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Abstract: Automatic recognition of speech emotional states in noisy conditions has 
become an important research topic in the emotional speech recognition area, in recent 
years. This paper considers the recognition of emotional states via speech in real 
environments. For this task, we employ the power normalized cepstral coefficients (PNCC) 
in a speech emotion recognition system. We investigate its performance in emotion 
recognition using clean and noisy speech materials and compare it with the performances of 
the well-known MFCC, LPCC, RASTA-PLP, and also TEMFCC features. Speech samples 
are extracted from the Berlin emotional speech database (Emo DB) and Persian emotional 
speech database (Persian ESD) which are corrupted with 4 different noise types under 
various SNR levels. The experiments are conducted in clean train/noisy test scenarios to 
simulate practical conditions with noise sources. Simulation results show that higher 
recognition rates are achieved for PNCC as compared with the conventional features under 
noisy conditions. 
 
Keywords: Noisy Acoustic Condition, Noise Robust Auditory Feature, Power Normalized 
Cepstral Coefficients (PNCC), Speech Emotion Recognition. 

 
 
 
1 Introduction1 
The human speech conveys different information 
pertaining to the message, speaker, language, emotion, 
and so on. Among other information, the same textual 
message would be conveyed with different meanings by 
incorporating appropriate emotions. This implies the 
need to develop speech processing systems that can 
process emotions along with the message. Automatic 
recognition of human emotions from speech signal is a 
very active research topic which has attracted recently 
much attention in many fields such as speech 
processing, pattern recognition and artificial 
intelligence. 

Most previous approaches in the speech emotion 
recognition (SER) area have focused on detecting 
emotions in clean speech which was recorded in a quiet 
acoustical conditions [1-3]. However, the human 
auditory system is able to perceive emotions even in 
adverse noisy environments. In recent years, robust 
emotion recognition in noisy conditions has become an 
important research topic in the emotional speech 
recognition area, because in these scenarios emotional 
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speech signals are usually disturbed with different noise 
types, causing the performance of such recognizing 
systems to decrease. 

The present methods of robust speech emotion 
recognition can be classified into three main categories. 
In the first category, some of the efforts in this field are 
constrained to simple feature selection methods. 
Schuller et al. [4] employed a fast information gain 
ratio–based feature selection approach to find the 
suitable feature subsets from a large acoustic feature set 
according to the noise situation. In order to find the 
most appropriate features for speech emotion 
recognition in the presence of babble noise with 
different signal-to-noise ratios, Karimi and Sedaaghi, 
extracted 286 features from speech utterances of two 
emotional speech datasets in German and Persian [5]. 
Then, the best features were selected using different 
filter and wrapper methods. To reduce the influence of 
noise, the authors in [6, 7] used a feature dimensionality 
reduction method, called enhanced Lipschitz 
embedding.  

In the second category of the methods for robust 
SER, the focus is on speech emotion classifiers. In [8], 
by using a weighted sparse representation model based 
on the maximum likelihood estimation (MLE), an 
enhanced sparse representation classifier (enhanced-
SRC) was proposed for robust emotion recognition in 
noisy speech. The proposed classifier was used to 
perform spoken emotion recognition, and its 
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performance was investigated on both clean and noisy 
emotional speeches. 

In the third category, the efforts focus on feature 
extraction. In [9], the Teager-energy-based Mel-
frequency cepstral coefficients (TEMFCC) was 
proposed for automatic speech emotion recognition 
(ASER) in noisy environments.  

The above-mentioned studies reflect the fact that 
most studies in robust SER are constrained to simple 
feature selection methods. These studies often review 
the many features to obtain an optimal set of features 
with the highest recognition rate for a particular testing 
environment. These brute-force methods seem to work, 
but they only evaluate recognition performance under 
matched conditions, where the test data is under the 
same noisy condition as the training data. In addition to 
this, in most of these works, only one or two types of 
noises are considered. Undoubtedly, the performance of 
these methods decreases with changes in the test 
environment. In contrast to the feature selection 
approaches for robust SER, very little work has been 
done in the field of feature extraction to classify speech 
emotions in noisy conditions. Feature extraction is one 
of the most critical aspects of any successful speech 
emotion recognition system which deserves a detailed 
investigation.  

