [3] we used mathematical 
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modeling, in the form of Gaussian Mixture Models 
(GMMs), for speech and noise PSDs. We solved over-
determined sets of equations involving the GMM mean 
vectors to estimate speech and noise PSDs to form the 
Wiener filter used to enhance the noisy signal with 
almost the same performance but much less 
computation time. To further reduce the processing time 
we took advantage of the GMM mean vectors, to model 
the space of the input noisy PSDs, in a different manner 
in [4]. The observation vector corresponding to the 
noisy input was projected onto the mean vectors of the 
speech and different noise models to form again an 
over-determined set of equations whose solution led to 
the estimates of speech and noise PSDs and the input 
SNR. In [5], we showed that better results are obtained 
with models based on an approximate but explicit 
MMSE Bayesian estimation at a higher computation 
time which remains nevertheless low enough for 
practical implementations. In fact, the algorithm used in 
[4] to model the space spanned by the input noisy power 
spectra is employed in [5] to form the first estimates of 
speech and noise PSDs that are subsequently refined by 
the explicit MMSE estimations. 

In this paper, we further improve our explicit 
Bayesian estimation using an explicit MAP solution 
derived from the previously used approximate MMSE 
formula. It is shown that better results are obtained at a 
much reduced processing time in comparison to the 
MMSE solution. The paper is organized as follows: In 
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section 2 we describe the Gaussian mixture modeling 
process used. In section 3, the Wiener filtering and its 
MMSE nature are outlined. In section 4, we state the 
explicit MMSE Bayesian estimation. Section 5 is the 
main concentration of this paper where we propose an 
explicit formula for implementing the MAP Bayesian 
estimation extracted from the MMSE formulation. In 
section 6, we describe our experiments and the 
measures used in evaluating the results discussed by the 
same token. Section 7 contains the conclusion 
comparing our MMSE and MAP speech enhancement 
solutions. 
 
2 Gaussian Mixture Modeling 

A practical method for modeling the Probability 
Density Function (PDF) of an arbitrary signal space is 
to use a mixture of Gaussian PDFs [6] where a data 
point is associated with different probabilities to 
different components of the mixture. A GMM for a 
process P (taken as a vector) is defined as: 

( ) ( )
1 1

; , , 1
K K

k k k k k
k k

f P p G P pμ
= =

= Σ =∑ ∑   (1) 

where f is the PDF, Gk(P; μk, Σk) denotes the Gaussian 
PDF of the k-th component of the mixture, with mean 
vector μk and covariance matrix Σk. The parameter pk is 
the prior probability of the k-th mixture and is 
interpreted as the expected fraction of the number of 
vectors P associated with that mixture. The sum of these 
prior probabilities adds up to 1. Vector P can represent 
the spectral magnitude or spectral power of a frame or 
segment of the noisy speech, speech or noise signal. The 
number of mixtures k for speech and noise is set by trial 
and error in general (k = 6 to 9 is usual for speech) and 
the well-known Expectation – Maximization (EM) 
algorithm is applied for the estimation of the parameters 
of the GMM using a training data. 

As stated in [3], we used our previously developed 
tree structured codebooks of speech and different noise 
sources to initialize the EM algorithm. In fact, knowing 
the number of vectors that have fallen in each cluster, 
the codebook is searched to find the k most populated 
clusters. Using the relative populations, mean vectors 
(centroids) and covariance matrices of these clusters as 
initial values, the EM algorithm is run on the whole 
training data to form the models. On the basis of some 
elementary results k = 6 and 9 were chosen for speech 
and noise signals, respectively. 

Using a diagonal covariance matrix is not readily 
justified. Indeed the covariance matrix of the Babble 
noise, for instance, suggests strong correlation between 
spectral magnitudes or PSDs at neighboring frequencies 
due, in general, to frequency leakage resulting from 
windowing. The convergence problems of Gaussian 
mixture modeling, encountered when dealing with long 
vectors, are noted here as our spectral magnitudes 
and/or densities are calculated using 257 frequency bins. 
 

