
Abstract: Condition monitoring and protection methods based on the analysis of the machine's current are

widely used according to non-invasive characteristics of current transformers. It should be noted that, these

sensors are installed by default in the machine control center. On the other hand, condition monitoring based

on mathematical methods has been proposed in literature. However, they are model based and are too com-

plex. Artificial neural network (ANN) methods are robust and less model dependent for fault diagnosis when

the fault signature can be directly achieved using the sampling data. In this procedure, the state of internal

process will be ignored. Therefore, generalized regression neural network (GRNN) based method is pre-

sented in this paper that uses negative sequence currents (calculated from the machine's currents) as inputs

to detect and locate an inter-turn fault in the stator windings of the induction motor. Turn-to-turn fault by

changing the contact resistance and various numbers of shorted turns for realizing the fault severity has been

modeled by Matlab/Simulink. The simulation and experimental results show that the proposed method is

effective for the diagnosis of stator inter-turn fault in induction motor under the supply voltage unbalances.

Keywords: Diagnosis, Induction machine, turn-to-turn fault, GRNN, non-invasive method, negative se-

quence current.
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1. Introduction 

Induction motors are widely used in a variety of appli-

cations as a means of converting electric power to me-

chanical work and range in size from a few watts to 10000

hp. These motors, indeed, are the workhorse of industrial

plants [1]. Their failure and unexpected downtime can

cause severe damage to the machine, interruption of pro-

duction, and pursuing economic loss. Therefore, a condi-

tion monitoring system is essential for modern industrial

plants and manufacturing systems, which have to work

continuously for extended hours [2]. Electrical faults of

the induction motor can be classified into the rotor and

stator faults and the most common electrical failure in this

motor are stator-related faults, which are about 30%-40%

[3], [4]. When inter-turn fault happens, the faulted turn

will act as the secondary winding of an autotransformer

and a very large circulating current will flow in the

shorted turns. Therefore, it is very important to have a

careful analysis of the internal faults in induction motors

to increase their useful life and reliability.

Consequently, during the last two decades, substantial

investigations have been performed based on many fault

indicators for the development of various methods in the

area of fault diagnosis of electrical machines. Reference

[4] classified the most important of these indicators as

electromechanical, like magnetic leakage and linkage

fluxes, currents, voltages, partial discharges, surges and

mechanical, like acoustic, speed fluctuations and vibra-

tions. It is worth mentioning that in fault diagnosis sys-

tems, the sensing and analysis of fault indicator signals

that include specific information is very important. When

the most suitable monitoring method is selected, a variety

of factors need to be considered. In the following, the

most significant of these factors are presented [4], [5]:

The sensor should be simple and non-invasive. Fur-

thermore, the sensor, measurement and fault diagnosis

systems must be reliable and consistent. It should be

noted, the severity of the fault and remaining run-life of

the machine need to be quantified. Another point worth

highlighting is, it is very hard and, in most situations, im-

practical to satisfy all mentioned criteria, due to the com-

plexity of the failure mechanisms and the nature of the

fault. On the other hand, since the current transformers

are usually installed by default in the machine control cen-
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ter for different purposes, the monitoring schemes that de-

pend on the study of these inputs (global external vari-

ables) are mostly being notified [4]. 

In addition, this popularity is since the current sensors

are entirely non-invasive. It has been proven that the con-

dition monitoring of electrical machines based on current

signature analysis method is an efficient technique for

fault detection in industrial plants [6], [7]. This technique

has been used successfully for the detection of broken

rotor bars [8]–[10], eccentricity [11], bearing faults [12],

and inter-turn short circuit faults [13]. It should be noted,

a variety of methods are proposed to analyze internal

faults based only on the global external variables such as

the stator current signature analysis [14]-[16]. Internal

fault diagnosis by negative sequence current or impedance

is usual methods used due to the significant increase of

these components under internal fault [17]. In fact, turn-

to-turn faults in stator winding of induction motor can be

detected by monitoring of the negative sequence current.

More details about this indicator have been explained sec-

tion 2. 

In [18], the monitoring of the third harmonic of the

motor supply current was also found to be an effective

technique for the detection of the presence of stator faults.

However, some motors usually have appreciable levels of

inherent asymmetries and it may be possible that the

residual asymmetries of the motor may lead to the appear-

ance of the third harmonic component in the supply cur-

rents, even when no faults are present in the motor.

Therefore, this technique is only recommended when a

high degree of inherent asymmetry of the motor is not ex-

pected [4]. Furthermore, reference [17] proposed the pos-

itive and negative sequence third harmonics (±3f) of line

current as a criterion for stator inter-turn fault detection.

On the other hand, Artificial Intelligence (AI) methods

for fault diagnosis and remaining useful life prediction of

electrical machines have received considerable attention

in recent years [19]. Different kinds of fault criteria have

been used as ANN inputs in many investigations based on

these techniques. The use of three currents [20], three

voltages [21], three-phase shifts between the current and

the voltage [22], and the magnetic flux linkages [23], [24]

were reported. 

This popularity is due to their generalization ability

during fault detection that means ANNs are able to do sat-

isfactorily even for unobserved fault. In addition, the sec-

ond is their capability to be trained from the patterns of

the relationships between the fault signatures and the re-

lated operating situations of the system. It is worth men-

tioning that in this procedure, the state of internal process

is ignored. Consequently, the ANN method is robust and

is an approach less model dependent for fault diagnosis

when the fault signature can be directly achieved using

the sampling data. In the other words, AI methods are of

great useful methods in engineering to solve different dif-

ficult problems such as fault detection. These techniques

significantly improve the accuracy of fault detection.