Many of the systems developed for automatic 
speech, speaker, and emotion recognition, and related 
research fields are based on variants of the following 
types of features: Mel-frequency cepstral coefficients 
(MFCC) [10, 11], perceptual linear prediction (PLP) 
coefficients [12], and linear prediction cepstral 
coefficients (LPCC) [13, 14]. However, it is well 
established that their performance degrades severely 
when there is a mismatch between the training and 
testing conditions, typically due to background noise. 
Recently, a new feature extraction algorithm, called 
power normalized cepstral coefficients (PNCC) has 
been introduced [15, 16] that is based on auditory 
processing. As described in several papers, the PNCC 
has been shown to provide better speech recognition 
accuracy than the other algorithms such as MFCC, zero-
crossing peak amplitude [17], RelAtive SpecTrAl 
perceptual linear prediction (RASTA-PLP) [18], and 
perceptual minimum variance distortionless response 
[19], particularly in mismatched training conditions [15, 
20, 21]. 

In this paper, we evaluate and compare the 
performance of the PNCC against conventional acoustic 
features such as the MFCC, LPCC, RASTA-PLP, and 
also newly proposed TEMFCC feature [9] by artificially 
adding 4 types of noises at different levels to the speech 
signal and then computing their recognition accuracy. 
Since there is not any published or reported work for 
employing the PNCC in the field of speech emotion 
recognition, this work represents first attempt that 
develops a speech emotion recognition system based on 
the PNCC and performs a comprehensive comparative 

evaluation with other known features under different 
types and levels of noises.  

To generalize the results and evaluate the robustness 
of different speech features according to the spoken 
language, we use 2 speech corpora in 2 different 
languages; Berlin emotional speech database (EMO 
DB) [22] and Persian Emotional Speech database 
(Persian ESD) [23]. 

The organization of the paper is as follows: Section 
2 reviews emotion recognition system and its building 
blocks. The feature extraction algorithm as well as the 
classification procedure are presented in this section. An 
explanation of the datasets used in the experiments and 
the classification performance of these features under 
clean and noisy conditions are investigated in Section 3. 
Finally, Section 4 gives the concluding remarks. 
 
2 Method 

2.1 General structure of the SER 
A basic emotion recognition system, as shown in 

Fig. 1, consists of two steps: feature extraction and 
emotion classification. Feature extraction is concerned 
with extracting suitable features efficiently 
characterizing different emotions from speech signals 
and the second step aims to identify the underlying 
emotions of speech utterances. 

For classification purposes, some pre-trained class 
models are required. Therefore, each emotion 
recognition system has a training phase in which the 
class models are trained. In a conventional emotion 
recognition system (i.e., clean train/clean test scenario), 
clean speech is used for both of training and testing. 
However, in real conditions (i.e., noisy conditions), 
clean speech is used for training, but non-clean (e.g., 
noise contaminated) speech is used for testing. In this 
paper, clean train/noisy test scenario is considered in the 
experiments to study the robustness of features in noise. 

 
2.2 Feature extraction 

In this step, we follow the standard procedure to 
extract the MFCC [10], LPCC [24],  RASTA-PLP [18], 
and also TEMFCC [9]. Regarding our focus on the 
PNCC, its feature extraction algorithm is discussed in 
detail below. 

 
2.2.1 Power normalized cepstral coefficients (PNCC) 
The structure of the PNCC extraction algorithm is 
illustrated in Fig. 2. The processing stages of this 
algorithm are as follows [15]. First, a pre-emphasis filter 
of the form 1( ) 1 0.97H z z is applied to the input 
signal. Then, a short-time Fourier transform (STFT) of 
the signal is computed using the Hamming windows of 
duration 20 ms with 10 ms between frames, and a DFT 
size of 1024. The computed squared magnitude of STFT 
outputs are then weighted by a 40-channel Gammatone 
filterbank whose center frequencies are  linearly  spaced 
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Fig. 1 Block diagram of emotion recognition system. 

in equivalent rectangular bandwidth (ERB) [25] 
between 200 Hz and 8000 Hz. 

