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Abstract: Utilization of wind turbines as economic and green production units, poses new 
challenges to the power system planners, mainly due to the stochastic nature of the wind, 
adding a new source of uncertainty to the power system. Different types of distribution and 
correlation between this random variable and the system load make conventional method 
inappropriate for modeling such a correlation. In this paper, the correlation between the 
wind speed and system load is modeled using Copula, a mathematical tool recently used in 
the field of the applied science. As the effect of the correlation coefficient is the main 
concern, the copula modeling technique allows simulating various scenarios with different 
correlations. The conducted simulations in this paper reveal that the wind speed correlation 
with the load has a significant effect on the system reliability indices, such as Expected 
Energy Not Served (EENS) and Loss Of Load Probability (LOLP). Moreover, in this paper 
the effect of the correlation coefficient on the Effective Load Carrying Capability (ELCC) 
of the wind turbines is analyzed, too. To perform the aforementioned simulations and 
analyses, the modified RBTS with an additional wind farm is used. 
 
Keywords: Copula, Correlation, Effective Load Carrying Capability, Reliability Indices, 
Wind Power Generation. 

 
 
 
1 Introduction1 

1.1  Motivation 
Penetration of wind energy into the power system has 
been increased during the recent years. The Rising cost 
of the fossil fuels and the negative environmental 
impacts of the conventional generations have provided 
strong incentives for wind power deployment. The 
developed countries replace the conventional units with 
the Wind Turbine Generators (WTGs), mainly due to 
their environmental policies and green energy plans. On 
the other hand, in the developing countries, where 
utilities face increasing demand over the planning 
period, WTGs are seen as an economical source of 
power and governments and experts consider these cost-
effective energy sources in the generation expansion 
planning. 

However, the wind speed is variable and 
uncontrollable. These phenomena cause the mean value 
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of the output power to be less than the turbine 
nameplate. In other words, the capacity factor for a 
WTG is much less than a similar conventional unit. The 
reserve capacities are the ancillary service to overcome 
these challenge [1]. In addition to the considerable 
uncertainty of the wind speed, the value of the 
correlation factor between the Wind Speed (WS) and 
the load affects the power system performance. Hence, 
considering power system planning aspects, the capacity 
and the location of the WTGs should be carefully 
chosen. 

To determine the proper capacity of the wind 
generation, the Effective Load Carrying Capability 
(ELCC) of the WTGs is used. The index indicates the 
capability of the WTG to serve the load. For the 
calculation of the ELCC, models are required to 
represent the complicated behavior of the wind and load 
and their correlation. 

 
1.2  Literature Review 

The concept of the ELCC has been widely used in 
the context of the long term planning of the wind farm 
([2, 3]). ELCC has been used as an index for the wind 
farms in [4] and effect of the wind farms location on the 
ELCC has been analyzed. Similar work has been carried 
out in [5]. In these researches, wind speed and load have 
been modeled by the sequential Monte Carlo. However, 



Armin & Rajabi Mashhadi: Effect of Wind Speed and Load Correlation on …                                                              223 

the correlation between the wind speed and load has not 
been addressed since this issue has not been the main 
concern of the authors. 

Early works regarding the correlation between the 
wind speed and load have been published in 1980s. The 
effects of the correlation between the load and wind 
have been indicated in [6] and [7]. In [7], the authors 
have addressed the dependency between the wind and 
load in an Irish case study. Load and wind correlation 
coefficient for this study was reported about 0.15 - 0.20, 
which was ignored to avoid the computational 
complexity. Seasonal correlation between the load and 
wind has been pointed out in [8]. In a study for the U.S. 
Department of Energy, it has been emphasized that 
these correlations “do exist” and have a complex pattern 
[9]. In [10], the authors claim a negative correlation 
between load and wind “in most systems.” Such 
dependency can affect system analysis and should be 
accurately represented. In [11], a method has been 
presented for modeling the correlation between the wind 
speed, solar insolation and load curves. This study has 
concluded that such a correlation, as an important 
factor, must be considered in the reliability evaluations. 