However, the main issues raised by critics about the AI

methods are the need of these methods to a large training

time for learning the several possible combinations of the

operating scenarios of the system. Therefore, in order to

overcome the issues associated with the AI methods, a

new method based on the using of the generalized regres-

sion neural network (GRNN) has been proposed in this

paper.

It is worth highlighting that the main characteristic of

the GRNN compared to other networks is due to GRNN’s

one-pass instantaneously learning [25]. The inherently

parallel structure and the fast training procedure of the

GRNN make it suitable for fault diagnosis problems in

real time (especially when implemented on hardware sys-

tems). In this paper, a non-invasive fault indicator based

on negative sequence current for the diagnosis of turn-to-

turn stator winding fault in an induction motor is pre-

sented. In fact, negative sequence current will be

produced by various factors, including supply unbalance

and non-linearity motor effects. Therefore, before making

any decision about the machine situation from monitoring

of this criterion, negative sequence current arising from

other effects must be eliminated. The aim of this paper is

to present a reliable method with simple algorithm which

eliminates these nuisance effects. These nuisance effects

are eliminated by using GRNN in which, the state of in-

ternal process will be ignored. The proposed method does

not require the mathematical model and this makes its ap-

plication simple and straightforward.

2. Monitoring of the negative sequence current for

turn-to-turn fault detection

As stated earlier, turn-to-turn faults in stator winding

of induction motor can be detected by monitoring of the

negative sequence current. However, there are two main

concerns for this detection. The first one is the three-phase

supply voltage unbalance that generates negative se-

quence current in a healthy motor. The second one is the

non-linearity induction motor effects (saturation, rotor

static eccentricity) and load variations that also produce

negative sequence current [14]. Therefore, it is essential

to separate out the negative sequence currents arising

from supply voltage imbalance or from turn-to-turn fault

in the motor. Reference [14] classified these causes that

are capable of producing a negative sequence current.

Measured negative sequence current in the motor can be

expressed as follows [14]:

(1)

where, Isn is the negative sequence current arising from

imbalance in the supply voltage, and Imn is the negative

sequence current caused by the turn-to-turn fault in the

motor. In the following, a procedure to calculate these

mnsnn III  
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negative sequence currents has been presented. First, volt-

ages and currents of the stator in the abc reference frame

are transferred to the qd0 reference frame and ids, iqs, vds,

vqs can be obtained. Then positive and negative sequence

components of phase voltages and currents have been cal-

culated by the power decomposition method (PDT) [14].

The positive and negative sequence components can be

written as follows:

(2)

(3)

Furthermore, equivalent circuit of induction motor cor-

responds to a negative sequence component is presented

in Fig. 1 (a). In addition, Fig. 1 (b) illustrates in a healthy

motor how the negative sequence voltage Vsn affects on

the negative sequence current Isn. From Figs. 1 (a) and

(b), (4)-(6) can be derived as:

(4)

(5)

(6)

Finally, the negative sequence current caused by the

turn-to-turn fault (Imn) can be calculated as follows:

(7)

It should be noted, negative sequence current may arise

because of several asymmetries.

Consequently, these effects must be eliminated from

the negative sequence current before making any deci-

sion. In some references [14], mathematical method is

used to remove these effects from the measured negative

sequence current and various aspects of this subject under

different conditions were investigated. A brief explanation

of this method is described here.

To remove the effects according to variations in load

and voltage, it must find out how Imn changes with load

and voltage. This procedure is named characterization of

the motor. In the following, Imnl states the dependence of

Imn on load variation, and Imnv states the dependence of

Imn on voltage variation. Furthermore, behavior of Imnl

and Imnv is approximated by the positive sequence cur-

rents Ipx and Ipy respectively. Ipx estimates the active load.

In fact, Ipx is in phase with supply voltage. Ipy approxi-

mates magnetization current. In fact, Ipy represents the

effects correspond to saturation in the motor, and Ipy is in

quadrature with supply voltage. It is worth to note that,

these two components (Ipx and Ipy) represent the negative

sequence currents of the motor under healthy conditions

created by load and voltage variation, i.e. [14]:

(8)

(9)

By using the (8) and (9), Imnlv has been defined as:

Imnlv=Imnl+Imnv. Factors β0, β1, β2, λ0, λ1 and λ2 are con-

stants, which have been estimated by using the least

squares method with the collected data. Therefore, the

negative sequence current caused by turn-to-turn fault can

be written as follows:

(10)

The final fault signature is given as:

(11)

On the other hand, the dependence of negative se-

quence current on supply voltage imbalance, other non-

linear motor effects (saturation, rotor static eccentricity)

and load variations that also produce a negative sequence

current must be eliminated. For this purpose, the negative

sequence reactance can be written as [14]:

(12)

where, 1/γ0 is the fundamental value of the negative se-

quence reactance, γ1Vsn is for small dependence on Vsn,
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(b) 

Fig. 1. (a) Steady state negative sequence equivalent circuit of
induction motor. (b) Phasor diagram corresponds to negative

sequence components [14].
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term γ2sin2φn+ γ3cos2φn is related to static eccentricity,

γ4Ipx correspond to the change of  the reactance with load

and γ5I2
py correspond to the change of the reactance due

to flux saturation. Finally, by using the equations (8)-(11)

and (6), (12), the negative sequence current caused by

turn-to-turn fault can be written as follows:

(13)

It should be noted, in reference [14] it has been claimed

that this technique is capable to detect single-turn faults.