The next processing stage concerns the “Medium-
Time Processing”. Here, a long-duration temporal 
analysis (using e.g., 5 frames) is performed to estimate 
the noise floor level and to subtract it from the 
instantaneous power of the input signal. The output of 
the “Medium-Time Processing” is a transfer function 
that modulates the original signal in the “Time-
Frequency Normalization” stage. Then, the “Mean 
Power Normalization” stage normalizes the signal 
power by dividing the input by a running average of the 
overall power. 
At the next stage, a power function nonlinearity with 
exponent 1/15 is applied to the input. Experiments 
demonstrated that incorporating the power function non 
linearity improves the recognition accuracy [26]. The 
final stages of the PNCC extraction algorithm are the 
computation of the DCT and the mean normalization, 
respectively. 

In this paper, the PNCCs are employed as a new 
auditory feature in the emotion classification system. 
 

2.3 Classification procedure  
Here, the simple maximum likelihood (ML) 

estimation is used as the classification method. This 
method requires some pre-trained class models. In the 
training  phase,   for   each   emotional   state ,  feature   

 

 
 

vectors extracted from the training utterances are used 
to obtain a Gaussian mixture model (GMM), . During 
the test phase, the models are employed to decide 
underlying emotion using simple likelihood estimation. 
Let Y represent the speech feature vector obtained from 
the input signal. Then, the recognized emotion for the 
input signal is the one that maximizes the likelihood 
function ( | )p Y : 
ˆ arg max ( | )p Y                                                (1) 

 
3 Experiments and evaluations 

3.1 Experimental setup 
To verify the robustness and effectiveness of the 

PNCC feature, the performance of different features are 
evaluated in acoustic multi-style emotion identification 
experiments. Here, a 5-fold cross-validation scheme is 
used, and the average classification results are 
computed. To this aim, each classification model is 
trained on 80% of the total data and tested on the 
remaining 20%. This process is repeated 5 times 
(corresponding to 5 folds), each with a different 
partitioning seed to account for variance between the 
partitions. 

The analysis and experimental results are presented 
under two different conditions. In one experimental 
condition, emotion recognitions are performed on clean 
speech utterances from the speech emotional databases. 
In the second experimental condition, the experiments 
are conducted on the noisy speech when 4 different 
types of noise, including Babble, White, Speech Shaped 
Noise (SSN), and Factory (Noisex-92 [27]), are added 
to each utterance at various signal-to noise ratios 
(SNRs). The effect of noise addition is investigated in 5 
dB steps, starting from the -10 dB SNR and terminating 
at 20 dB SNR.  

The block diagram shown in Fig. 1 is used as the 
emotion recognition system, in which the recognition 
performances of the MFCC, LPCC, RASTA-PLP, and 
TEMFCC are evaluated and compared with that of the 
PNCC Here, the speech frames with the duration of 20 
ms at a frame rate of 10 ms are used to extract 13 dime- 

Fig. 2 The structure of the PNCC feature extraction algorithm. 
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nsional features. In addition to this, and  features 
are used to construct a final 39-dimensional feature 
vector. For the extraction of the PNCC, its reference 
implementation and for the RASTA-PLP, MFCC and 
LPCC extraction, the most commonly used 
implementations are used [28-30]. 

The GMMs used for emotional models are 
composed of 32 components with diagonal covariance 
matrices. 

 
3.2 Databases 

To generalize the results, we use 2 speech corpora in 
2 different languages: The Berlin database of German 
emotional speech (EMO-DB) which has been developed 
in the Institute for Speech and Communication, at the 
Berlin Technical University [22] and the Persian 
emotional speech database (Persian ESD) which has 
been recorded in a professional recording studio in 
Berlin, Germany, under the supervision of a linguist 
expert and an acoustician [23]. The detailed 
specifications for both of the databases is shown in 
Table 1.  