Modeling these correlations faces two main 
challenges. First, these correlations change site by site 
and have different values in the different systems. So 
far, researchers have used historical data to include the 
impact of wind speed-load correlation (WLC) on the 
power system. A simple method is to consider the wind 
production as negative load and then add it to the real 
load data. This approach has been reported in several 
cases such as California in 2004 [12], Minnesota state 
[13] and New York [14] in 2006, Ireland [15], and India 
[16]. While this method is practical but can be used just 
for specified case studies. Any changes in load or wind 
pattern cannot be considered in this method. 

The second challenge is associated with the different 
distributions of the wind and load. This causes the 
dependency between the wind and load to be nonlinear. 
Copula, which recently has been reported as a powerful 
tool for modeling [17], can be used to generate a joint 
probability function. This technique allows combining 
different distributions, derived from the historical data, 
based on a dependency level. Copula method is based 
on the Sklar theorem, presented in 1956. Copula has 
been used in the different fields of science, such as 
weather forecast, mechanics, and particularly in finance. 
In [17] and [18] copula has been used to model the 
correlation between the wind generations in the 
Netherlands. Similar works have been conducted for the 
Swiss grid [19] and Davarzan distribution system in Iran 
[20]. In all these works, an empirical copula approach 
based on the historical data has been employed to 
extract and model the cumulative distribution of the 
equivalent load. 
 

1.3  Approach and Contributions 
The main goal of this paper is to include the effect of 

the WLC in the calculation of the ELCC of a WTG. In 
this paper, the ELCC is computed based on the 
reliability analysis. Two well-known reliability indices, 
including the Loss Of Load Probability (LOLP) and 
Expected Energy Not Served (EENS) are used for this 
purpose. 

As wind and load distributions and their correlation 
have a direct effect on the power system reliability 
indices, it is necessary to consider the WLC in the 
ELCC computation. Correlation degree can be adjusted 
based on the statistical analysis of the historical data. In 
the proposed copula-based modeling, the correlation can 
be adjusted in order to cover other likely situations. The 
ELCC of a wind generator is calculated by Monte Carlo 
simulation for different values of the correlation 
coefficient between the load and wind. The obtained 
results show that the WLC plays a key role in the value 
of the ELCC corresponding to a WTG. Based on the 
simulation results, the capacity factor of a WTG 
decreases due to the low or negative correlation between 
the load and wind, as expected. 
 

1.4  Paper Organization 
This paper is organized as follows. The problem 

formulation is presented in section 2. Section 3 includes 
the proposed load and wind model. Copula method is 
introduced in section 4. Case study and the simulation 
results are presented in section 5 and 6. Finally, the 
paper is summarized and concluded in section 7. 
 
2 Problem Formulation 

2.1  Computing ELCC for Conventional Units 
We start by considering a system with n 

conventional units. Ignoring transmission constraints, 
the system can be represented by a single node model as 
shown in Fig. 1. 

The total system generation capacity should exceed 
the load level to maintain certain LOLP. The maximum 
load that can be supplied by the generating units is 
assumed to be *L  when the LOLP index satisfies the 
system reliability criteria ( *LOLP ). The value of the *L  
can be determined by solving the following 
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optimization problem: 

Max(L)  subject to 
*

i

LOLP(L,C) LOLP
L G

≤
≤ ∑

 
(1)

where, iG  is the capacity of the i-th unit. The second 
inequality constraint represents the upper bound on the 
system load. In a realistic case, when the generating 
units are not perfect, this constraint is not active and the 
first constraint determines the optimum value of the 
load. The LOLP can be calculated using the equivalent 
load duration curve (ELDC) [21]. Hence, 

