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   Abstract: In this paper, improved conditions for the synthesis of static state-feedback controller 

are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of 

the data packet latency and dropout which deteriorate the performance of the closed-loop system 

are considered in the NCS model via variable delays. Two different techniques are employed to 

incorporate actuator saturation in the system description. Utilizing Lyapunov-Krasovskii 

Theorem, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs) 

to determine the static feedback gain. Moreover, an optimization problem is formulated in order 

to find the less conservative estimate for the region of attraction corresponding to different 

maximum allowable delays. Numerical examples are introduced to demonstrate the effectiveness 

and advantages of the proposed schemes.  
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I. INTRODUCTION 

   A Networked Control System (NCS) is a feedback control structure wherein the control loop is 

closed through a communication network. The advantages of NCSs such as low cost and simple 

installation and maintenance make them more and more popular in many real-world applications 

including distributed industrial control, cluster of unmanned air vehicles and multi-agent 

systems. However, the presence of communication network in the control loop makes the 

analysis and design of the control system very complicated. Main issues are the network-induced 

delays and packet dropouts which occur when sensor, actuator and controller exchange data 

across the network. The design of NCSs with emphasis on the data packet delay and dropout 

problem has been studied by many researchers [1]-[5]. On the other hand, physical constraints, 

especially actuator saturation are encountered in practical control systems. The analysis and 

synthesis of time delay systems with input saturation have attracted attention in the past few 

years [8]-[13]. 

     In [6], stabilizing controller was designed for networked control systems with actuator 

saturation and sampling period variation. A continuous functional whose values at the sampling 

instants coincides with a discrete-time quadratic Lyapunov function is utilized to derive 

sufficient condition in terms of LMI was to determine stabilizing state feedback controller. In 

[7], stabilization problem of networked stochastic systems subject to actuator saturation was 

studied. The nonlinearity of actuator saturation was modeled as a convex polytope of linear 

systems. The asymptotic stabilization of a constrained time-delay system was studied in [8]. The 

problem of designing linear state feedback stabilizing law and enlarging the domain of attraction 

is formulated as an optimization problem with LMI constraints.  In [9], simple sufficient LMI 

conditions are derived for stabilization of systems with polytopic type uncertainty for regional 
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stabilization of systems with sampled-data saturated state feedback via descriptor approach. The 

regional stabilization and H∞ control problem have been studied in [10] by combining the 

descriptor model transformation and Moon's inequality which is used to get a less conservative 

bound for the cross terms. Using novel Lyapunov-Krasovskii functional and generalized sector 

condition, improved LMIs formulated in [12] for stabilizing controller design, aiming at 

enlarging the estimate of the region of attraction of the closed-loop system and maximizing the 

bounds on the sampling period.  Stabilization problem of neutral delay systems in the presence of 

control saturation is solved in [13] based on the descriptor approach and the use of a modified 

sector condition. Moreover, improved results for stabilization and stability analysis for time-

delay systems have been acquired in the recent years [14]-[16] and [18]. 

   This paper presents less conservative procedures to synthesis asymptotically stabilizing state 

feedback controller for networked control systems subject to actuator saturation. The NCS model 

developed in [1] is adopted and actuator saturation nonlinearity is treated in two ways: In the first 

approach, the saturation is represented by a convex polytope of linear systems. In the second 

scheme, generalized sector condition (decentralized deadzone nonlinearity) is used to model 

saturation effects. Utilizing an appropriate Lyapunov-Krasovskii functional, a simple sufficient 

condition which ensures the local stability of the closed loop system is derived in terms of Linear 

Matrix Inequalities.  

    A key issue in control synthesis for nonlinear systems is designing a controller to stabilize the 

plant with a large domain of attraction, i.e. enlarging the set of initial states for which the 

asymptotic convergence of the corresponding trajectories to the origin is ensured. Thus, in this 

note to find an initial set with less conservative estimate of the domain of attraction, an 

optimization problem with LMI constraints is formulated. 
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 The paper is organized as follows: In section II, the networked control system model is 

described. Section III presents the main results of this paper wherein the procedures to determine 

controller gain, maximum allowable delay and domain of attraction is derived. In section IV, 

numerical example is given to illustrate the effectiveness of the proposed method and then the 

obtained results are compared to the literature. Finally, a brief concluding remark is given in 

Section V. 