 
3.3 Experimental results 

3.3.1 Emotion recognition under clean conditions 
Fig. 3 represents the average emotion recognition 

accuracies achieved with various features over all 
emotional states in clean conditions for both of the 
EMO and Persian ESD databases. As the figure shows, 
the PNCC, LPCC, and MFCC features lead to almost 
the same rates, for each database. 

All of cepstral-based features (i.e., all except the 
RASTA-PLP) were implemented and evaluated with 
and without cepstral mean normalization (CMN). The 
CMN (also called cepstral mean subtraction (CMS)) is 
the well-known approach employed to decrease the 
effects of channel variability in speaker and speech 
recognition systems. The principle behind cepstral mean 
normalization is based upon the behavior of the 
cepstrum under the convolution operation which 
generates a constant offset in the cepstral domain for 
linear channel distortion, and the assumption that the 
channel filter is approximately invariable over the 
duration of the utterance [31].  The CMN is the final 
stage in a cepstral-based feature extraction. In Fig. 3, the 
results of emotion recognition are shown for features 
implemented with and without the CMN process. As 
shown, all features reach their maximum performances 
in recognition rates when implemented without the 
CMN. This means that using the CMN does not 
preserve accurately the emotional content of a speech. 
The difference between the results with and without the 
CMN, varies per feature. The maximum variation 
happens to be for the LPCC whereas the minimum is for 
the PNCC which means that the PNCC is less affected 
by using the CMN.  

 
Table 1: Specifications of emotional speech databases used in 
the experiments. 

Parameters Values 
EMO DB Persian ESD 

Number of 
Utterances 

Anger 127 62 
Boredom 69 - 
Disgust 46 58 
Fear 69 58 
Happiness 71 58 
Neutral 79 180 
Sadness 62 56 
Total 535 472 

Number of Speakers 10 2 
Number of Sentences  10 90 
Sample Rate 16 kHz 44.1 kHz 
Language  German Persian 
 
In this paper, the acoustical features are 

implemented without incorporating the CMN process to 
achieve high recognition rates.  

As the results show, in general, the recognition rates 
obtained by 5 features in the case of the EMO DB are 
lower than the rates obtained with the Persian ESD. This 
can be justified by considering the number of speakers 
used in the generation of databases. In contrast to the 
EMO DB with 10 speakers, in the Persian ESD, 2 
speakers were used for the generation of emotional 
speech utterances. Therefore, a speech emotion 
recognition system based on the Persian ESD is more 
speaker-dependent than the system employing the EMO 
DB.        

To explore the recognition accuracy per emotion in 
clean conditions, the confusion matrices for both of the 
databases are illustrated for 5 different features in , 
where the bold numbers represent the recognition 
accuracies per emotion. It is  observed  that,  in  general,  

 

Fig. 3 Recognition performances obtained by 5 different 
features in clean conditions for the EMO DB and Persian ESD 
databases (Note: “wcmn” stand for without cepstral mean 
normalization). 
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Real Emotions  
Classified Emotions 

Persian ESD EMO DB 
An. Di. Fe. Ha. Ne. Sa. An. Bo. Di. Fe. Ha. Ne. Sa. 

Anger 98 0 2 0 0 0 86 0 6 2 6 0 0 
Boredom - - - - - - 1 84 4 0 0 5 6 
Disgust 0 100 0 0 0 0 0 0 84 3 0 6 7 

Fear 0 0 100 0 0 0 2 2 2 51 14 17 12 
Happiness 0 0 4 90 6 0 27 2 3 10 53 3 2 

Neutral 0 0 0 0 100 0 0 16 2 0 0 78 4 
Sadness 0 0 0 4 2 94 0 2 0 0 0 3 95 

Average Classification Accuracy: 97% Average Classification Accuracy: 75.85% 

M
FC

C
 F

ea
tu

re
 

Anger 88 0 4 6 2 0 91 0 6 3 0 0 0 
Boredom - - - - - - 0 70 3 0 0 17 10 
Disgust 0 100 0 0 0 0 2 10 84 0 0 4 0 