* *
CLOLP f (L )=  (2)

where, Cf  indicates the risk function [21]. In a system 
with conventional generators, Cf  can be calculated 
using the following convolution process: 

new

* *
C C C

*
C new

f (L ) (1 FOR) f (L )

FOR f (L C )
+ = − ×

+ × −
  (3)

where, *L  and C are the original system load and 
capacity, respectively, and Cnew denotes the capacity of 
the newly added unit. When the original system is at its 
optimum level, the newly added unit should carry the 
extra load. This is the concept of the effective load 
carrying capacity (ELCC). Accordingly, 

new

1 * 1 *
C C CELCC f (LOLP ) f (LOLP )− −
+= −  (4) 

 
2.2  Difference between WTG and CG 

Due to the stochastic nature of the wind speed, 
modeling of the wind turbine generators (WTG) is a 
quite complex task. Furthermore, there are some 
degrees of correlation between the wind speed and 
system load, which affect the WTG’s ELCC. Therefore, 
the convolution method cannot be applied on at a 
system including the WTGs. It is not possible to derive 
a closed form solution for the ELCC in this situation. 
However, the Monte Carlo approach can be used for the 
numerical analysis, considering the load and wind 
correlation. In this circumstance, the ELCC calculation 
problem can be rewritten as the following optimization 
problem: 
Max(L)  

* *
newsubject to  LOLP(L L,C C ) LOLP+ Δ + ≤  (5) 

where, LΔ , is load increment and newC  indicates 
increase in the system capacity due to the wind 
generators. According to its concept, the ELCC is 
implicitly equal to the LΔ . 

Now, the main problem is how to present the wind 
speed and load model and their correlation in the Monte 
Carlo approach. The correlation can be positive or 
negative and its extents differ from site to site. In the 
practical calculation of the ELCC, the dependency 

between the load and wind are merged into the 
historical data to implicitly consider the effect of the 
WLC. However, the obtained result is case dependent 
and cannot be used for general conclusions. In this 
paper, the correlation coefficient is changed in the 
copula models. Hence, different types of the WLC are 
modeled for possible situations. 

To analyze the impact of the WLC on the ELCC of 
the WTG, the aim is to use a proper method which is 
able to consider the WLC explicitly. The copula 
technique is an appropriate method for this purpose. 
Before presenting the copula method, the wind and load 
models are introduced in the next section. 
 
3 Wind and Load model 

3.1  Wind Speed and Wind Generation Modeling 
Wind speed can be modeled using Wiebull, gamma, 

log-normal or burr distributions [11]. In this study, the 
wind speed data, recorded in Afriz area, Khorasan 
province, Iran in 2007 and 2008, are used to derive the 
model. For this data, the wind speed distribution is 
shown in Fig. 2. The wind power values have been 
calculated based on the hourly wind speed data, using 
the turbine’s power curve. Typical pitch-controlled 
wind turbine generators (WTG) are considered in this 
study. A linear WTG power curve is represented in [20] 
and the wind generation is obtained based on the 
method described in [19]. The wind turbine power curve 
has been modeled based on a two-MW VETAS V100 
turbine [22]. As the wind speed regime is assumed to be 
identical for all wind turbines in a wind farm, the total 
generated power of the wind farm is obtained by 
aggregating the generations of all wind turbines. 
 

3.2  Load Modeling 
Annual hourly load curve data in Khorasan province 

in Iran have been shown in Fig. 3. These data have been 
collected from a bus near Khaf, over a one year period 
starting from May 20th, 2011. 
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Fig. 3 load histogram for annual empirical data in Khaf. 
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Fig. 4 Scatter plot for Load Samples and Wind Speed shows 
their correlation. 
 
 

The Load is usually modeled based on the Gaussian 
distribution [23] in which the forecasting error is 
represented. This method is very useful and practical in 
short-term simulations. In the long-term, however, the 
Gaussian distribution cannot be utilized for load 
modeling. In this case, load distribution is close to a 
normal distribution with a skewed to the left side. 
Hence, the load marginal distribution should be derived 
from the historical data of the system. In [24] and [25] a 
kernel method has been presented for load modeling 
using the actual data. In this paper, the empirical 
distribution function is used for the load data as well as 
the wind data. 
 
