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Abstract

This paper presents a simple and easy implementable Least Mean Square (LMS) type approach

for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS

type algorithm is based on a second order recursion for the complex voltage derived from Clarke’s

transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real

parameter (not complex) which can be efficiently implemented by DSP. In unbalanced situations,

simulation experiments show the advantages and drawbacks of the proposed algorithm in comparison

to Complex LMS (CLMS) and Augmented Complex LMS (ACLMS) methods.

Index Terms-Frequency estimation, LMS algorithm, adaptive filter, power systems.

I. INTRODUCTION

Signal processing is a promising tool for next generation of power grids and also power

systems [1],[2]. Frequency is an important parameter of a power system in monitoring, control

and security applications. Besides, accurate and online frequency estimation in a power system

is a prerequisite for the future smart grid where the generation, load and topology will be dy-

namically updated [3]. In addition, unexpected frequency variation from nominal value indicates

an emergency situation where quick response should be taken into account. So, fast and accurate

frequency estimation is necessary in such conditions.

Various algorithms have been proposed for frequency estimation in power systems. Tradition-

ally, zero crossing information was used for frequency estimation [4]. Because of the degradation
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of zero crossings by noise and other harmonic distortions, other techniques have been proposed.

In [20], a demodulation technique was presented. In addition, Discrete Fourier Transform (DFT)

based algorithms were suggested to solve the problem [25],[7],[8]. Phase-Locked-Loop (PLL)

based algorithms were also used in the literature [21],[22]. Moreover, Kalman filtering approaches

were successfully applied [11],[12],[23],[24],[19]. In [5], an adaptive notch filter was proposed

for frequency estimation of a single phase and then this method was extended to three-phase

power systems [15]. A simple Weighted Least Square (WLS) recursive algorithm was suggested

in [6] for single phase cases and again was extended to three-phase systems in [16]. Also, a

simple Complex Least Mean Square (CLMS) adaptive filter was introduced in [13]. Recently, the

CLMS was extended to an Augmented CLMS based on the concept of widely linear modeling

and augmented complex statistics [17]. Moreover, an iterative Minimum Variance Distortionless

Response (MVDR) algorithm was proposed in [14] and then an Augmented MVDR approach

was suggested recently [18].

Among various algorithms for frequency estimation, some exploit the frequency from single

phase (e.g., refer to [4]-[11]), while others extract the frequency from all three phases because

of more robustness (e.g., refer to [12]-[19]). Since using all phases, it provides a more ro-

bust algorithm specially when phases undergo some abnormal conditions. Usually, the Clark’s

transformation is used to convert the three phase signals to a single complex signal. Moreover,

recently, unbalanced power systems have gained more attention [17],[18],[19],[26],[27]. This

paper proposes an simple and easy-implementable adaptive LMS algorithm for power system

frequency estimation based on all three phases in unbalanced condition where the three phases

are not exactly the same and specially their amplitudes are different. In this case, the complex

signal derived from Clark’s transformation has a recursion different to what an LMS technique is

based on. According to this recursion, an LMS algorithm is suggested which uses two consecutive

samples of the complex signal instead of a single value. Fortunately, the coefficients of this

recursion is real and so the proposed overall LMS algorithm is a real adaptive filter and is

computationally efficient specially for applying on DSP’s.

This paper is organized as follows. In section II, the preliminaries such as Clark’s trans-

formation and the problem is introduced. Section III presents an overview of the CLMS and

ACLMS algorithms. Then, in section IV, at first a recursion will be proved for the complex

signal derived from Clark’s transformation. Secondly, the proposed LMS algorithm are presented
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based on this recursion. In section V, to explain the suitability of the proposed algorithm, several

experiments were conducted in unbalanced cases and with different conditions and the advantage

and disadvantages of the proposed algorithm in comparison to its counterparts i.e. CLMS and

ACLMS algorithms are illustrated. Finally, paper concludes in section VI.

II. PRELIMINARIES

The voltages in a three-phase power system can be represented in a discrete time form as

va(k) = Va(k) cos(ωk∆T + ϕ) + na

vb(k) = Vb(k) cos(ωk∆T + ϕ− 2π

3
) + nb

vc(k) = Vc(k) cos(ωk∆T + ϕ+
2π

3
) + nc (1)

where Vi(k) is the peak value of i’th voltage phase at time instant k, ni is the noise of i’th

voltage phase, ∆T = 1
fs

is the sampling interval with fs being the sampling frequency, ϕ is the

initial phase of fundamental component, and ω = 2πf is the angular frequency with f being the

system frequency. The noises are assumed to be independent white Guassian with variances σ2
n.