Fear 0 0 100 0 0 0 5 1 2 60 8 15 9 
Happiness 0 0 4 96 0 0 35 2 3 7 46 5 2 

Neutral 0 0 0 0 100 0 0 13 2 0 0 82 3 
Sadness 0 0 0 10 0 90 0 0 0 0 0 0 100 

Average Classification Accuracy: 95.67% Average Classification Accuracy: 76.15% 

LP
C

C
 F

ea
tu

re
 

Anger 94 0 6 0 0 0 94 0 0 1 5 0 0 
Boredom - - - - - - 0 67 2 0 0 18 13 
Disgust 0 98 2 0 0 0 4 0 82 0 0 8 6 

Fear 0 0 96 0 0 4 8 4 6 65 2 7 8 
Happiness 0 0 0 88 4 8 37 0 2 5 54 0 2 

Neutral 0 0 0 0 100 0 2 9 3 8 2 74 2 
Sadness 0 0 0 0 0 100 0 4 0 0 0 2 94 

Average Classification Accuracy: 96% Average Classification Accuracy: 75.71% 

R
A

ST
A

-P
LP

 F
ea

tu
re

 Anger 88 0 6 6 0 0 82 0 1 2 7 4 4 
Boredom - - - - - - 0 82 4 0 0 6 8 
Disgust 0 100 0 0 0 0 0 15 76 0 0 2 7 

Fear 2 0 98 0 0 0 9 4 7 37 13 9 21 
Happiness 4 0 2 90 4 0 46 0 2 10 33 7 2 

Neutral 0 0 0 0 100 0 0 27 4 2 2 56 9 
Sadness 0 2 0 16 2 80 0 2 0 0 0 0 98 

Average Classification Accuracy: 92.67% Average Classification Accuracy: 66.3% 

TE
M

FC
C

 F
ea

tu
re

 

Anger 74 0 4 0 22 0 86 2 5 0 5 2 0 
Boredom - - - - - - 0 77 5 2 0 11 5 
Disgust 0 100 0 0 0 0 0 2 86 4 0 6 2 

Fear 0 0 100 0 0 0 12 2 4 70 0 10 2 
Happiness 0 2 10 80 2 6 37 0 6 5 42 8 2 

Neutral 0 0 0 0 100 0 0 25 6 7 0 62 0 
Sadness 0 0 0 0 2 98 0 5 0 0 0 5 90 

Average Classification Accuracy: 92% Average Classification Accuracy: 73.3% 

Table 2: Emotion recognition accuracies (%) obtained by different features for the EMO DB and Persian ESD 
databases in clean conditions. 
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the PNCC, MFCC, and LPCC features lead to nearly the 
same recognition rates for both of corpora. In the case 
of the Persian ESD, the recognition results are almost 
the same for Disgust, Fear, and Neutral states, but they 
differ for Anger, Happiness, and Sadness. For Anger, 
the highest rate is obtained by the PNCC (98%), as 
compared with the MFCC attaining the lowest 
recognition rate (88%). Among other features, the 
MFCC and LPCC result the highest accuracy for 
Happiness and Sadness, respectively. For the EMO DB, 
all features attain the worst result for Fear and 
Happiness emotional states. The table shows that almost 
the most confusion occurs for Happiness in which about 
one-third of the utterances are recognized as anger. 

The results of  show clearly that the performances of 
features for both corpora are different. For example, 
with the Persian ESD the highest rates for Anger are 
achieved by the PNCC, but in the case of the EMO DB, 
the highest recognition rate is obtained by the LPCC. 
This can be justified by the differences in both 
languages, in which emotions are conveyed and 
perceived differently. 

On average, the accuracy obtained by the PNCC 
with the Persian ESD is 97% in clean conditions, which 
is 1.33% and 1% higher than that achieved with the 
MFCC and LPCC, respectively. For the EMO DB, the 
PNCC results in an average accuracy of 75.85% where 
the performance is 0.3% lower than the MFCC and 
0.14% higher than the LPCC. 

