Stability Analysis of a Matrix Converter Drive: Effects of Input Filter Type and the Voltage Fed to the Modulation Algorithm

Hosseini Abardeh¹, M, Ghazi. R¹
¹Department of Electrical Engineering, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, Iran
mohamad.hosseini1@gmail.com, rghazi@um.ac.ir

Abstract: The matrix converter instability can cause a substantial distortion in the input currents and voltages, which leads to the malfunction of the converter. This paper deals with the effects of input filter type, grid inductance, voltage fed to the modulation algorithm and the synchronous rotating digital filter time constant on the stability and performance of the matrix converter. The studies are carried out using eigenvalues of the linearized system and simulations. Two most common schemes for the input filter (LC and RLC) are analyzed. It is shown that by proper choice of voltage input to the modulation algorithm, structure of the input filter and its parameters, the need for the digital filter for ensuring the stability can be resolved. Moreover, a detailed model of the system considering the switching effects is simulated and the results are used to validate the analytical outcomes. The agreement between simulation and analytical results implies that the system performance is not deteriorated by neglecting the nonlinear switching behavior of the converter. Hence, the eigenvalue analysis of the linearized system can be a proper indicator of the system stability.

Keywords: Matrix converter, stability, eigenvalue analysis, input filter, digital filter, small signal model.

1 Introduction
The matrix converters (MC) have received considerable attention in recent years, as they can be an alternative to back-to-back converters. The main reasons are their ability to provide sinusoidal input and output waveforms, controllable input power factor and bidirectional
power flow in the absence of DC bus [1,2]. This eliminates the electrolytic capacitor and provides the possibility of a compact design [3]. The MC main application fields are: AC motor drives, wind energy conversion systems, aerospace and military applications, elevators with energy recovery systems, electric and hybrid vehicles, etc. [4,5].

As the matrix converter connects two systems with different frequencies without any intermediate energy storage unit, the input distortions are easily passed through the output side. To overcome this problem, the fast feedforward compensation is used in which the modulation algorithm variables are calculated based on instantaneous input voltages. The input LC or RLC filter in conjunction with the feedforward compensation may cause unstable behavior [6-8].

Several methods have been proposed to account for the causes and criterions of the matrix converter unstable operation [6-16]. Small signal approximation and state matrix eigenvalues are used in [6] to model and analyze the stability problem. Two types of LC and RLC input filters are studied, and it is shown that a proper choice of the filter resistor can improve stability. The factors that influence the stability of the MC fed to a passive RL load or an induction motor are analyzed by calculating eigenvalues in [7] and concluded that the independent filtering of input voltage amplitude and phase data will improve the stability. The effects of various input filter structure C, LC and LCR under Venturini modulation algorithm is used in [9]. Authors of [8] have indicated the cause of unstable operation is the harmonic interactions of the MC input voltage and current. Moreover, the digital controller delay and power loss can change the stability characteristics of the MC drive [15]. There is an upper bound for the MC output power, which limits the drive performance, but it is shown that the stable operation region can be extended when the voltage fed to the modulation algorithm is filtered by a low pass synchronous rotating filter. The effect of the time constant of the voltage filter is studied in [10]. Eigenvalue analysis shows the larger time constants will
improve stability while lowers the system ability to compensate for the input voltage
distortions. A large signal model for stability analysis is introduced in [11] and the power
limit for stable operation is found as a function of different system parameters such as input
filter, digital implementation time delay, time constant, and order of input digital filter.

By introducing a switching model, the effects of high frequency switching on the MC stability
is studied in [12]. It is shown that using the average model leads to underestimation of the
instability threshold. However, it is notified in [12] that when double-sided modulation is
used, the results obtained from the average model are valid. Matrix converter experiences
Hopf bifurcation instability as the input/output voltage ratio of the MC becomes greater than a
threshold [13]. A weakly nonlinear analysis is developed, and it is concluded that even when
the MC operates below the linear stability limit, large-amplitude oscillations may occur.
Moreover, in [13], an interesting discussion on the switching effect in the stability analysis is
presented. Using the nonlinear dynamic theory, the unstable oscillation of the MC is studied
in [16] and the chaotic characteristic such as extreme sensitivity to initial values within the
system is analyzed.