As has been noted by the authors, 2 steps are required for

this method. First, factors γ0 –γ5 are estimated under

changing supply voltage imbalance, and then, factors β0,

β1, β2, λ0, λ1 and λ2 are estimated under the situation of

load and voltage variation. In fact, a mathematical method

based on equations (8)-(13) for elimination of nuisance

effects has been proposed which will necessarily increase

the computation time required for fault diagnosis. How-

ever, it can be clearly seen that the use of this method for

detection is a complicated and time-consuming procedure

that may limit its application [17].

3. Modeling of Induction Motor

The model of a symmetrical three-phase induction ma-

chine is well-known and is presented in [1] with sufficient

details. On the other hand, turn-to-turn fault is one of the

most complicated failures to detect. In fact, the variations

of stator inductance due to turn-to-turn short circuit have

to be taken into account. 

Accurate calculation of the inductances of the faulty

windings is the key for modeling the inter-turn short cir-

cuit faults. Useful and straightforward model of an asym-

metrical induction motor having inter-turn short circuits

on the stator winding is presented in [16]. This model is

based on general motor parameters; consequently it is not

required to know detailed machine geometry or physical

layout of the machine windings. 

Two orthogonal axis models for simulation of an in-

duction machines considering asymmetrical windings and

inter-turn fault in the stator windings is presented in this

reference. The first model supposes that an induction ma-

chine has a different number of turns on each stator phase

winding. Then, in order to model turn-to-turn fault, the

second model supposes phase a (on the stator winding)

has two windings in series, including un-shorted portion

and shorted portion. In the other words, in this method

mutual interaction between neighboring portions will be

considered that is the important factor for modeling the

inter-turn short circuit faults. However, magnetic satura-

tion is not considered within this reference [16]. There-

fore, this model has been developed by considering the

saturation effect for the simulations in this paper. For this

machine with a uniform air-gap, it has been assumed that

iron saturation affects the q- and d-axis components in the

same manner, so that a common saturation characteristic

like the one shown in Fig. 2 (a) can be used for both these

components. The matrix equation governing the flux link-

age-current relationship of the machine can be expressed

as follows:

(14)

where ψ=wbλ, and wb is the base frequency at which the

reactance is computed. Furthermore,

(15)

(16)

'

'

'

'

'

'

00000

0000

00

00

or

dr

qr

os

ds

qs

'
lr

m
'
lrm

m
'
lrm

ls

mmls

mmls

or

dr

qr

os

ds

qs

i
i

i

i
i
i

     x                               
 x  x                    x   

        xxx
x

xxx
    x     xx

 
  0      0           

0      0      0          0         0    
0          0      0      0    
0             0     

 

 

)(),( '

'

'

'

lr

dr

ls

s
ds

lr

qr

ls

s
qs

xxm
s
mdxxm

s
mq XX    

 

)(

(]

2cos2sin
)[sin(

2
210

2
210

2
5

432

10
*

pypy

ppxpy

nn

snnsnnmn

II

III

I
VVII 

)( '
1111
lrlsmm xxxX  

 

 
(a) 
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Fig. 2. (a) Saturation characteristic. (b) Approximation of sat-

uration in qd components [1].
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Consequently, the currents of the stator and rotor wind-

ings can be calculated as follows:

(17)

(18)

Denoting the saturated value of the mutual flux link-

ages by the superscript, sat, the saturated value of the mu-

tual flux linkages per second in the q-axis is given by:

(19)

Grouping like terms and using (16), the above expres-

sion can be written as:

(20)

Similarly, the saturated value of d-axis mutual flux

linkage is given by:

(21)

In addition, according to Fig. 2 (b), the following rela-

tionships can be obtained.

(22)
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Fig. 3. (a)  Block diagram of the saturation module [1]. (b) Internal structure of the negative sequence current module.
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(23)

The relationship between Δψ and ψm
sat can be deter-

mined from the no-load test curve of the machine, as

shown in Fig. 2 (a). Block diagram of the saturation mod-

ule is presented in Fig. 3 (a). The part of the machine that

is affected by saturation is highlighted in this figure.

Based on the above discussions, the model of an induction

machine that is presented in [16] has been developed by

considering the saturation effect. It should be noted, by

changing the number of shorted turns and by a current

limiting resistance, the fault severity can be controlled in

the model. This model is simulated and implemented in

"Simulink" under the environment of Matlab. In this

model, there are some main modules: the park transfor-

mation module, the torque/speed module, the flux linkage

module and the negative sequence current module. For in-

stance, the internal structure of the negative sequence cur-

rent module (one of the main module in this work) is

shown in Fig. 3 (b). The content of this module is given

in equations (1)-(7).

4. Simulation and experimental results

In this section, the relation between the different neg-

ative sequence currents (In, Imn, Isn) and number of

shorted turns based on extensive tests under normal and

faulty operations have been determined.

4. 1. Structure of the stator turn-to-turn fault detec-

tion, simulation measurement

In the following, the structure of turn-to-turn fault de-

tection has been presented. First, faulty phase has been

detected by the maximum peak value in the stator current.

