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Abstract: This paper studies the effects of symmetrical voltage sags on the operational 
characteristics of a Permanent Magnet Synchronous Motor (PMSM) by Finite Element 
Method (FEM). Voltage sags may cause high torque pulsations which can damage the shaft 
or equipment connected to the motor. By recognizing the critical voltage sags, sags that 
produce hazardous torque variations could be prevented. Simulations results will be 
provided and the critical voltage sags are recognized. A simple theoretical analysis will also 
be presented to obtain a qualitative understanding of the phenomena occurring in PMSM 
during symmetrical voltage sags. 
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1 Introduction1 
Permanent Magnet Synchronous Motor (PMSM) is a 
good choice in so many applications. Replacing 
excitation winding of rotor with Permanent Magnets 
(PM) makes these motors more efficient than their 
excited counterparts. The most important advantages of 
these motors are high efficiency, high power density, 
low maintenance cost and low loss [1-3]. 

During the last years, the power quality has gained a 
great importance for both customers and utilities [4-5]. 
Power networks may present many types of 
disturbances, being the voltage sag the most common 
type. Voltage sags (dips) are about 80 % of frequent 
phenomena in power systems. The definition of voltage 
sag is a transitory reduction (10 % to 90 %) in RMS of 
supply voltage, which lasts from a half a cycle at power 
supply frequency to one minute [6-7]. 

If a PMSM is subjected to voltage sags, severe 
torque peaks may occur which may cause damage and 
fatigue of the motor shaft or connected equipment. Also, 
the voltage sag may cause motor disconnect and 
shutdown by the action of the under-voltage or over-
current protection relays [8]. In some applications, the 
continuity and smoothness of process is important and 
shutdown of the machine results in production losses 
and implying large costs. Riding through voltage sags is 
one way to avoid these unwanted stops [9-10]. In fact, 
by changing the settings of the protection devices, 
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dispensable disconnections can be avoided. In these 
cases, the torque pulsations severity should be evaluated 
to recognize the sags that motor can ride through them. 

This paper investigates the symmetrical voltage sags 
consequences on PMSM behavior. A qualitative method 
called "stator flux trajectory analysis" is also presented 
to show field parameters and the phenomenon occurring 
in a PMSM during voltage sags. Critical characteristics 
of voltage sags are obtained easily by some 
mathematical equations. Finite Element Method (FEM) 
is utilized to confirm the theoretical analysis and to 
simulate the saturation effect on the behavior of 
permanent magnet synchronous motor subjected to 
voltage sags. The exact magnitudes of flux and torque 
oscillation are estimated by the FEM. 
 
2 The Governing Equations 

Finite element method is a numerical technique for 
solving problems with complicated geometries, 
loadings, and material properties where analytical 
solutions cannot be applied. The method is considered 
to be the most accurate tool for obtaining the flux 
density distribution and waveforms in electrical 
machines. The basic concept is to model a structure by 
dividing it into small segments called "Elements", 
interconnected at points common to two or more 
elements (nodes). The properties of the elements are 
formulated as equilibrium equations. The equations for 
the entire structure are obtained by combining the 
equilibrium equation of each element such that 
continuity is ensured at each node. The necessary 
boundary conditions are then imposed and the equations 
of equilibrium are solved to find the required variables. 
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momentary voltage drop to a fixed level in the RMS 
value and immediately restoration of the voltage level to 
the pre sag voltage level (1.0 pu) sometime later. This 
shape is very often used in simulations as it is very 
simple to use and it represents the worst case [13-14]. 
Symmetrical three phase voltage sag of magnitude h has 
been considered. In this paper, sag magnitude, h, is the 
net root mean square (rms) voltage in percentage or per 
unit of system rated voltage. 

Fig. 2 shows torque, speed and phase current 
variations, before, during and after two voltage sags of 
amplitude h = 0.3 and durations of 1.5 and 2 cycles 

occurring at the motor terminal. The voltage sag begins 
at the time t = 7.08 sec. The initial point of voltage wave 
is assumed -78. 

As it is seen from Fig. 2, there are two important 
instants where the severity of torque pulsations may be 
large: at the sag beginning and at the instant of voltage 
restoration.  The post sag peak torque has a high value 
for the sag duration 1.5 cycles while it has a relatively 
smaller value for the sag duration of 2 cycles. The 
pattern of speed changes is opposite to that of torque 
variations due to assumption of constant power 
mechanical load. 

 

 
(a) Steady state conditions 

 

                     
Sag durations: 1.5 cycles                                                                              Sag durations: 1.5 cycles 

 

                   
Sag durations: 2 cycles                                                                                   Sag durations: 2 cycles 

 
(b) At the instant of sag beginning                                                              (c) At the instant of voltage restoration 

Fig. 3 Flux density distribution at (a): steady state conditions and at the instants of (b): sag beginning and (c): voltage restoration – 
sag depth h=0.3, sag durations: 1.5 and 2 cycles. 
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On the other hand, the pattern of the variations of the 
peaks of the phase current with the sag durations is 
similar to that of the change of the peaks of the post sag 
air-gap torque. 

Fig. 3 shows the flux density distribution in the 
motor at the steady state conditions and at the instants of 
torque peaks occurring (h = 0.3, sag duration = 1.5 and 
2 cycles). The figure depicts that at the instant of 
voltage restoration, the stator flux density is 
approximately the same as steady state condition flux 
density when duration of voltage sag is 2 cycles. On the 
other hand, the maximum of flux density has reached to 
2.78 T which is approximately as two times as much as 
in steady state when duration of voltage sag is 1.5 
cycles. Obviously, in real machines, the flux cannot 
reach to this level due to saturation. 