The Clarck’s transform convert the three phases (va, vb and vc) to a zero-sequence component

v0 and direct and quadrature components vα and vβ as the form of [28]:
v0(k)

vα(k)

vβ(k)

 =

√
2

3


√

2
2

√
2

2

√
2

2

1 −1
2
−1

2

0
√

3
2
−
√

3
2




va(k)

vb(k)

vc(k)

 (2)

where the factor
√

2
3

is used to ensure that the system is invariant under this transformation. In

balanced condition where Va(k) = Vb(k) = Vc(k), we have v0(k) = 0, vα(k) = A cos(ωk∆T+ϕ)

and vβ(k) = A cos(ωk∆T+ϕ+ π
2
) where vα and vβ are orthogonal components. Thus, a complex

voltage signal is defined as:

v(k) = vα(k) + jvβ(k) (3)

where in practice, this complex signal was extensively used for frequency estimation in three-

phase power systems [20],[12],[16],[15],[13]. Naturally, the harmonics that are mainly zero-

sequence v0(k) are blocked by this transformation [20]. Thus, the zero-sequence was discarded

in all these references and we did the same.
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In general, it has been shown that the complex voltage can be written in the form [17]:

v(k) = A(k)ej(ωk∆T+ϕ) +B(k)e−j(ωk∆T+ϕ) (4)

where

A(k) =

√
6(Va(k) + Vb(k) + Vc(k))

6
(5)

B(k) =

√
6(2Va(k)− Vb(k)− Vc(k))

12
−
√

2(Vb(k)− Vc(k))

4
(6)

In other words, when Va(k), Vb(k), and Vc(k) are not identical, we have a clockwise and a

counterclockwise rotating complex vector resulting a certain degree of non circularity [17].

When Va(k), Vb(k), and Vc(k) are identical, we have B(k) = 0. Thus, we have the following

recursion:

v(k + 1) = A(k + 1)ej(ω(k+1)∆T+ϕ)

= v(k)ej(ω∆T ) = v(k)w(k) (7)

where w(k) , ej(ω∆T ) and the assumption A(k + 1) = A(k) is used.

III. CLMS AND ACLMS ALGORITHMS

Based on the (7), the CLMS algorithm was proposed for frequency estimation and summarized

as [13],[17]:

v̂(k + 1) = v(k)w(k)

e(k) = v(k + 1)− v̂(k + 1)

w(k + 1) = w(k) + µe(k)v∗(k) (8)

where w(k) = ej(ωk∆T ) is the weight coefficient at time instant k, µ is the step size, v̂(k + 1)

is the estimate of the desired signal v(k + 1) and e(k) is the estimation error. Also, the system

frequency can be estimated as

f̂(k) =
1

2π∆T
sin−1(Im (w(k))) (9)

Unfortunately, in unbalanced condition, the recursion (7) does not hold and the CLMS algo-

rithm start to break down. In this case, the complex signal v(k) is exactly expressed as in (4).
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In ACLMS algorithm [17], it is suggested to estimate the complex signal from both v(k) and

its complex conjugate v∗(k). Therefore, we have:

v̂(k + 1) = v(k)h(k) + v∗(k)g(k) (10)

where h(k) and g(k) are the filter weight coefficients corresponding to the standard and conjugate

updates at time instant k, respectively [17]. The estimation error e(k) and cost function J(k) is

defined as:

e(k) = v(k + 1)− v̂(k + 1)

J(k) = |e(k)|2 = e(k)e∗(k) (11)

where the update of weight coefficients h(k) and g(k) is based on this cost function and is

obtained by an steepest descent recursion in the following form:

h(k + 1) = h(k)− µOhJ(k) (12)

g(k + 1) = g(k)− µOgJ(k) (13)

where OhJ(k) and OgJ(k) are the gradients of the cost function with respect to weight coeffi-

cients. The final recursion for updating the coefficients are [17]:

h(k + 1) = h(k) + µe(k)v∗(k) (14)

g(k + 1) = g(k) + µe(k)v(k) (15)

where the above coefficient updates are the basic relations of ACLMS algorithm. In order to

estimate the frequency based on the weight coefficients, it is shown that [17]:

f̂(k) =
1

2π∆T
sin−1(=(h(k) + a1(k)g(k))) (16)

where the coefficient a1(k) is defined as:

a1(k) =
−j=(h(k)) + j

√
=2(h(k))− |g(k)|2

g(k)
(17)

when balanced condition holds, the weight coefficient g(k) = 0 and ACLMS frequency estima-

tion (16) simplifies to the standard CLMS frequency estimation (9).
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IV. THE PROPOSED LMS ALGORITHM

Inspiring from the recursive relation for single phase voltage [6], a recursion can be derived for

the complex voltage in (4). (4) is rewritten as the sum of two clockwise and counter clockwise

voltages as the from:

v(k) = v+(k) + v−(k) (18)

where v+(k) and v−(k) are:

v+(k) = A(k)ej(ωk∆T+ϕ) (19)

v−(k) = B(k)e−j(ωk∆T+ϕ) (20)