4 Wind Speed and Load Correlation Modeling 

The marginal distribution of the wind speed and load 
samples was shown in the previous section. The scatter 
plot for the wind speed and load samples is shown on 
Fig. 4. This figure indicates the correlation between the 
wind speed and load with the correlation degree of 
0.4056. 

In many cases, the modeling has been done based on 
the assumption of independence between these 
variables. But in some cases the variables are 
dependent. Different methods have been proposed for 
modeling such dependency. Choleskey transformation is 
one of the most commonly used methods [26] which is 
used in the multivariable normal distributions. 

Complexity arises when the variables with different 
Probability Distribution Function (PDF) are correlated, 
e.g. the correlation between the wind speed and load. 
For modeling the correlation between wind speed and 
load, the Copula technique can be used. This technique 
is based on the Sklar’s theorem [19]. By this theorem, 
the marginal distributions i iF (x )  can be joined together 
by a Copula function, C, and to produce a joint 
cumulative distribution function c 1 2 nF (x , x ,..., x ) : 

(6) c 1 2 n 1 1 2 2 n nF (x , x ,..., x ) C(F (x ), F (x ),..., F (x ))=

In other words, C can be interpreted as a 
transformation on the marginal CDF of the 
corresponding random variables to form the joint CDF. 
By substituting 1 1 2 2 n n(F (x ),F (x ),..., F (x ))  with 

1 2 n(U , U ,..., U ) , (6) can be rewritten as, 

(7)c 1 2 n 1 2 nF (x , x ,..., x ) C(U , U ,..., U )=  
where, iU  is the marginal CDF of the i-th variable. In 
case of different distributions of the variables, a Copula 
function can merge them together to generate their joint 
cumulative distribution function. ‘Gaussian’ and ‘t’ 
copulas are two well-known Copulas, reported in the 
literature, with the similar behaviors. Multivariable t-
distribution has good performances in tail data 
modeling. The t-copula CDF is given by [27]: 

(7)
1 1

1 2

1 2 n

1
1 2t (U ) t (U )

2

C(U , U ,..., U )
1( ) X P X2... 1 dX

( ) ( ) P
2

− −
ν ν

ν+
−

−∞ −∞

=
ν +

Γ ′⎛ ⎞
+⎜ ⎟ν ν⎝ ⎠Γ πν

∫ ∫
 

where, ν  is the degree of freedom, determined from the 
data processing. As the ν  increase, the t-distribution 
approaches to the normal distribution.is In (8), the upper 
limit of the integrations, 1

1t (u )−
ν , represents the inverse 

CDF of standard t-distribution and P is linear correlation 
matrix. In bivariate case, the correlation coefficient is 
the off-diagonal element of the correlation matrix. By 
changing this parameter, the correlation between X 
samples is changed. The contour plot for a bivariate 
standard t-copula CDF has been plotted in Fig. 5 with 
different correlation degrees. 

With the help of the inverse copula function, one 
dimension joint CDF samples can be transformed into a 
bivariate or multivariate marginal CDF. By identifying 
the inverse marginal CDF, the correlated samples can be 
generated. Copula functions separate the correlation 
structure from the marginal distribution [28]. 
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Fig. 5 t-Copula CDF for correlation coefficient (a) -0.5, (b) 0 
and (c) 0.5. 
 