Several simulations were carried out by the FEM 
and the followings are the simulations results: 
• Deeper voltage sags causes in general larger torque 

peaks. 
• The torque peak at the sag beginning does not 

depend to the θ0 (the initial point of wave).  It 
depends only to the sag magnitude. In the other 
words, for the symmetrical sags, the initial point-on-
wave has no influence on the torque peak at the 
beginning on the sag. 

• The torque peak at the end of the sag depends to the 
duration of the sag. If the sag duration is a multiple 
of the period time of the supply, the lowest 
additional transients would occur. If the sag duration 
is a multiple of the period time of the supply plus 
half, the biggest torque peak would occur. In fact, 
the change of this peak with the sag duration is 
oscillatory with a frequency equal to the supply 
frequency (50 Hz). The peak value also changes as a 
function of the sag magnitude. 

 
4 Stator Flux Trajectory Analyses: Simple 
Theoretical Approach 

In this section, a simplified theoretical analysis is 
performed to obtain a qualitative understanding of the 
phenomena occurring in PMSM during symmetrical 
sags. In the analysis, the flux variations are calculated in 
a complex plain (with d and q as axes) using the voltage 
sag equations. For simplicity, the stator resistance and 
saturation are neglected and the rotor speed is assumed 
constant during the entire duration of the sag. 

By applying Park transformation [15], symmetrical 
voltage sag equations will be as follows: 
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Prior to the sag and in a complex plain with d and q 
axes as coordinates, the internal voltage of the machine 
in the synchronous reference frame can be expressed as: 

0( )j
s mE jV e θ δ+=                                                     (7) 

The synchronous reference frame is assumed to lead 
the stator reference frame by an angle γ. Consequently, 
the internal voltage of the machine in the stator 
reference frame is given by: 

0( ) ( )js j t
s mE jV e eθ δ ω γ+ +=                                       (8) 

where superscript s denotes stator reference frame. The 
modulus of the stator flux linkage prior to the sag is ψs0 
= Vm/ω. The stator flux in stator reference frame is thus 
expressed as: 
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initial fluxes in the synchronous and stator reference 
frames are: 
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During the sag, the internal voltage of the machine 
can be given by: 
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The change in the flux can be obtained by 
integration of voltage wave: 
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The resulting flux is thus obtained by adding the 
change to the initial value. This results is as: 
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To find the stator flux in the synchronous reference 
frame, the transformation coefficient e-j(ωt+γ) can be 
used: 

( )( )0( )
( . ) 1j j tm

s dur sag
V

e h h eθ δ ωψ
ω
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Eq. (15) is described by a constant term and a 
rotating term in negative direction. The constant term 
multiplied by h which shows the average value of flux 
reduces during the sag. The rotating term causes flux 
changes in d-q axes coordination. 

According to Eq. (15) and for specified values of θ0 
and δ, the flux path during the sag will follow a circle 
and moves one turn in each cycle. The starting point is 
initial flux point. The centre of the circle is the point 
that if the sag duration lasts enough, the flux will finally 
reach to this point (ψs(t=∞)=hψs(t=0)). The radius of the 
circle initially will be the distance between initial flux 
and ψs(t=∞) named as A

dρ , and then reduces with armature 
time constant. During the sag, the severity of torque 
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6 Conclusion 
A simplified theoretical analysis is presented to 

investigate the effects of voltage sags on PMSM torque 
pulsations at the beginning and end of the sags. The 
method can specify the most unfavorable conditions 
during and at the ending instant of the symmetrical 
voltage sag. The torque peak at the beginning on the sag 
only depends on the sag depth and the initial point-on-
wave has no influence on it. The duration of the voltage 
sag is as important as the depth of the sag for the peak 
torque and current at the ending of the sag. The worst 
peak torque occurs for h = 0 with a duration of half a 
period plus any full periods. 

FEM is utilized to confirm the theoretical analysis 
and to simulate the saturation effect on the behavior of 
permanent magnet synchronous motor subjected to 
voltage sags. The results show that voltage sag may 
cause saturation in the motor. Saturation causes 
significant decrease in the flux density and increase in 
the phase current but there is not so much effect on the 
torque peaks. 
 
Appendix 
 
Table 1 Data of designed PM synchronous motor. 

Quantity Value 
Input frequency 50 Hz 
Input voltage (line-to-line) 295.0 V 
Connection Y 
Inner diameter of the stator 82.5 mm 
Outer diameter of the stator 136.0 mm 
Air gap in d axis (clearance) 0.3 mm 
Air gap in q axis (clearance) 5.4 mm 
Effective length of the stator core 103.0 mm 
Stacking factor for the stator core 0.96 
Armature winding coil pitch 64.8 mm 
Length of a single overhang 90.8 mm 
Number of turns per phase 240 
Number of parallel conductors 2 
Number of stator slots 36 
Stator wire conductivity at 20° C 57 *10-6 S/m 
Diameter of stator conductor 0.5 mm 
Width of the stator slot opening 2.2 mm 
Height of permanent magnet 5.0 mm 
Width of permanent magnet 3*10 mm 
Length of permanent magnet 100.0 mm 
Permanent magnetic flux density 1.0 T 
Coercive force 700.0 kA/m 
Width of pole shoe 32.4 mm 
Thickness of pole shoe 1.0 mm 
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