To find a recursion for complex voltage v(k), it is straightforward to consider three consecutive

time instants k − 1, k and k + 1. Assuming the amplitudes Va(k), Vb(k) and Vc(k) are constant

over these three samples, then based on (5) and (6), we have A(k− 1) = A(k) = A(k+ 1) and

B(k − 1) = B(k) = B(k + 1). Thus, it can be expressed:

v(k − 1) = e−jω∆Tv+(k) + ejω∆Tv−(k)

v(k) = v+(k) + v−(k)

v(k + 1) = ejω∆Tv+(k) + e−jω∆Tv−(k) (21)

where the elimination of v+(k) and v−(k) in (21), leads to the following recursion:

v(k + 1) = 2 cos(ω∆T )v(k)− v(k − 1)

=
[

2 cos(ω∆T ) −1
] v(k)

v(k − 1)

 (22)

So, it is more straightforward to estimate the desired signal v(k + 1) based on two preceding

samples v(k) and v(k−1) instead of v(k) and v∗(k). Thus, in this new proposed LMS algorithm,

the estimated complex voltage is:

v̂(k + 1) = w(k)v(k)− v(k − 1)

=
[
w(k) −1

] v(k)

v(k − 1)

 (23)
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where weight coefficient is defined as w(k) , 2 cos(ω∆T ). To update weight coefficient w(k),

we use the cost function J(k) = |e(k)|2 = e(k)e∗(k) where estimated error is e(k) = v̂(k+ 1)−

v(k + 1). The steepest descent update will be:

w(k + 1) = w(k)− µOw(k)J(k) (24)

where some mathematical simplifications leads to the final recursion of the new proposed LMS

algorithm:

w(k + 1) = w(k) + 2µ<(v(k)e∗(k)) (25)

where < is real part operator. This real part is appeared in the update because the weight

coefficient w(k) = 2 cos(ω∆T ) is real. The frequency estimator based on this new algorithm is:

f̂(k) =
1

2π∆T
cos−1(

w(k)

2
) (26)

V. SIMULATIONS

The new proposed LMS algorithm and its frequency estimator in (25) and (26) was applied to

estimate the power system frequency from discrete time samples of three-phase voltage signals.

Different experiments were conducted to evaluate the performance of the proposed algorithm

(we nominated it as Modified LMS or MLMS) in comparison to the counterpart algorithms i.e.

CLMS and ACLMS. Simulations were performed in the Matlab programming environment with

a sampling frequency of 5kHz. The simulation results are averaged over 100 independent runs.

A. Experiment 1

In first experiment, the power system was in normal condition at 50Hz and in noiseless case.

At first, three phases are balanced (Va(k) = Vb(k) = Vc(k) = 1). At time t = 0.05, an extra

0.1-per-unit (p.u) magnitude was imposed at phases b and c, together with 0.05-p.u. on phase

a (Va(k) = 1.05, Vb(k) = 1.1, Vc(k) = 1.1). Also, at t = 0.15 a 50 percent voltage sag was

happened at phase c (Va(k) = 1.05, Vb(k) = 1.1, Vc(k) = 0.5). All step sizes were set to

µ = 0.01 and all algorithms were initialized at 50.5 Hz. The estimated frequency of all three

algorithms (CLMS, ACLMS and MLMS) are shown in Figure (1). In balanced case t < 0.05s, all

three algorithms were converged to 50Hz without oscillation and MLMS had faster convergence.

In unbalanced case 0.05 < t < 0.15, CLMS had an inevitable oscillation with frequency 100Hz
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Fig. 1. Frequency estimation under unbalanced conditions. To generate an unbalanced condition, an extra 0.1 p.u. was imposed

on phase b and phase c, plus a 0.05 p.u. magnitude on phase a at t = 0.05s. A 50% voltage sag in the third channel occurred

at t = 0.15s. The frequency was initialized at 50.5Hz with the true system frequency set to 50Hz.

and with 0.2Hz amplitude. Also, ACLMS and MLMS converged to 50Hz with and without

oscillation. After voltage drop of phase c at t = 0.15s, CLMS algorithm failed to converge.

MLMS and ACLMS converged after voltage sag, at t = 0.22s and t = .35s, respectively. So,

MLMS had faster convergence after voltage drop.

B. Experiment 2

To compare proposed MLMS algorithm with CLMS and ACLMS, in noisy conditions, a bias

and variance analysis was performed. At first, we set the variance of noise of σn = 0.001. In

noisy cases, step sizes of all algorithms were selected as 0.0001. The three phases were at all

times in unbalanced case with peak amplitudes Va(k) = 1.1, Vb(k) = 1, Vc(k) = 1. The results of

estimated frequency are shown in Figure (2). Figure (2) shows the faster convergence of MLMS

in comparison to CLMS and ACLMS. It also shows a large bias of CLMS. To compare the

algorithms, the bias and variance in various noisy conditions were calculated (Fig. (3) and Fig.