3 MMSE Noise Reduction using Wiener Filter 
The MMSE criterion is widely used in speech 

enhancement. Such a solution is provided by Wiener 
filtering where estimates of the PSDs of speech and 
noise are used to modify the magnitude of the Short 
Time Fourier Transform (STFT) of the noisy signal 
which is then added to its unaltered phase characteristic. 
The Inverse Fourier Transform (IFFT) of this short time 
spectrum calculated usually, for overlapping segments 
of some 20-30 ms long, leads to the reconstruction of 
the filtered signal as output of the Overlap Add or 
Overlap Save algorithm. Assuming noisy signal in 
frequency domain as: 

( ) ( ) ( )X S Nω ω ω= +   (2) 
in which S(ω) and N(ω) are the FFT of the clean speech 
and noise respectively, a filter W(ω) is used, in Wiener 
filtering, to extract S(ω) from X(ω) as in: 
ˆ( ) ( ) ( )S W Xω ω ω=  (3) 
ˆ( )S ω  is the estimate of S(ω). It is well known that the 

MMSE between ˆ( )S ω and ( )S ω  is obtained when the 
Wiener filter defined below is applied: 
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The Bayesian estimates of the PSDs of speech and 
noise signals may be used for Ps(ω) and Pn(ω). In [5] 
we used the MMSE estimates as formulated in [7]. This 
formulation, repeated here in section 4 below, leads to 
our MAP formula derived in section 5. 
 
4 MMSE Estimation of Speech and Noise PSDs 

Using the Gaussian mixture models containing the 
parameters pk, μk(ω) and Σk we can estimate Ps(ω) and 
Pn(ω) to construct the suitable Wiener filter which is 
subsequently used to enhance the noisy speech segment. 
As mentioned in [7] we know that the MMSE estimate 
of the PSD of the clean speech signal is calculated as: 

[ ]| ( | )MMSE
s s x s s s x sP E P P P f P P d P= = ∫  (5) 

where fs refers to the PDF of the speech PSD given the 
observation Px. It is derived, using the Bayesian 
formula, as: 
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Combining ( | )s s xf P P and MMSE
sP  we can write: 
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Using the GMMs of speech and noise, expressed in 
Eq. (1), we have:
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Here fn shows obviously the PDF of the noise PSD 
also modeled with a Gaussian mixture. As stated earlier, 
the covariance matrices calculated by the EM algorithm 
are not diagonal, reflecting correlations among the low 
frequency bins of the PSDs. However, covariance 
vectors are used in [7] to calculate PDFs which means 
all estimations are calculated neglecting these 
correlations and approximating the covariance matrices 
as diagonal. Hence, we replace all Σk by σk which 
represent the diagonals of the covariance matrices. By 
substituting Eq. (8) in Eq. (7) and using Gamma 
distribution we have as shown in [7]:
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The elements of this equation are expressed as 
follows: 
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Since our models are all normalized (the PSDs used 
are power normalized to one), they must be scaled 
according to the input SNR before being used. This is 
done using an estimate of the noise power in the 
following way. As we extract our input frames using 
Hamming windows with 75 % overlap, each processed 
frame is overlapped with three next and three previous 
frames. Assuming that the noise source power is almost 
unchanged in successive frames, we can assume that the 
noise power in the current frame is equal to the average 
power of the previous seven frames. Furthermore, 
assuming that the first few frames are silent and include 
just the environment noise, the noise power can easily 
be estimated using these frames at the beginning and be 
used as a good initial value for the averaging process of 
the next frames. If we consider the average noise power 
in the previous seven frames gn, equaling the noise 
power in the current frame, the power of speech in the 
same frame or gs is estimated by removing gn from the 
power of the noisy speech simply as: 

( )s x ng P g
ω

ω= −∑  (11) 