 
3.3.2 Emotion recognition under noisy conditions 

 To evaluate the performance of the PNCC for 
emotion recognition task in noise, 4 different types of 
noises, including the Babble, White, SSN, and Factory 
are added to each utterance from the 2 speech corpora at 
various input SNRs from -10 dB to 20 dB in 5 dB steps.  
and 5 represent the average recognition results obtained 
at different SNR levels for the Persian ESD and EMO 
DB, respectively. In the case of using the Persian ESD, 
it can generally be seen from  that at each selected SNR 
level, the PNCC performs the best among all features 
used. Specifically, at SNR values from 0 dB to 20 dB 
the PNCC outperforms significantly other features. At 
low SNRs, the accuracy of the PNCC is, generally 
speaking, close to other features, but again performing 
the best in the Babble and White noise conditions.   

Fig. 5 shows the recognition results when the EMO 
DB is used in the experiments. Here, the PNCC still 
achieves superior recognition performance as compared 
to the MFCC, LPCC, RASTA-PLP, and TEMFCC.  

In summary, as the results of Fig. 4 and Fig. 5 show, 
in general, the PNCC outperforms other features in the 
sense of recognition rates. Furthermore, it is observed 
that the LPCC acts close to the PNCC for the Babble 
and SSN noises. For other three features, namely, the 
MFCC, RASTA-PLP, and TEMFCC, the performance 
varies between the databases used. Based on the results 
for   the   Persian  ESD,   MFCC,   RASTA-PLP,   and  
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Fig. 4 Recognition rates (R.R.) obtained by 5 different features under 4 different noise types as a 
function of input SNR for the Persian ESD. 
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TEMFCC behave almost the same. However, in case of the 
EMO DB, the performance of these features are more 
distinguishable. It can be observed clearly from Fig. 5 that, the 
RASTA-PLP has the worst performance in the sense of noise 
robustness and the MFCC and TEMFCC achieve nearly the 
same rates.   

Experimental results demonstrate the effectiveness 
of the PNCC for robust emotion recognition in noise. 
This is due to incorporating different processing stages 
in the implementation of the PNCC, including the use of 
a power-law nonlinearity, employing a noise-
suppression algorithm based on asymmetric filtering, 
and using a module that accomplishes temporal 
masking. 

 
4 Conclusion 

In this paper, we addressed the implementation of an 
automatic emotional-state recognition system using the 
PNCC feature as a noise robust feature extracted from 
an audio signal. The emotion recognition performance 
of this feature was compared with those of the most 
commonly used features MFCC, LPCC, RASTA-PLP, 
and also TEMFCC. The experiments were carried out 
using the EMO DB and Persian ESD speech corpora. 
The evaluations were performed under two acoustic 
conditions: clean condition and noisy condition in the 
presence of 4 different types of noises, including the 
Babble, Factory, SSN, and White at various input SNR 
levels. Under the clean experimental condition, the 

simulations show that all of the features, (with the 
exception of RASTA-PLP) reach their maximum 
recognition performances when implemented without 
the CMN processing. In this acoustic condition, the 
performance of the PNCC (97% for Persian ESD, 
75.85% for EMO DB) was approximately the same as 
for the MFCC (95.67% for Persian ESD, 76.15% for 
EMO DB) and a little bit better than the LPCC (96% for 
Persian ESD, 75.71% for EMO DB) but it was 
considerably higher than the recognition rates for the 
RASTA-PLP and TEMFCC. For the noisy condition, 
the PNCC provides substantial improvements (maximal 
improvement of 45 % for white noise and 20 % for 
babble, in the case of EMO DB) in the emotion 
recognition accuracy compared with the MFCC, 
RASTA-PLP, LPCC, and TEMFCC. The results of 
experiments conducted for EMO DB and Persian ESD 
databases approve the robustness and effectiveness of 
the PNCC for speech emotion recognition in both clean 
and noisy conditions. As future work, the authors plan 
to consider more auditory-based features for the 
representation of emotional states and more realistic 
scenarios, including reverberation for the task of 
emotion classification.  
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