Notations: Throughout the paper n  denotes the n dimensional Euclidean space with vector 

norm and n m  is the set of all n m  real matrices. The notation 0P  ( 0P  ) means that P  

is symmetric and positive definite (positive semi definite).The subscript T stands for matrix 

transposition. { }Co symbolizes the convex hull. { }diag is used as an ellipse for block-diagonal 

matrix. () denotes the largest singular value of the matrix. The symbol * shows the symmetric 

entry in a symmetric matrix.  Finally, the space of continuously differentiable vector function 

over [ ,0]  is represented by 1[ ,0]C  . 

II. PROBLEM STATEMENT 

   A typical networked control system is shown in Figure 1, wherein the controller, sensor and the 

actuator are assumed to be separated and connected through a communication network. The 

controlled system is linear and time invariant, sensor is time-driven and controller and actuator 

are event-driven. In the considered network, all the data are lumped together into one packet and 

transmitted at the same time (single packet transmission) and thesent packets are time stamped. 

The controller and actuator always use the new data packets and discard the old ones. When an 

old data packet arrives, it is dealt with as a packet loss. A zero-order-hold is placed in the input 

of the plant and the input is zero before the first controller packet arrives. 



5 

 

 

ZOH )()()( tutt BAxx  )(tx

Controller

sc
ca

satsat

 

Fig. 1. Schematic Diagram of the Saturated  NCS 

 

Regarding the above assumption on the NCS, the following equations can describe the closed-

loop system behavior: 

( ) ( ) ( ),t t t x Ax Bu                                                                                        (1) 

11( ) sat( ( )), [ , )
k k ki k i k it t t i h i h  

    u Kx
                                                              

(2) 

where nt )(x and mt )(u  are the state vector and the control input vector respectively. A and

B are two constant matrices with appropriate dimensions. K  is the state feedback gain matrix. 

Function mm  :)sat(  is the standard saturation function, in which 

sat ( ) sign ( )min ( , )i i i iu u u u  and ).max( ii uu  h  is the sampling period, ,3,2,1k is the 

number of the controls which act on the system, ki  is an integer denoting the sampling instant of 

the state feedback corresponding to the k th effective control,
ki

  denotes the network-induced 

time delay from the instant hik , when the sensor samples the state of the system to the instant 

when the actuator imposes the related control on the system. Transmission delay induced by the 

network is composed of two parts: sensor-to-controller delay sc and controller-to-actuator delay 

ca . Since the controller is static these two delays can be lumped together  ( )cascik
  .  

The closed loop system model (1)-(2) can be represented as ( ) ( ) sat( ( ))kt t i h x Ax B K x
 
for 



6 

 

11[ , )
k kk i k it i h i h 

   . Now, by definition of hitt k)( , ),[
11 

  kk ikik hihit  , this 

relation can be rewritten as follows: 

( ) ( ) sat( ( ( )))t t t t  x Ax B Kx                                                                               (3) 

which is a continuous-time system with delayed input. Note that: 

110 ( ) ( )
k ki k k it i i h   

                                                                     (4) 

Furthermore, the initial condition of system (3) is a continuous differentiable function which is 

shown as the following: 

)(0x , ]0,[   .                                                                                              (5) 

Consequently, the NCS was modeled as the time-delay system (3) where both of data packet 

dropout and latency in the network is considered as variable delay characterized in (4). The 

problem of interest is to determine the state feedback gain matrix K  such that the controller (2) 

asymptotically stabilizes the closed loop system (1)-(2) and moreover to obtain an estimate of its 

domain of attraction. 

III. MAIN RESULT 

    In the next subsection, some useful facts which will be employed to formulate actuator 

saturation in the stabilization problem are reviewed. 

A. Preliminaries: 

    Definition 1: Let 
ik  be the i th row of the matrix K , the polyhedron region ( )L K  in the state 

space is defined as follows:   

 ( ) : , 1,2, ,n

i iL u i m   K x k x . 

Furthermore, the ellipsoid E  in the state space is defined as follows: 
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( ,1) { : 1}n TE   P x x Px  

wherein, n nP  is a positive definite matrix.  

 

    Definition 2: The set of all m m  diagonal matrices whose diagonal elements are either 1 or 0 

is shown by  ; then there are 2m elements in . Let each , 1,2, ,2m

jD j   be an element of   

and denote j jD I D   . It is clear that jD   is an element of   if jD  . 