(4)). For this, SNR is defined as SNR , 10 log10(0.5
σ2
n

) and bias term is computed as Bias =

1

Card(Cs)

∑
k∈Cs
|f̂(k)− f0| where Cs is the convergence set. While after t = 6s, all algorithms

were converged. So, we used Cs = {k|6 < k∆T < 8} with the Card(Cs) = 2fs = 10000. From

Fig. (3) and Fig. (4), it is obvious that in noisy cases (i.e. SNR < 40dB), the ACLMS has the

best result among three algorithms. But, in very low noise cases (i.e. SNR > 40dB), the MLMS
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Fig. 2. Frequency estimation in unbalanced case. Phase a has an extra 0.1 p.u. magnitude at all times.

Fig. 3. Bias error of frequency estimation of three algorithms in various noisy conditions.

algorithm outperforms ACLMS.

C. Experiment 3

Third experiment was done to illustrate the advantage of the proposed MLMS algorithm over

CLMS and ACLMS in sag conditions. The step size set to 0.0001, 0.001 and .001 for MLMS,

CLMS and ACLMS, respectively. At first, the power system is balanced with Va(k) = Vb(k) =

Vc(k) = 1. At t = 5s. a complete voltage sag is happened at phase a (Va(k) = 0, Vb(k) =

1, Vc(k) = 1. The simulation results show that the MLMS algorithm converge faster than

ACLMS after sag, while step sizes are selected in such that the ACLMS has faster convergence

at balanced case. So, MLMS has higher tracking ability than ACLMS. Also, CLMS diverge after

sag condition. The results are shown in Figure (5).
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Fig. 4. Variance of frequency estimation of three algorithms in various noisy conditions.

Fig. 5. The frequency estimation of three algorithms after a 100% voltage sag.

D. Experiment 4

Forth experiment was conducted to illustrate the sensitivity of algorithms to variations of

amplitudes. Step sizes are set as µ = 0.0001 for all three algorithms. At first, the power system

is balanced. After converging the algorithms, at t = 8s, a 1Hz variation is imposed on three

phases with different amplitudes. They are:

Va(k) = 1 + 0.05 sin(2πt)

Vb(k) = 1 + 0.1 sin(2πt)

Vc(k) = 1 + 0.15 sin(2πt)

The estimated frequency is depicted in Figure (6). After amplitude variation, ACLMS and CLMS

started to drift from 50Hz, but MLMS was not influenced by amplitude variation. Thus, MLMS
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Fig. 6. Impact of oscillatory variation of amplitude on frequency estimation.

Fig. 7. Frequency estimation under sudden frequency changes.

is more robust to amplitude variation than ACLMS and CLMS.

E. Experiment 5

In this experiment, frequency tracking ability of the algorithms were investigated using sudden

frequency changes. The power system was in unbalanced condition with amplitudes Va(k) =

1.1, Vb(k) = 1, Vc(k) = 1. The frequency of power system was changed from 50Hz to 52Hz

at t = 5s. Then, the frequency was changed back to 50Hz at t = 13s. All step sizes were

set to 0.0001. The results are shown in Figure (7). Because of unbalancedness, CLMS has a

considerable bias for frequency estimation. But, ACLMS and MLMS have negligible bias. Also,

MLMS has higher tracking ability than ACLMS.
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TABLE I

RUN TIME OF ALGORITHMS.

MLMS CLMS ACLMS

23.4ms 25.4ms 56.9ms

F. Experiment 6

To illustrate the simplicity of the proposed algorithm in comparison to CLMS and ACLMS,

the sixth experiment were performed. The power system was in unbalanced condition with

amplitudes Va(k) = 1.1, Vb(k) = 1, Vc(k) = 1. The frequency of power system was set to 50Hz.

The initial guess of the frequency was assumed to be 50.2Hz. A duration of 8s was simulated and

the average run time of all three algorithms was calculated and reported in Table I. It confirms

that the proposed algorithm is simpler than CLMS and ACLMS.

VI. CONCLUSIONS

In this article, a new LMS algorithm for frequency estimation was proposed. The proposed

algorithm relies on a recursion which was proved in this paper. This recursion suggests to infer

the next sample of the complex voltage based on two preceding samples instead of just previous

sample in CLMS or based on previous sample and its conjugate in ACLMS. Extensive simulations

show the advantages and drawbacks of the proposed algorithm in comparison to CLMS and

ACLMS. Simulation experiments showed that the proposed algorithm has faster convergence,

higher frequency tracking ability, less sensitivity to amplitude variation, more accuracy in very

low noise cases and less run time in comparison to CLMS and ACLMS. On the other hand,

ACLMS outperforms our proposed algorithm in noisy cases.
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