Therefore, for the purpose of scaling, all mean and 
covariance vectors in Eq. (10) are replaced using Eq. 
(11), as below: 
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We note that we can construct the wiener filter using 
Eq. (9) in two ways. First, we can use the estimated 

MMSE
sP  to estimate MMSE

nP  as MMSE MMSE
n x sP P P= −  

(zeroing the eventual resulting negative values). Second, 
we can directly estimate MMSE

nP  using Eqs. (9-12) 
reversing the role of speech and noise by replacing 

is
μ  

and 
is

σ  with 
jnμ  and 

jnσ  and vice versa. This way the 

two estimates MMSE
sP  and MMSE

nP  are not directly linked 
and therefore reflect better their assumed independence. 

We have six different noise source candidates whose 
models must be used for the estimation of MMSE

sP  and 
MMSE

nP  for each noisy speech frame. To alleviate the 
computation we use the method exposed in [4], using 
speech and noise mean vectors to model the space of the 
noisy speech PSD, as a preprocessing step to find the 
suitable noise model i.e. the best noise candidate. 
Therefore, the following processing is limited to a 
single noise source. On the other hand, it is noted that 
the enhancement results using the spectral magnitude 
corresponding to the frame MMSE

sP , directly attached to 
the noisy phase component of the same segment are 
poor. Therefore, MMSE

sP  and MMSE
nP  estimates are used 

to construct the Wiener filter and carry out the 
enhancement by applying it to the noisy speech frame. 

As could be seen from Eq. (10), the calculations of 
bi,j, ci,j and di,j involve using 

isσ  and 
jnσ  in 

denominators. These occasionally very small values, 
mainly at high frequency components, result in large 
unwanted values for bi,j, ci,j and di,j. Poor estimations 
result when summing them up in Eq. (9). Hence, we use 
a threshold and set the components less than a relatively 
small value, say ε, equal to ε. In our reported results in 
Table 1 we use ε = 10-6. 
 
5 Approximate MAP Solution 

The noisy input phase is in fact the Maximum A-
Posteriori (MAP) estimate of the clean speech phase and 
it is therefore more appropriate to combine the map 
estimate of the speech magnitude with this phase 
estimate to reconstruct the enhanced speech signal. It is 
expected that such a solution leads to better results. 
Different solutions based on different assumptions, 
approximations and/or methods have been suggested [8-
11]. It is noted that MMSE and MAP solutions are 
Bayesian estimates that become equivalent to the 
Maximum Likelihood (ML) solution for symmetric 
distributions [6]. 
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However, a true MAP solution may involve costly 
optimization algorithms that require good initializations 
to guarantee global optimum solution and acceptable 
speed of convergence. This was our initial interest in 
seeking a fast MMSE solution using GMM as 
initialization to an optimization algorithm. However, in 
the case of GMM an explicit MAP solution can be 
attained, as explained below, avoiding the use of 
optimization procedures. The MAP solution is obtained 
as: 

arg max ( | ) ( )
s

MAP
s s x s s s

P
P f P P f P=  (13) 

Using fn(Pn) referring to the GMM of noise we have: 
arg max ( ) ( )

s

MAP
s n x s s s

P
P f P P f P= −  (14) 