 

    Lemma 1 [17]:  Let nmHK,  are given; for all n dimensional vector ( )Lx H , the 

following  holds: 

sat ( ) { , 1, ,2 }m

j jCo D D j  K x K x Hx  

Hence, sat ( )K x can be expressed as follows: 

2

1

sat( ) ( )

m

j j j

j

D D 



 K x K H x                                                                                (6) 

in which,
2

1

1

m

j

j





 

and 0j  . ■ 

 

    Definition 3: The vector function   is defined as follows: 

)()( KxKxKx sat                                                                                             (7) 

It's clear that )(Kx is the decentralized dead-zone nonlinearity. 

 

    Lemma2 [18]: Consider the function )(Kx defined in (7). For  nx  if )( HKx L , the 

following is hold: 
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( ) ( ( ) ) 0T   Kx U Kx Hx                                                                                                      (8) 

for any diagonal positive definite  matrix mmU . ■ 

The result in Lemma 2 is known as a generalized sector condition which will allow obtaining 

stability conditions directly in an LMI form. 

 

Definition 4: Let ),( 0xt be the state trajectory of the system (3), starting from the initial 

function ]0,[1 C0x ; the domain of attraction of the origin is defined as in the following: 

1{ [ ,0] : lim ( , ) 0 }
t

S C t 


   0 0x x , 

an estimate of the domain of attraction 
DOA S   can be found as the follows: 

 1

1 2[ ,0] : max | | , max | |DOA C        0 0 0x x x                                                 (9) 

by maximizing positive scalars )2,1( ii . 

 

B. Design Method 

   In this subsection, the sufficient conditions are derived to determine the static state-feedback 

gain to asymptotically stabilize the close-loop system (3). A simple condition to obtain the 

mentioned matrices and feedback gain is given in the Theorem 1. 

 

Theorem 1: Given scalars 0   and 4,3,2, ipi
 the system (1) with the networked 

memoryless state-feedback controller (2) is asymptotically stable if there exist matrices 

0,T P P 0,T Q Q 0,T R R ,G Y  and nonsingular matrix X  of appropriate dimensions 

such that the following matrix inequalities hold: 
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mj 2,...,2,1,0
~

Φ                                                                                             (10) 

ms
u

u

s

ss
...,,2,1,0~

*










P

g

                                                                                                    

(11) 