 

Any marginal distribution function, e.g. Wiebull and 
normal distributions, can be used to generate the joint 
distribution. In empirical studies, the marginal 
distribution can be extracted from the real data and used 
in the copula modeling approach. In Fig. 6 copula 
method is used to model the actual wind and load 
samples. The correlation coefficient in copula function 
is adjusted based on actual data, which is around 0.4. 
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Fig. 6 Simulated Samples for correlation coefficient 0.4. 
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Fig. 7 Simulated Samples for correlation coefficient (a) -0.5, 
(b) 0 and (c) 0.5. 
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Comparison between Figs. 6 and 4 confirms that the 
copula modeling can sufficiently represent the actual 
behavior of the wind speed and load. These samples 
tested by the paired-sample Kolmogorov-Smirnov test 
which is a statistical test used to determine whether two 
sets of data arise from the same or different 
distributions. The test method has been presented in 
[29]. By changing the correlation coefficient, different 
sets of the samples can be generated. In Fig. 7, three 
different scenarios for the wind speed and load 
correlation (0.5, 0 and -0.5) have been simulated. These 
simulations have been conducted with the help of 
Copula CDF functions, shown in Fig. 5. 
 
5 Case Study and Simulation 

To evaluate the proposed method, the RBTS is used 
in this paper [30]. The single line diagram of the test 
system is shown in Fig. 8. The original RBTS has five 
different conventional units, with the total generation 
capacity of 240 MW, and the system peak load of 185 
MW. In this paper, it is assumed that the load at buses 
are fully correlated with the same load distributions. 
The Load distribution is considered to be same as the 
distribution presented in section 3.1. It is a simplifying 
assumption to reduce the calculation cost. The wind 
speed distribution is obtained based on the data 
described in section 3.2. The correlation for these sets of 
samples is adjusted to generate different scenarios, 
based on the method described in section 4. The 
accuracy of the simulation depends on the WLC 
modeling which has been addressed by the copula 
modeling approach in this paper. Two different 
reliability indices are used in this paper, including the 
LOLP and the EENS. 
 
6 Simulation Result 

In this section, three different WTGs with the 
capacity of 10, 20 and 30 MW are added to bus #2 in 
the original test system. As the effect of the correlation 
coefficients on the system reliability indices is the main 
concern in this section, the WTGs’ FOR is set to zero 
for the simplicity in analysis of the system behavior. 

For each WTG, the correlation with the load is 
changed in the model and the effect is compared. The 
obtained results are based on 10000 samples. MCS 
samples for a given accuracy level is independent of 
system size [31]. For relaxing some computational 
burdens, samples are discretized in eight steps. Similar 
to [4], branches and transmission network are 
considered to be fully reliable. All possible 
combinations of the conventional generator’s status, up 
to three outages, are considered at each step. 
 

6.1  Effect of WTG on System Reliability Indices 
It is obvious that adding a generating unit will 

improve system reliability. For conventional units, this 
improvement is related to the unit size and FOR, but the 
advantage of WTGs is adversely affected by the wind 
speed probability and its correlation with the load. 

 
Fig. 8 Single Line Diagram of the RBTS. 
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(b) 

Fig. 9 Relibility Indices vs Correlation Degree for RBTS 
Associated with WTGs (a: EENS, b: LOLP). 
 
 

Obviously, high correlated wind speed and load, 
indicate more generated power in the peak load period, 
which decreases the risk of the loss of load. This is 
confirmed by the downward trend in the system EENS, 
shown in Fig. 9, where EENS decreases with a higher 
correlation degree. In case of zero-MW WTG (no wind 
power generation), the LOLP and EENS are expected to 
be constant. 
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However, the variations in Fig. 9 may be regarded as 
the uncertainty in load modeling. The average LOLP 
and EENS for this case are 41.9149 10−×  and 15.3886 
MWh/year, respectively. The negative correlation 
decreases the benefits of the WTG on the reliability 
indices. For the correlation coefficient of -0.6, the 
system experiences a small improvement in the 
reliability due to the WTG capacity increment. 