As previously stated an explicit formula for MMSE
sP  

is suggested in [7] and put in practical use in [12]. This 
is while the vastly quoted paper of Ephraim and Malah 
introduces a different MMSE solution taking into 
account the probabilistic speech presence in a frame 
[13]. As shown in Eq. (13) we are looking for a speech 
PSD (Ps) that maximizes fs(Px|Ps)fs(Ps) expressed in the 
denominator of Eq. (7). The first derivative of this 
denominator with respect to Ps is fs(Px|Ps)fs(Ps) whose 
derivative (the second of the denominator) equated to 
zero, yields the sought Ps. Using Eqs. (7) and (9) we can 
therefore write: 
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where DEN stands for denominator. Knowing from Eq. 
(10) that 2
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Also, equating the second derivative of DEN to zero 
gives: 
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Now using the fact that, except for the last term, all 
the terms in the double summation are positive non zero 
values we can write: 
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Requiring that 
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Alternative factorization of Eq. (19) leads to 
alternative solutions such as: 
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The difference in these formulations is reflected in 
the slope of the derivative approaching zero. Our 
experiments show that almost the same results are 
obtained, on the average, using these different 
formulations. They all are slightly higher in terms of the 
achieved enhancement as compared to the MMSE 
solution as can be seen below. On the other hand, the 
MAP solution is also interesting because it reduces the 
computation time by avoiding the integration involved 
in the MMSE estimation. It is noted that the filter is 
again constructed using MAP estimates of both speech 
and noise. It is noted that, here also, the same scaling of 
the models is needed and applied. Again the best noise 
candidate is chosen, for each frame, as previously 
mentioned. Next section summarizes the results. 
 
6 Experiments 

The noise database is formed by 6 long files of 
babble, white, pink, destroyer engine, factory and HF 
channel noise. Each noise file contains more than 1.8 
million samples and each clean speech file contains 
around 30000 to 60000 samples. The noise files are 
converted from 16 kHz originally to 8 kHz from 
NOISEX database available from the Rice University 
Digital Signal Processing (DSP) group home page [14]. 
The speech files are also quantized with 16 bit and have 
the sampling rate of 8 kHz extracted randomly from the 
TIMIT database [15]. These databases are divided into 
two parts. One is used to train the GMM models while 
the other is used to perform the speech enhancement 
tests. Hence the speech and noise files used for test are 
not present in the construction of the models. The 
MATLAB software is used on a Widows 64 bit based 
PC with Core i5 3.2 GHz CPU and 16 GB RAM for all 
simulations and tests. The test files are used to create 
noisy observations at -5, 0, 3, 5 and 10 dB input SNRs. 
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To test the mentioned algorithms, 50 speech files 
consisting of male and female speakers are used. The 
results shown in the table are averaged over the used 
files. Overlapping windowed (Hamming) segments of 
length of 256 samples (of 75% overlap) are used. The 
enhancement is calculated in terms of SNR and 
segmental SNR improvements. To calculate the SNR 
improvement we use the following: 

( ) ( )( )

( ) ( )( )

2

210 log
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t

t

x t s t
SNRimp

s t s t

⎛ ⎞−
⎜ ⎟
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⎝ ⎠

∑

∑
  (21) 

x(t) is the noisy speech while ˆ( )s t  and s(t) refer to 
the enhanced and clean speech respectively. We 
calculate the segmental SNR as: 
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Here, n refers to the n-th segment of the signal in the 
time domain. The segment length, in this calculation, is 

one third of that used for noise reduction. Another 
measure used in the evaluation of results is distortion (in 
percentage). To calculate the distortion we use: 
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∑

∑
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PESQ (Perceptual Evaluation of Speech Quality) 
value (0.5–4.5) is also used in our evaluations. PESQ is 
a quantitative psycho-acoustic measure that is used to 
evaluate how the enhanced speech is appreciated. To 
calculate PESQ as explained in [16], the routine 
available in [17] is used. 

For the speech and noise PSD estimation part of the 
enhancement procedure using MMSE method, the 
algorithm mentioned in section 4 and [7] is used. For 
the proposed MAP method the algorithm in section 5 is 
used. The results of our experiments and the comparison 
of our proposed MAP method with the MMSE method 
are shown in Table 1 and illustrated in Figs. 1 and 2. 
 

 
Table 1 Comparison of enhancement results using Bayesian estimation based on MAP and MMSE criterion. 

Noise 
Types 

Input data MAP MMSE 

Input 
SNR 

Input 
Seg. 
SNR 

Input 
PESQ 

Input 
Dist. 
[%] 

SNR 
imp. 

Seg. 
SNR 
imp. 