where T
221

~~~~
ΩΩΩΦ  . 

1 2

* 2

* *

* * *



 
 

 
 
 

   

Q R R P 0

R 0 R
Ω

R 0

Q R

                                                                        (12) 

 

2 2 2

2

3 3 3

4 4 4

( )

( )

( )

( )

T T

j j

T T

j j

T T

j j

T T

j j

D D

p p D D p

p p D D p

p p D D p









   
 
   
   
 
    

A X B Y G X 0

A X B Y G X 0
Ω

A X B Y G X 0

A X B Y G X 0

                                                  (13) 

and 
sg is the s th row of G ; Furthermore, TK YX and TH G X . An estimate of the 

domain of attraction is in the form of (9) with 1  and 2  satisfying: 

3
2 1 1 2 1

1 2( ( ) ( )) ( ) 1
2

T T T
           X P X X QX X R X                                      (14) 

Proof: Lyapunov-Krasovskii functional candidate is considered as follows: 


 


dsdssdssstttV

t

t

T
t

t

TT )()()()()()()(

0

xRxQxxPxx  
 


    

in which, the matrices 0, 0T T   P P Q Q  and 0T R R  are to be determined. Calculating 

the time derivative of ( )V t  along the trajectories of the system (3) for
11[ , )

k kk i k it i h i h 
  

yields: 

2( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

T T T T T

t

V t t t t t t t t t s s ds


   


       x Px x Qx x Qx x R x x R x  
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Moreover, the following relation is true: 

( ) ( ) ( ) ( ) ( ) ( )
k

k

i ht t

T T T

t t i h

s s ds s s ds s s ds
 

  
 

     x R x x R x x R x                                (15) 

On the other hand, the following inequalities hold: 

( ) ( ) [ ( ) ( )] [ ( ) ( )]

k

t

T T

k k

i h

s s ds t i h t i h     x Rx x x R x x                                         (16) 

( ) ( ) [ ( ) ( )] [ ( ) ( )]
ki h

T T

k k

t

s s ds i h t i h t


  


       x Rx x x R x x                                  (17) 

So, substituting (16) and (17) in (15) results in:  

( ) ( ) [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

t

T T T

k k k k

t

s s ds i h t i h t t i h t i h


  


          x R x x x R x x x x R x x  

Then, the following upper bound is obtained for ( )V t : 

2( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( )] [ ( ) ( ) [ ( ) ( )] [ ( ) ( )]

T T T T

T T

k k k k

V t t t t t t t t t

i h t i h t t i h t i h

  

 

     

       

x Px x Qx x Qx x Rx

x x R x x x x R x x
        (18) 

  On the other hand, utilizing the Lemma 1, If ( ) ( )ki h Lx H the closed-loop system equation can 

be represented as follows:      

2

1

( ) ( ) ( ) ( )

m

j j j k

j

t t D D i h 



  x Ax B K H x                                                               (19)                                                                                         

where 0 1j  and 
2

1

1

m

j

j




 .  Hence, the system equation in vertex j  is as follows: 

( ) ( ) ( )j kt t i h x Ax A x                                                                                             (20) 

where ( )j j jD D  A B K H  for 1, ,2mj  . Let  ( ) ( ), ( ), ( ), ( ) T

kt t i h t t  ξ x x x x , for any matrix 

M , the following relation is true: 

2 ( ) [ ( ) ( ) ( ) ( )] 0T

j j kt t t D D i h   ξ M x Ax B K H x                                                      (21)                                                                                    
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Adding equation (21) to (18) yields to: 

( ) ( ) ( )TV t t t ξ Φ ξ                                                                                                     (22) 

where 1 2 2

T  Φ Ω Ω Ω  and  

1 2

* 2

* *

* * *



 
 


 
 
 

  

Q R R P 0

R 0 R
Ω

R 0

Q R

 

2 ( ) .j jD D      Ω MA MB K H M 0  

Provided 0Φ , the Lyapunov-Krasovskii Theorem ensures that the system (20) is 

asymptotically stable. The inequality condition 0Φ  is nonlinear matrix inequality; thus by 

changing variables, it is transformed to LMI. The matrix M is partitioned as follows: 

1

2

3

4

 
 
 
 
 
 

M

M
M

M

M

 

Let 1

1 0 2 2 0 3 3 0 4 4 0 0, , , ,p p p     M M M M M M M M X M  and diag( )Z X, X, X, X . Defining 

1 2 2

T T   Φ ZΦ Z Ω Ω Ω with T

i iΩ ZΩ Z , 1,2i  , ,TP X P X ,TQ X Q X

, ,T T T  R X R X Y K X G H X , the inequality 0
~
Φ  implies that 0Φ . 

   The next stage is to guarantee the condition ( ) ( )ki h Lx H  which is necessary to use the result 

of Lemma 1 in (19). Let the ellipsoid ( ,1)E P  is a subset of the set ( )L H , so the following 

inequality is satisfied: 

2 ( ) ( 1 ( ) ( ) ) 2 , 1, ,T

j k j k k ji h u i h i h u j m   h x x Px  

Since 
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 
1

2 ( ) (1 ( ) ( )) 1 ( ) 0
* ( )

i iT

i k i k k k

i k

u
i h u i h i h i h

u i h

   
       

   

h
h x x Px x

P x
, 

the following holds: 

0
*

i i

i

u

u

 
 

 

h

P
                                                                                                       (23) 