Then, the fault severity has been quantified based on neg-

ative sequence current criteria. The machine used in this

study is a 3 hp, 420V, 4-pole, 50 Hz. This induction motor

is a star connected, squirrel cage and has 252 turns per

phase on the stator. 

Figs. 4 (a) and (b) show the simulated RMS value of

three-phase current of the stator at no-load and full-load

under normal condition, respectively, while Figs. 4 (c) and

(d) show these RMS values with 20 shorted turns in phase

a respectively. According to Figs. 4 (c) and (d), it can be

clearly seen that turn-to-turn fault occurring on one of the

three-phases, causes a significant current appears in the

corresponding phase. In fact, in the case of a turn-to-turn

fault on one of the three-phases; the maximum peak value

in the stator current is upon the phase where the fault has

happened. With this indicator, the faulty phase can be lo-

calized. Furthermore, the effect of this fault on other stator

phase currents is smaller than the effect on current of the

faulty phase. Then in the next step, by extensive simula-

tions the relation between the different negative sequence

currents (In, Imn, Isn) and number of shorted turns have

been determined.

As representative examples of the many simulations

performed on this induction motor, some records due to

space limitations are presented in Tables 1 and 2. In fact,

the studied machine can be characterized by using these

data. These data were obtained during acceleration from

standstill to full speed. For example, negative sequence

current vs. shorted turns arising from different causes

under no-load and full-load conditions for 2.5% supply

imbalance is presented in Fig. 5 (a). According to this fig-

ure, it is obvious that the negative sequence current caused

by the turn-to-turn fault (Imn) is proportional to the num-

ber NS of shorted turns, i.e.

(24)

where k is constant and NS is number of shorted turns.

Furthermore, a zoom in on the negative sequence cur-

rent vs. shorted turns caused by different supply imbal-

ances under full-load have been presented in Fig. 5 (b).

As it can be seen from this figure, Isn is independent of

the number of shorted turns in balanced supply condition.

This is as predictable because this negative sequence cur-

rent is related to supplying imbalance.

)( NSkI mn  

22 )()( sat
md

sat
mq

sat
m  

 
(a) Under normal condition at no-load.

 

 

(b) Under normal condition at full-load.
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Furthermore, it can be clearly seen that unbalanced

supply conditions can produce a comparable negative se-

quence current and this current is approximately inversely

proportional to the shorted numbers of turns in different

supply unbalanced conditions. This means that stator turn-

to-turn faults detection under unbalanced supply voltage

conditions due to this non-linearity relationship is very

difficult. In fact, the fault diagnosis method based on neg-

ative sequence current should be able to discriminate be-

tween the effects of turn shorts and supply imbalances. It

should be noted that In, in Fig. 5 (a) is the total negative

sequence current (sum of components Isn and Imn). Fig.

5 (c) shows the Imn vs. shorted turns under different sup-

ply imbalances for full-load. Moreover, Fig. 5 (d) illus-

trates this characteristic under different load conditions.

According to these figures, Imn vs. shorted turns under

different supply imbalances and different load situation is

linear with the fault severity.

4. 2. Experimental test setup, implementation of

faults and numerical measurement

In order to validate the structure of the proposed

method in this paper, experimental data are also used. For

this aim, some tests are performed on an experimental test

 

 
(c) Under turn-to-turn fault on phase a, with 20 shorted turns

at no-load.

 
 

(d) Under turn-to-turn fault on phase a, with 20 shorted turns
at full-load.

 

 

(a) Arising from different causes for 2.5% supply imbalance.

 

 
(b) Caused by different supply imbalances under full-load.

 

 
 

(c) Caused by turn-to-turn fault under full-load.

 

(d) Caused by turn-to-turn fault for 2.5% supply imbalance.
Fig. 5. Negative sequence current vs. shorted turns.
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bed. Experimental test setup is illustrated in Fig. 6. This

test bed is designed to study the behavior of induction

motor under different stator turn-to-turn fault from both

balanced and different unbalanced supply voltages. In

fact, a usual commercially accessible motor was disas-

sembled and by rewinding its stator with several taps on

each phase, different turn-to-turn fault is produced. The

squirrel cage induction motor utilized in these tests is a

three-phase, 50 Hz, and 3 hp.

This motor is loaded by an AC generator. Designed

data acquisition card is used for sampling the stator cur-

rent signals. Serial port interface has been utilized for con-

necting the data acquisition card to the computer and these

data are communicated to the computer. Then these data

are processed and analyzed using the environment of Mat-

lab. In order to compare the experimental and the simu-

lated measurement, the some characteristics of the

experimental data for different conditions are presented

in Fig. 7. For instance, Figs. 7 (a) and (b) show the exper-

imental RMS value of three-phase current of stator with

20 shorted turns on phase a under different conditions.

Simulated one for these data is shown in Fig. 4. In addi-

tion, Figs. 7 (c) and (d) show the negative sequence cur-

rent vs. shorted turns arising from different causes under

different conditions. A similar behavior is seen in Figs. 5

(a) and (c) respectively. The small difference between the

experimental and the simulated measurement may be

caused by the following reasons. The actual machine may

have little abnormalities in assembling or construction. In

addition, internal errors of sensors, different parameters

used in simulation and measurement errors have an effect

on this difference. However, regardless of these differ-

ences, the curves of the simulated and experimental data

have similar behavior.