With higher correlation coefficients, the reliability is 
improved. However, with the correlation more than 
+0.4, the capacity of wind generation is the main factor. 
In this case, it is similar to adding conventional units 
with specified FOR. In an unreal scenario, where wind 
speed and load are fully correlated (not dependent), the 
WTG could be modeled by a conventional unit. A 
conventional unit has full dependency on the load (and 
hence they are fully correlated). 
 

6.2  ELCC Calculation for WTGs 
To calculate the ELCC, the bus loads are increased 

until the reliability indices return to the original 
system’s values. 
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Fig. 10 Relibility Indices changes by load increment in 
different wind – load correlation (a) EENS (b) LOLP 

Table 1 ELCC for different correlation coefficient. 
Correlation 
Coefficient 

Based on 
EENS index 

Based on 
LOLP index 

-0.50 1.29 6.38 
-0.40 1.04 5.80 
-0.30 2.83 11.25 
-0.20 5.19 15.15 
-0.10 5.06 15.08 
0.00 5.01 12.92 
0.10 10.03 15.56 
0.20 10.23 15.45 
0.30 10.01 15.48 
0.40 15.30 16.27 
0.50 17.49 17.57 
0.60 18.14 17.74 
0.70 21.40 20.18 

 
 

Peak load value in buses 2 through 6 has been 
increased by 1 MW steps. In other words, the system 
peak load has increased by 5 MW steps. In each step, 
the system indices are recalculated and compared to 
their original values. Incremental changes in the EENS 
and LOLP indices are shown in Fig. 10, respectively, 
for a 30-MW WTG. 

As mentioned in section 2.2, the ELCC equals to the 
load value added to the system and restores the system 
reliability indices back to their original values (i.e. 
maintains a constant level of LOLP and EENS). The 
EENS and LOLP Indices can be used for the ELCC 
calculation [4]. The ELCC is obtained when these 
indices are equal to the original system values. The 
ELCC values, calculated by the interpolation based on 
EENS and LOLP separately, are presented in Table 1. 

The results of Table 1 are also is shown in Fig. 11. 
As it shown in Fig. 11, in case of negative correlation, 
use of the LOLP index for the ELCC calculation is 
optimistic. In case of the negative correlation, the peak 
system load cannot be served. With higher correlation 
degrees, more wind energy is injected during the peak 
load interval as demonstrated by Fig. 11, where two 
curves, obtained based on the LOLP and EENS indices, 
converge together. 
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Fig. 11 ELCC vs. Correlation degree in RTBS Associated 
with 30 MW WTG. 
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7 Conclusion 
This paper proposed a method for modeling wind 

speed and load correlation in order to analyze the effect 
of the wind speed and load correlation on the WTG’s 
ELCC. Due to the different marginal distributions of the 
wind speed and load and non-linear correlation between 
them, common methods such as joint normal or 
Choleskey transformation cannot be applied properly to 
this problem. Hence, in this paper the Copula and 
Monte Carlo techniques were employed for modeling 
on the wind speed and load correlation. As the main 
contribution of this paper, the copula modeling 
technique was employed to generate the joint 
distribution functions from the known marginal 
distribution functions such as, Wiebull or normal 
distribution. However, the empirical distributions can be 
directly used for the historical data. It was shown that 
the proposed method is able to simulate different 
scenarios and can be used for various case studies. 
Considering the mathematical and statistical basis and 
rich academic and empirical researches on the copula 
functions and modelling, this method can be optimized 
for better performance in the specified cases. 

In this paper, different types of the correlation 
between load and wind speed was modeled. In the 
simulation study on the RBTS, having added a WTG to 
the system and adjusted the load and wind speed 
correlation, the ELCC was calculated based 
on maintaining a constant level of the EENS and LOLP. 
The simulation results clearly indicated the importance 
of the correlation coefficient between load and wind 
speed. This was demonstrated in the ELCC calculation 
for the WTGs. The result showed the ELCC is quite 
different when the correlation between wind speed and 
load is changed. This issue should be considered by the 
power system planners in wind energy deployment and 
WTG placement problems. 
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