Output
PESQ

Dist. 
[%] 

SNR 
imp. 

Seg. 
SNR 
imp. 

Output 
PESQ 

Dist. 
[%] 

White 

-5 dB -16.44 1.05 316.23 9.03 16.82 1.54 40.55 7.24 16.58 1.14 61.94 
0 dB -11.44 1.32 100.00 5.62 13.06 2.08 29.61 4.67 12.63 1.95 36.53 
3 dB -8.44 1.52 50.12 3.20 10.51 2.35 26.73 2.67 10.20 2.22 29.55 
5 dB -6.44 1.66 31.62 1.46 8.71 2.49 25.62 1.05 8.45 2.40 27.55 

10 dB -1.44 2.02 10.00 -3.20 3.97 2.72 24.24 -4.68 3.66 2.56 31.55 

Babble 

-5 dB -15.73 1.39 316.23 6.82 11.71 1.21 66.15 6.77 11.58 1.24 66.82 
0 dB -10.73 1.71 100.00 4.77 9.91 1.88 34.32 4.57 9.70 1.89 35.93 
3 dB -7.73 1.91 50.12 2.82 8.31 2.15 28.08 2.62 8.12 2.15 29.29 
5 dB -5.73 2.05 31.62 1.27 7.00 2.29 26.09 0.99 6.82 2.28 27.51 

10 dB -0.73 2.39 10.00 -3.20 3.00 2.59 24.17 -5.53 2.57 2.39 37.35 

Pink 

-5 dB -16.27 1.14 316.23 8.70 14.84 1.54 43.45 7.55 14.48 1.51 56.96 
0 dB -11.27 1.48 100.00 5.40 11.91 2.15 30.73 4.66 11.25 2.18 35.76 
3 dB -8.27 1.70 50.12 3.07 9.75 2.41 27.25 2.54 9.17 2.45 30.11 
5 dB -6.27 1.85 31.62 1.37 8.14 2.55 25.90 0.98 7.67 2.59 27.83 

10 dB -1.27 2.22 10.00 -3.21 3.70 2.75 24.27 -4.74 3.30 2.59 31.99 

HF 
Channel 

-5 dB -16.38 1.12 316.23 9.25 15.71 1.62 38.44 8.36 15.16 1.36 46.82 
0 dB -11.38 1.36 100.00 5.83 12.67 2.14 28.35 5.09 12.15 1.97 32.87 
3 dB -8.38 1.54 50.12 3.35 10.34 2.38 25.98 2.82 9.94 2.24 28.68 
5 dB -6.38 1.67 31.62 1.57 8.61 2.52 25.13 1.15 8.30 2.40 27.07 

10 dB -1.38 2.02 10.00 -3.15 3.93 2.75 24.08 -5.02 3.55 2.56 33.74 

Destroyer 
Engine 

-5 dB -16.35 1.34 316.23 7.93 13.80 1.70 51.33 7.46 13.22 1.73 57.15 
0 dB -11.35 1.62 100.00 5.12 11.24 2.01 32.12 4.70 10.74 2.01 35.10 
3 dB -8.35 1.81 50.12 2.96 9.26 2.19 27.53 2.65 8.90 2.18 29.27 
5 dB -6.35 1.93 31.62 1.34 7.77 2.31 25.89 1.02 7.49 2.28 27.48 

10 dB -1.35 2.26 10.00 -3.19 3.56 2.59 24.17 -5.40 3.12 2.42 36.44 

Factory 

-5 dB -16.07 1.18 316.23 8.21 13.43 1.42 48.13 7.49 13.04 1.37 56.66 
3 dB -11.07 1.51 100.00 5.35 11.17 2.10 30.76 4.80 10.60 2.09 34.50 
0 dB -8.07 1.73 50.12 3.10 9.28 2.34 26.93 2.70 8.79 2.36 29.06 
5 dB -6.07 1.88 31.62 1.42 7.79 2.47 25.59 1.07 7.39 2.48 27.28 

10 dB -1.07 2.25 10.00 -3.18 3.48 2.73 24.14 -5.26 3.01 2.55 35.43 
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Fig. 1 The comparison of PESQ improvement using MMSE and MAP methods with respect to input PESQ. 