5. Design of Fault Diagnosis System with the Aid of

GRNN

The main issues raised by critics about the ANN based

methods are the need of these techniques to an enormous

training effort to train for all possible fault scenarios that

is a complicated and time-consuming procedure [26].

However, it is worth highlighting that the key feature of

the GRNN is the speed at which the neural network can

be trained. 

In the training procedure of these types of neural net-

works, there are no training parameters, such as momen-

tum and learning rate as in the case of the multilayered

perceptron (MLP) neural network. The main feature of

the GRNN compared to other networks is due to GRNN’s

one-pass instantaneously learning [25], [27]. In fact, the

 

NS No-Load (mA) Full -Load (mA)
In Isn Imn In Isn Imn 

0 0.0007 0 0.0007 0.0007 0 0.0007 
2 107 0 107 110 0 110 
4 215 0 215 222 0 222 
6 326 0 326 336 0 336 
8 439 0 439 452 0 452 

10 554 0 554 570 0 570 
12 671 0 671 690 0 690 
14 791 0 791 812 0 812 
16 912 0 912 936 0 936 
18 1035 0 1035 1062 0 1062 
20 1161 0 1161 1190 0 1190 

 
 
 

Table 1. Supply imbalance-0%

 

NS No-Load (mA) Full -Load (mA)
In Isn Imn In Isn Imn 

0 197.5 197.4 0.0076 197.3 197.3 0.01 
2 291.2 164.8 126.3 294.1 164.1 130 
4 394.9 145.3 249.6 401.1 144.6 258.5 
6 504 133.4 370.6 513.3 132.7 380.6 
8 616.7 125.6 491 629.1 125.1 504 
10 732.4 120.4 612 747.8 119.9 627.9 
12 850.8 116.7 734 869 116.3 752.7 
14 971.7 114.2 857.5 992.6 113.7 878.9 
16 1095 112.3 982.6 1119 111.9 1007 
18 1221 111 1110 1247 110.6 1136 
20 1349 110.2 1238 1377 109.7 1268 
 

Table 2. Supply imbalance-2.5%

 

 
Fig. 6. Experimental test setup.

 
(a) Experimental RMS value of three-phase current of stator

with 20 shorted turns on phase a under no-load condition.
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inherently parallel structure and the fast training proce-

dure of the GRNN make it suitable for fault detection

problems in real time. Some advantages of the GRNN

over other artificial neural networks are summarized in

the following [27], [28].

•The GRNN networks don’t require pre-decision on

the number of layers and hidden neurons. 

•There is no require setting the initial weights and no

connection exists between learning and recalling proce-

dures in these kinds of neural networks.

Therefore, in this research, GRNN is used in the design

of fault diagnosis system and non-invasive criterion, i.e.

negative sequence current is considered as efficient indi-

cators of stator fault. GRNN is a kind of RBF neural net-

work suitable for function approximation and performs

regression where the target variable is continuous. The

structure of the GRNN is presented in Fig. 7. This archi-

tecture includes input, pattern, summation and output

layer. The first layer is the input-layer and nodes in this

layer do not perform any computation. The number of

neurons in this layer is equal to the number of independent

features and neurons in input-layer merely distribute input

features to all the nodes in the pattern layer. Pattern layer

calculates the Euclidean distance between input vector

values and centers of radial basis functions. The third

layer is summation layer and there are two nodes in this

layer. One node is the denominator unit, and the other

node is the numerator unit. The denominator unit adds to-

gether the weight values coming from each of the pattern

nodes. The numerator unit adds together the weight values

multiplied by the aim value for each pattern node. The

fourth layer is the decision or output layer. This layer di-

vides the value collected in the numerator unit by the

value in the denominator unit and uses the consequence

as the predicted aim value [27]. The foundation for re-

gression is finding relations between output values Y and

input patterns X. If it is assumed that X is new input vari-

able containing known inputs, it is possible to define the

Euclidean distance  as in (25):

(25)

Using this Euclidean distance, GRNN estimates the

output vector Y of the pattern X as in (26):

).()(2
p

T
pp xxxxd  

 

 
 

(b)Experimental RMS value of three-phase current of stator

with 20 shorted turns on phase a under 20% rated load condi-

tion.

 

 
Fig. 8. The architecture of the GRNN [27].

 

 
 

(c) Negative sequence current vs. shorted turns under full-

load.

 

 
 

(d) Negative sequence current vs. shorted turns under 2.5%

supply imbalance.

Fig. 7. Experimental RMS value of three-phase current of sta-

tor and negative sequence current vs. shorted turns under dif-

ferent conditions.
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(26)

where,  is an adjustable smoothing parameter.

After the GRNN is trained, the next step is to ensure

its performance, i.e. how it behaves to an arbitrary input

which is not in the training set. In order to verify this per-

formance, various sets of inputs are selected. As represen-

tative examples of the many tests performed to evaluate

the performance of GRNN, details of the two test cases

due to space limitations is presented in Tables 3 and 4.

These test points that are obtained by the simulated

measurement with different contact resistance are consid-

ered as inputs for testing the GRNN. Then the GRNN es-

timates the number of shorted turns. Test results show that

the GRNN is able to approximate the number of shorted

turns in an acceptable error. 

5. 1. Training database

According to extensive simulations, the following set

of diagnostic features has been proposed for data process-

ing.