If both sides of (23) pre and post multiplied simultaneously with ( , )diag I X and its transpose 

respectively, the inequality (11) is obtained where T

i ig h X . 

From ( ) 0V t  , it follows that 
0( ) ( )tV Vx x and therefore for 0t  : 

0( ) ( ) ( ) ( )T

tt t V V x P x x x  

Regarding (9), the following inequality holds: 

3 3
22 2 2

0 1 2
[ ,0] [ ,0]

( ) max ( ) ( ( ) ( )) max ( ) ( ) ( ( ) ( )) ( )
2 2

V
   

 
           

   
     x P Q R P Q R  

So, if the following holds: 

3
2 2

1 2( ( ) ( )) ( ) 1
2


      P Q R  

then, for all the initial functions belong to 
DOA  in (9), the trajectories of  the closed-loop system 

remain in the ellipsoid ( ,1) ( )E LP H  and the polyhedron representation of  saturation function 

is valid. Finally, note that if the subsystems (20) are stable for 1, ,2mj  , then the overall 

system is stable.■ 

 

Corollary 1: Let m nK,H be given. The closed-loop system (3) is asymptotically stable if 

there exist matrices 0, 0 P Q , 0R  and  M such that the following LMIs hold: 

mj 2,...,2,1,0 Φ                                                                                                  (24) 
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ms
u

u

s

ss
...,,2,1,0

*










P

h
(25) 

where 1 2 2

T  Φ Ω Ω Ω . 



























RQ

0R

R0R

0PRRQ

Ω

***

**

2*
21


 

2 [ ( ) ].j jD D    Ω MA MB K H M 0 ■ 

 Based on the result of Corollary 1, an optimization problem with LMI constraints is formulated 

to obtain a large estimate of the domain of attraction. To simplify the procedure we select 

max21    and parameters 0, 1,2,3iw i  are used to bound the matrices P,Q  and R  for 

getting a less conservative estimate of the domain of attraction. The matrices K  and H  are 

computed utilizing Theorem1, then the following optimization problem is solved using YALMIP 

[19] to obtain a maximal estimate of domain of attraction: 

1

2

3

min

. .

1

0

0

0

s t

corollary

w

w

w



 

 

 

I P

I Q

I R

                                                                                                           (25) 

where 3
3

21
2

1
www   . Thus a maximal estimate of domain of attraction can be obtained by: 

)(
2

)()(

1
3max

RQP 








                                                                        (26)                                                                                                         

 

   In the Theorem 2, based on decentralized dead zone nonlinearity property presented in Lemma 

2, sufficient conditions are derived to obtain static state-feedback gain. 
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Theorem 2: Given scalars 0  and 4,3,2, ipi
, the system (1) with the networked 

memoryless state-feedback controller (2) is asymptotically stable if there exist matrices 

0,T P P 0,T Q Q 0,T R R ,G Y , diagonal positive definite U
~

 and nonsingular matrix 

X  of appropriate dimensions such that the following matrix inequalities hold: 

,0
~
Φ                                                                                                               (27) 
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...,,2,1,0

*

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(28) 

where T
221
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sy and
sg  are the s th row of Y and G , respectively. Moreover, TK YX and TH G X . An 

estimate of the domain of attraction is in the form of (9) with 1  and 2  satisfying: 

3
2 1 1 2 1

1 2( ( ) ( )) ( ) 1
2

T T T
           X P X X QX X R X

 

Proof: The sketch of proof is similar to the Theorem 1. But here, regarding Definition 3, the 

closed-loop system is represented as follows: 

( ) ( ) ( ) ( ( ))k kt t i h i h  x Ax BKx B Kx                                                                      (29) 

For  ( ) ( ), ( ), ( ), ( ), ( ( )) T

k kt t i h t t i h  ξ x x x x Kx and any matrix M  of the form: 
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1

2

3

4

 
 
 
 
 
 
  

M

M

M M

M

0

 

the following equation holds: 

2 [ ( ) ( ) ( ( )) ( ( ))] 0T

k kt t x i h i h    M x Ax BK B Kx                                                  (30) 

Utilizing Lemma2, for ( ) ( )ki h L x K H , the following relation is true :  

0HxKxUKx  ))(()(  T                                                                                        (31) 

Combining equations (30) and (31) and the upper bound of  V in (18) yields to: 

2( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

2 ( ( ) [ ( ( ) ( )] 2 [ ( ) ( ) ( ( )) ( ( ))]

T T T T

T T

k k k k

T T

k k k k k

V t t t t t t t t t

i h t i h t t i h t i h

i h i h i h t t x i h i h

  

 

  

     

       

     

x Px x Qx x Qx x Rx

x x R x x x x R x x

Kx U Kx Hx ξ M x Ax BK B Kx

 

