جلد 6، شماره 3 - ( 6-1389 )                   جلد 6 شماره 3 صفحات 175-182 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghods L, Kalantar M. Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks. IJEEE. 2010; 6 (3) :175-182
URL: http://ijeee.iust.ac.ir/article-1-319-fa.html
Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks. . 1389; 6 (3) :175-182

URL: http://ijeee.iust.ac.ir/article-1-319-fa.html


چکیده:   (10083 مشاهده)
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy factors rather than weather conditions. This study focuses on economical data that seem to have influence on long-term electric load demand. The data used are: actual yearly, incremental growth rate from previous year, and blend (actual and incremental growth rate from previous years). As the results, the maximum demands for 2007 through 2011 are predicted and is shown to be elevated from 37138 MW to 45749 MW for Iran Global Grid. The annual average rate of load growth seen per five years until 2011 is about 5.35%
متن کامل [PDF 269 kb]   (1985 دریافت)    
نوع مطالعه: Research Paper | موضوع مقاله: 3-Evolutionary Computation
دریافت: ۱۳۸۹/۶/۲۴ | پذیرش: ۱۳۹۲/۱۰/۹ | انتشار: ۱۳۹۲/۱۰/۹

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Iranian Journal of Electrical and Electronic Engineering

Designed & Developed by : Yektaweb