 
 

 
Fig. 2 The comparison of Distortion improvement using MMSE and MAP methods with respect to input distortion in percent. 
 
 

As could be seen from Table 1 and Figs. 1 and 2, the 
proposed MAP method exhibits better results in terms 
of SNR, Segmental SNR and distortion improvements. 
This is due probably to the fact that the MMSE estimate 
is obtained by an average PDF function while maximum 
PDF is used in the MAP estimation. In fact, it is noticed 
that the MMSE estimation results in smoother estimated 
speech and noise PSDs. Estimated PSDs obtained in 
MAP estimation are somehow more ragged and sparse 
reflecting better the sparsity of PSDs in the frequency 
domain. It can also be seen, from Table 1 and Figs. 1 
and 2, that for input SNR of 10 dB the SNR is decreased 
and the distortion increased using either MAP or MMSE 

estimates. This is while segmental SNR and PESQ are 
increased. It is noted, generally speaking, that speech is 
highly non stationary and segmental SNR and PESQ 
reflect better the performance of the algorithms than 
SNR and distortion measures calculated as averages on 
the whole signal length. On the other hand, the quality 
of the 10 dB signal is already high and the used models 
do not reflect the sharpness encountered in the high 
quality speech signal so that applying the Wiener filter 
is not beneficial, in terms of all measures, in this case. 
Our investigation showed that for high SNR inputs more 
refined models (higher number of clusters) must be 
used. 
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From Table 1 and Fig. 1 we can see that in most 
cases, the MAP algorithm exhibits higher segmental 
SNR improvement, PESQ and lower distortions than 
MMSE algorithm except for -5 and 0 dB input SNRs of 
Babble noise where the PESQ improvements are almost 
the same. In fact, Babble noise is speech-like, making 
filtering, at these low SNRs, a difficult task. Actually, 
there might be confusion in distinguishing between 
speech and noise for some frames. Lower PESQ 
improvements are noted in 0, 3 and 5 dB input SNR in 
the case of Pink noise when comparing these results. 
Here, the low energy unvoiced frames, whose power 
spectra are similar to the long term PSD of Pink noise, 
are unduly suppressed in the filtering process. 

The most important difference in using MAP as 
compared to the MMSE algorithm is the processing 
time. The average processing time of a file was almost 5 
Sec for the MMSE algorithm while it was just 1 Sec in 
case of MAP. 
 
7 Conclusion 

The MAP solution, based on an explicit formulation 
introduced in this paper, yields higher PESQ and 
segmental SNR improvement and also less distortion in 
comparison to the MMSE method for almost all noise 
types and input SNRs. This relatively good performance 
is, however, more noted when the lower complexity and 
lower process time of this solution are taken into 
account. In fact the mean process time for each file 
using MAP is one fifth of the MMSE method. It is noted 
that both solutions result in much lower distortions than 
our previous methods [3] and [4]. The lower distortion 
is better appreciated in informal listening than reflected 
in PESQ or segmental SNR improvement. 

We emphasize that we used, in this paper, an explicit 
MMSE formula to estimate speech and noise PSDs, 
independently, which were then used in the construction 
of the Wiener filter. We also transformed this explicit 
MMSE formula to express an explicit formula for the 
MAP estimations of our speech and noise PSDs. By 
doing so we proposed a solution which achieves almost 
the same results at a much reduced processing time. Our 
future line of work includes, among other things, 
comparison of our MAP solution with a solution based 
on using optimization algorithms albeit at a much higher 
computation time. This comparison is interesting in the 
sense that it should shed some light on the relevance of 
the orthogonal assumption made here on the covariance 
matrices of the Gaussian mixture models. 
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