Isn: is the negative sequence current arising from im-

balance in the supply voltage, Imn: is the negative se-

quence current caused by the turn-to-turn fault in the

motor, In: is the total negative sequence current (sum of

components Isn and Imn), rext:is the contact resistance,

NS: Number of shorted turns, L: Load, V: supply voltage,

Si: supply voltage imbalance. 

In the other words, data sets for GRNN have been pre-

pared, based on these diagnostic criteria, i.e. the following

vectors are defined as input and target data for training

and testing the GRNN:

Input data: V, rext , In, Isn, Imn, and Target data: NS,

L, Si.

Input vectors for training and testing procedure of

GRNN have been obtained from simulation's measure-

ments of the motor under different load conditions and

supply voltage imbalances. In addition, stator inter-turn

faults with different severity are considered in this motor.  

An extensive database, containing 8400 records has

been created. Training data contained 5600 input records;

however, testing data had 2800 records. These data for

training and testing procedure are independent. In order

to build these data, the variation range of load conditions,

supply voltage imbalances, contact resistance and short

circuit turn ratio needs to be determined first. In this re-

search, the variation range of the load is set as 0, 25%,

50%, 75%, and 100%, the variation range of the contact

resistance is set as 0, 0.1, 0.2, and 0.5 ohm and the short

circuit turn ratio varies from 0% to 40% by 2% step size.

Furthermore, supply voltage imbalances have been varied

from -2.5% to 2.5% by 0.25% step size. So total, 8400

cases that 8400=5 (different load conditions) 4 (different

contact resistance) 21 (short circuit turn ratio) 20 (supply

voltage imbalance) have been considered to build the

training and testing data. 

5. 2. Evaluate the performance of the fault diagnosis

system

Designed fault diagnosis system was tested due to the

cross-validation technique. The data for training and test-

ing procedure was separated into 3 portions; two of them

were used for training procedure; the third was used for

the testing procedure. The GRNN training process is usu-

ally carried out in 2 steps. A serious aspect of the training

process is mainly represented by efficient selection of the

center and standard deviation of the Gauss function, as

this choice may effectively influence errors made by the

estimator [27]. So, in designing of the GRNN, it is very

significant to choose the optimum value of the  (spread

parameter). Procedure of approximation begins with find-

ing the best spread value for GRNN to control the spread

of the RBF functions. If spread value is small the activa-

tion function is very steep, consequently, the neuron with

the weight vector nearby to the input will have a greater

 

)2exp()( 2

2

1

1 p
pP

p
p

P

p
pp dh

h

hy
xy  , 

 

Supply imbalance=2.5 %, No-Load, rext= 0 (ohm)
In 

(mA) 
Isn 

(mA) 
Imn 

(mA) 
Actual 

NS 
Predicted 

NS
197.5 197.4 0.0076 0 0 
448.9 138.7 310.2 5 5 
732.4 120.4 612 10 9.92 
1033 113.2 919.8 15 14.85 
1349 110.2 1238 20 20.01 
1678 109.2 1569 25 25.02 
2023 109.4 1913 30 29.83 
2381 110.3 2271 35 34.92 
2755 111.5 2643 40 40.08 

 

Table 3. Number of shorted turns (NS) predicted by GRNN

for Case 1

( ) p y
Supply imbalance=2.5 %, No-Load, rext= 0.2 (ohm)

In 
(mA) 

Isn 
(mA) 

Imn  
(mA) 

Actual 
NS 

Predicted 
NS

197.5 197.4 0.00765 0 0 
270 171.7 98.26 5 4.98 

431.7 140.8 290.9 10 9.965 
646.4 122.9 523.5 15 14.89 
896 113.4 782.6 20 19.96 

1172 108.4 1063 25 24.95 
1469 106 1363 30 29.91 
1786 105 1681 35 35.05 
2122 105 2017 40 39.87 

Table 4. Number of shorted turns (NS) predicted by GRNN

for Case 2
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output than other neurons. The GRNN tends to react with

the target vector associated with the nearest design input

vector, and the accuracy of the detection will be increased

but the generalization ability of the GRNN will be re-

duced. As smoothing value becomes larger, more neurons

contribute to the average and the slope of the activation

function becomes smoother. The GRNN then operates as

if it is taking a weighted average between target vectors

whose design input vectors are nearby to the new input

vector. In this condition, the generalization ability of the

GRNN will be increased and the accuracy of the detection

will be reduced. In this study, the traditional trial-and-

error technique is utilized to find the optimum spread

value. To evaluate the proficiency of GRNN, its results

are compared with MLP neural network. MLP network is

trained and then tested with the same data due to a similar

process that has been mentioned before. First fault detector

uses MLP, and the second detector uses GRNN. The MLP

is trained with the Batch Gradient Descent with Momentum.

The results of the evaluation are shown in Table 5.

During the testing procedure, the precision of MLP

neural network is around 75% (2100/2800) because the

results of 700 testing data were incorrect in this neural

network. Furthermore, the results of 112 testing data were

incorrect in GRNN. Consequently, the accuracy is 96%

(2688/2800). In fact; the results illustrate that the perform-

ance of GRNN is better than MLP in terms of accuracy.