which can be rearranged as ( ) ( ) ( )TV t t t ξ Φ ξ ; where 1 2 2

T  Φ Ω Ω Ω and 

 MBMMBKMAΩ
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If 0Φ , the Lyapunov-Krasovskii Theorem guarantees that the system (20) is asymptotically 

stable. The inequality condition 0Φ  is nonlinear; thus by the changing variables, it is 

transformed to LMI condition.  

Let 1

1 0 2 2 0 3 3 0 4 4 0 0, , , ,p p p     M M M M M M M M X M  and diag( )Z X, X, X, X . Defining 

1 2 2

T T   Φ ZΦ Z Ω Ω Ω  with T

i iΩ ZΩ Z , 1,2i  , ,TP X P X ,TQ X Q X ,TR X R X

,TY K X ,TG H X 1U U , the condition 0
~
Φ  implies that 0Φ . The reminder of proof is 
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the same as the Theorem 1 and omitted for the sake of brevity. ■ 

 

Corollary 2: Let m nK,H be given. The closed-loop system (3) is asymptotically stable if 

there exist matrices 0,0,0  RQP , diagonal 0U  and M  such that the following LMIs 

hold: 

0Φ                                                                                                                     (32) 
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(33) 

where 

T

221 ΩΩΩΦ  . 
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The optimization problem for domain of attraction is similar to (25). 

IV. ILLUSTRATIVE EXAMPLE 

   To illustrate the efficiency of the proposed method, a numerical example is presented and the 

result obtained from the proposed method is compared with the ones in the literature.  

Example: Consider the system (3) with the following matrices [9]: 

1.1 0.6 1
,

0.5 1 1

   
    

   
A B . 

and 
1 2 5u u  . The controller is designed and corresponding domain of attraction is obtained. 
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The results are summarized in Table I, wherein 
max  stands for the radius of domain of attraction 

and  
max  is the maximum attainable   which was defined in (4). 

 

Table I. Stability ball radius and state feedback controller 

 Theorem1 Theorem2 [9] [12]  

052.1max   75.0  050.1max   75.0  max 0.75   max 0.75   

max  0.3248 1.9361 0.3852 1.9999 0.356 0.23 

K 
T










4262.0

3822.1  
T










4520.0

4628.1  
T










4262.0

3821.1  
T










4658.0

4936.1  
T










533.0

696.1  
T










5417.0

7491.1  

 

    The method of [9], lead to the feedback gain  533.0696.1K  to stabilize the closed-loop 

system for the sampling interval 0.75   and the set of admissible initial conditions is given by 

an ellipsoid ( ,1) P  with 

0.9132 0.2816

0.2816 0.0868

 
  

 
P . 

The largest circle can be included in this ellipsoid is of radius 0.356 which is approximately six 

times smaller than the one obtained from Theorem 2 (1.9999 / 0.356 6) . 

   Using the approach of [12], the feedback gain is obtained as  1.7491 0.5417K    with the 

sampling interval 0.75   and the corresponding set of admissible initial conditions is given by 

an ellipsoid ( ,1) P  with 

0.4450 0.2307

0.2307 21.0091

 
  
 

P . 

The largest circle can be included in this ellipsoid is of radius 0.23 which is approximately nine 
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times smaller than the one obtained from Theorem 2 (1.999 / 0.23 9) . 

Moreover, by the proposed methods maximum allowable max  can be increased up to 1.052 

which is considerably comparable with the max  obtained from approaches in [9] and [12].   

    Figures 2 and 3 illustrate the convergence of state trajectories to the origin, by using the 

controller obtained from Theorem 2 for two different values of   . The inner ellipse in figure 2 

shows the estimate of the domain of attractions. The outer ellipse in figure 3 shows the ellipsoid 

1 Pxx
T , as seen all state trajectories begin on the periphery of 

 
the inner ellipse never leave 

the outer ellipsoid and end up at the origin. Comparison of  figures 2 and 3  together with the 

information in Table I  clarify that there is inverse relation between   and max .  

 

Figure 2. State trajectories and stability ball ( 05.1 ) 
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Figure 3.  State trajectories and stability ball ( 75.0 ) 

 

V. CONCLUSION 

In this paper two procedures were presented to design stabilizing controller for networked 

control system subject to input saturation. In the first method,the saturated linear system was 

represented with a set of linear systems embedded within a convex polytope and in the second 

method, actuator saturation was tackled via a generalized sector condition. Furthermore, an 

estimate of domain of attraction was obtained through the LMI optimization. Illustrative example 

demonstrated that the suggested methods leads to the less conservative result compared with the 

ones in the literature. 
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