6.  Conclusion 

Detection of stator turn-to-turn faults occurrence and

its exact location under supply voltage unbalances are too

complex. This mainly because the effect caused by turn-

to-turn faults and supply voltage unbalances on the stator

current is similar. This paper presents, the application of

GRNN to the development of a new approach to detect

and locate stator turn-to-turn fault in the induction motor

under supply voltage unbalances. On the other hand, ANN

based methods suffer from the drawback that they need

large learning time for training the all possible fault sce-

narios. Consequently, in order to overcome this problem,

the proposed method uses a GRNN. It is worth highlight-

ing that GRNN networks with high generalization ability,

are able to do satisfactorily even for unobserved scenario.

Another point worth highlighting is the GRNN trains in-

stantaneously in one-pass which causes them faster to

train, compared to other neural networks. The required

decision in the proposed method is made using negative

sequence current analysis. The main feature of the pro-

posed technique is its ability to detect the stator turn-to-

turn fault using the non-invasive method. A possibility of

identifying the location of the faulty phase, the fault sever-

ity and the degree of supply voltage unbalance is the other

features of the proposed technique. Finally, the satisfac-

tory operation of the proposed technique has been verified

via both simulation and experimental results under the

load variations and supply voltage unbalance.

Acknowledgment

The author wishes to thank Mr. Ghanbari in providing

the experimental test setup and testing laboratory.

References

[1]  C. M. Ong, “Dynamic simulation of electric ma-
chinery using Matlab/Simulink,” 2nd ed., Prentice

Hal, New Jersey, 1998.

[2] R. Roshanfekr, and A. Jalilian, “Analysis of rotor
and stator winding inter-turn faults in WRIM using
simulated MEC model and experimental results”,

Electric Power Systems Research, Vol. 119, pp.

418-424, 2015.

[3] F. Bagheri, H. Khaloozadeh, and K.

Abbaszadeh,“Stator fault detection in induction
machines by parameter estimation using adaptive
kalman filter”, Iranian Journal of Electrical & Elec-

tronic Engineering, Vol. 3, Nos. 3& 4, pp. 72-82,

Jul. 2007.

[4] M. D. Negrea, “Electromagnetic flux monitoring
for detecting faults in electrical machines,”
Ph.D.dissertation, Helsinki University of Technol-

ogy, Laboratory of Electromechanics, Helsinki,

Finland, 2007. Available at

http://lib.tkk.fi/Diss/isbn9512284774.

[5] H.Yaghobi, K.Ansari, and H.Rajabi mashhadi,

“Stator Turn-to-Turn Fault Detection of Synchro-
nous Generator Using Total Harmonic Distortion
(THD) Analyzing of Magnetic Flux Linkage”, Iran-

ian Journal of Science and Technology Transac-

tions of Electrical Engineering (IJSTE), 2013, Vol.

37, No. E2, pp 161-182.

[6] L. Xu, L. Sun, L. Xu, and G. Xu, “ Improvement of
the Hilbert method via ESPRIT for detecting rotor
fault in induction motors at low slip,” IEEE Trans.

Energy Convers., Vol. 28, No. 1, pp. 225–233,

2013.

[7] M.P. Sanchez, and et al. , “ Application of the tea-
ger–kaiser energy operator to the fault diagnosis
of induction motors,” IEEE Trans. Energy Con-

vers., Vol. 28, No. 4, pp. 1036-1044, 2013.

[8] B. Xu, L. Sun, L. Xu, and G. Xu, “ An ESPRIT-
SAA-based detection method for broken rotor bar
fault in induction motors,” IEEE Trans. Energy

Convers., Vol. 27, No. 3, pp. 654-660, 2012.

[9] J. Martinez, A. Belahcen, and A. Arkkio, “Broken
bar indicators for cage induction motors and their

ANN MLP GRNN 
Classification 

accuracy 75 96% 

D i h i d h i i f MLP

Table 5. The results of the evaluation

D
ow

nl
oa

de
d 

fr
om

 ij
ee

e.
iu

st
.a

c.
ir 

at
 2

:3
2 

IR
D

T
 o

n 
T

hu
rs

da
y 

S
ep

te
m

be
r 

21
st

 2
01

7 
   

   
   

[ D
O

I: 
10

.2
20

68
/IJ

E
E

E
.1

3.
1.

8 
]  

http://ijeee.iust.ac.ir/article-1-974-en.html
http://dx.doi.org/10.22068/IJEEE.13.1.8


Iranian Journal of Electrical & Electronic Engineering, Vol. 13, No. 1, March 201788

relationship with the number of consecutive broken
bars”, IET Electr. Power Appl., Vol. 7, No. 8, pp.

633-642, 2013.

[10] S. M. A. Cruz, “An active-reactive power method
for the diagnosis of rotor faults in three-phase in-
duction motors operating under time-varying load
conditions,” IEEE Trans. Energy Convers., Vol. 27,

No. 1, pp. 71-84, 2012.

[11] T. Ilamparithi, and S. Nandi, “Detection of eccen-
tricity faults in three-phase reluctance synchronous
motor,” IEEE Trans. Ind. Appl.,Vol. 48, No. 4, pp.

1307-1317, 2012.

[12] E. Bouchikhi, V. Choqueuse, and M. Benbouzid,

“Current frequency spectral subtraction and its
contribution to induction machines bearings con-
dition monitoring,” IEEE Trans. Energy Convers.,

Vol. 28, No. 1, pp. 135-144, 2010.

[13] P. C. M. Lamim Filho, R. Pederiva, and J. N. Brito,

“Detection of stator winding faults in induction ma-
chines using flux and vibration analysis- A review,”
Mechanical Systems and Signal Processing, Vol.

42, pp. 377–387, 2014.

[14] M. Arkan, D. Kostic-Perovic, P. J. Unsworth, “On-
line stator fault diagnosis in induction motors,” IET

Electr. Power Appl., Vol. 148, No. 6, pp. 537–574,

2001.

[15] S. Chen, and R. Zivanovic, “Modelling and simu-
lation of stator and rotor fault conditions in induc-
tion machines for testing fault diagnostic
techniques,” International Transactions on Electri-

cal Energy Systems, Vol. 20, pp. 611-629, 2010.

[16] M. Arkan, D. Kostic-Perovic, and P. J. Unsworth,

“Modelling and simulation of induction motors
with inter-turn faults for Diagnostics,” ELSEVIER,

Electric Power Systems Research, Vol.75, No.1, pp.

57-66, 2005.

[17] Q. Wu, and S. Nandi, “Fast single-turn sensitive
stator inter-turn fault detection of induction ma-
chines based on positive- and negative-sequence
third harmonic components of line currents,” IEEE

Transactions on Industry Applications, Vol. 46, No.

3, pp. 974-983, Jun. 2010.

[18] S. M. A. Cruz, A. J. M. Cardoso, “Diagnosis of sta-
tor inter-turn short circuits in DTC induction motor
drives,” Proc. of Int.  Conf. Rec. IEEE IAS Annu.

Meeting, pp. 1332–1339, 2003.

[19] J. B. Ali, B. C. Morello, L.Saidi, S. Malinowski,

and F. Fnaiech, “Accurate bearing remaining useful
life prediction based on weibull distribution and ar-
tificial neural network,” Mechanical Systems and

Signal Processing, Vol. 57, pp. 150-172, 2015.

[20]  Y. D. Nyanteh, S. K. Srivastava, C. S. Edrington,

and D. A. Cartes, “Application of artificial intelli-
gence to stator winding fault diagnosis in perma-
nent magnet synchronous machine,” Electric Power

Systems Research, Vol. 103, pp. 201-213, 2013.

[21] Z. Chilenguea, J. A. Denteb, and P. J. Costa Bran-

cob, “An artificial immune system approach for
fault detection in the stator and rotor circuits of in-
duction machines,” Electric Power Systems Re-

search, Vol. 81, pp. 156-169, 2011.

[22] M. Bouzid, G. Champenois, N. Bellaaj, L. Signac,

and K. Jelassi, “An effective neural approach for
the automatic location of stator inter-turn faults in
induction motor,” IEEE Trans. Ind. Electron., Vol.

55, No. 12 ,pp.4277–4289, Dec. 2008.

[23] H. Yaghobi, H.R.Mashhadi, and K.Ansari, “Artifi-
cial neural network approach for locating internal
faults in salient-pole synchronous generator”, EL-

SEVIER, Expert Systems with Applications, Vol.

38, pp.13328–13341, 2011.  

[24] H. Yaghobi, K.Ansari, and H.Rajabi mashhadi,

“Analysis of Magnetic Flux Linkage Distribution
in Salient-Pole Synchronous Generator with Dif-
ferent Kinds of Inter-Turn Winding Faults”, Iranian

Journal of Electrical & Electronic Engineering, Vol.

7, No. 4, pp.260-272, Dec. 2011.

[25] J. Z. Sikorska, M. Hodkiewicz, and L. Ma,“ Prog-
nostic modelling options for remaining useful life
estimation by industry ,”Mechanical Systems and

Signal Processing, Vol. 25, pp. 1803-1836, 2011.

[26] M. R. Aghamohammadi, “Static security con-
strained generation scheduling using sensitivity
characteristics of neural network,” Iranian Journal

of Electrical & Electronic Engineering, Vol. 4, No.

3, pp. 104-124, Jul. 2008.

[27] K. Seethalekshmi, S. N. Singh, and S. C. Srivas-

tava, “Synchrophasor assisted adaptive reach set-
ting of distance relays in presence of UPFC,” IEEE

System Journal, Vol. 5, No. 3, pp.396–405, 2011.

[28] P. Picton, Neural networks, Palgrave Macmillan

Publisher, pp.102–109, ISBN: 9780333948996,

2000.

Hamid Yaghobi was born in Sari,

Iran on 1978. He received his

B.Sc. degree in Electrical Engi-

neering from K.N.Toosi Univer-

sity of Technology in 2000,

Tehran, Iran, M.Sc degree in Elec-

trical Engineering from Ferdowsi

University in 2002, Mashhad, Iran and his Ph.D. in

electric machinery from the Department of Electri-

cal Engineering of Ferdowsi University, Mashhad,

Iran in 2011. He is currently an Assistant Professor

at Semnan University. His research interests are

modeling and fault diagnosis, design and protection

of electrical machines.

                        

D
ow

nl
oa

de
d 

fr
om

 ij
ee

e.
iu

st
.a

c.
ir 

at
 2

:3
2 

IR
D

T
 o

n 
T

hu
rs

da
y 

S
ep

te
m

be
r 

21
st

 2
01

7 
   

   
   

[ D
O

I: 
10

.2
20

68
/IJ

E
E

E
.1

3.
1.

8 
]  

http://ijeee.iust.ac.ir/article-1-974-en.html
http://dx.doi.org/10.22068/IJEEE.13.1.8