As it was mentioned when the input voltage to the modulation algorithm is filtered by a
synchronous rotating filter before being fed to the algorithm, the stability will be improved.
However, this will make the system more complicated as filtering is performed in the dq
reference frame which necessitates the abc to dq and inverse transformations. Moreover, the
filtering action of such a filter reduces the speed of system response to the input voltage
distortions because the modulation algorithm is now not fed by actual instantaneous voltage.

To improve the operating performance, in this paper the effects of the input filter type (LC
and RLC), the digital filter time constant and the voltage fed to the modulation algorithm on
the stability of a matrix converter connected to an RL load is studied. The linearized state
space equations of the system are presented, and the obtained eigenvalues are used to identify
the stable operating region. To eliminate the need for the digital rotating synchronous filter and its attendant disadvantages a suitable point of modulation voltage measurement along with input filter type and its parameters are suggested. Simulation of the detailed system by considering the switching behavior of the power switches of the matrix converter controlled by SVM algorithm is used to validate the results of the eigenvalue analysis.

This paper is organized as follows. The model of the benchmark system is presented in Section. 2. The stability analysis based on the system eigenvalues is carried out in Section. 3. The effect of the input filter on the power loss and voltage drop of the input filter is presented in Section. 4. Simulation results are demonstrated in Section. 5. Finally Section. 6 concludes the paper.

2 Matrix Converter Model

The basic scheme of a matrix converter is shown in Fig. 1. The bidirectional switches have common emitter or common collector configuration. According to [17], the relation between the space vectors of input and output voltages and currents can be represented by

\begin{align}
\hat{v}_o &= \frac{3}{2} \hat{v}_i \cdot \hat{m}_i + \frac{3}{2} \hat{v}_m \cdot \hat{m}_d \\
\hat{i}_i &= \frac{3}{2} \hat{i}_o \cdot \hat{m}_i + \frac{3}{2} \hat{i}_o \cdot \hat{m}_d
\end{align}

The modulation indices \(\hat{m}_d \) and \(\hat{m}_i \) are

\begin{align}
\hat{m}_d &= \frac{\hat{v}_{o,ref}}{3 \hat{v}_{im}} \\
\hat{m}_i &= \frac{\hat{v}_{o,ref}}{3 \hat{v}_{im}}
\end{align}

![Matrix converter diagram](image)

Fig. 1. Basic scheme of matrix converter.
where \(v_{o,ref} \) is the output voltage reference and \(v_{in} \) is the voltage input into the modulation algorithm.

The benchmark system is shown in Fig. 2. With respect to this configuration \(v_{in} \) can be measured from different points. So the following four cases are suggested and the stability analysis is evaluated:

1) Voltage to the modulation algorithm is measured at MC input (\(v_{in} = v_i \)), and LC input filter is used.

2) Voltage to the modulation algorithm is measured at input filter (\(v_{in} = v_f \)), and LC input filter is used.

3) Voltage to the modulation algorithm is measured at MC input (\(v_{in} = v_i \)), and RLC input filter is used.

4) Voltage to the modulation algorithm is measured at input filter (\(v_{in} = v_f \)), and RLC input filter is used.

The small signal model of the system is developed for each case, and the stability of the system is analyzed using the eigenvalues.

2.1 Case 1: LC input filter and \(v_{in} = v_i \)

The LC filter type is shown in Fig. 3. It is supposed that the modulation input voltage is measured at matrix converter input. At the input side, we have

\[
\frac{d}{dt} i_s = \left(R_s + j \omega_l \right) i_s - \frac{1}{L_i} (v_i - v_s)
\]

where \(L_i = L_s + L_f \) and \(\omega_l \) is the source angular frequency. The input filter capacitor voltage is
To improve the stability, a first order low pass synchronous rotating filter is utilized to filter the input voltage before applying it to the modulation algorithm [10]. Therefore, the filtered voltage is

$$\frac{d}{dt} \vec{V}_f = \frac{1}{\tau} \vec{V}_{im} - \frac{1}{\tau} \vec{V}_f$$

(7)

where τ is the filter time constant and \vec{V}_{im} is the voltage input into the modulation algorithm.

The MC output current space vector is

$$\frac{d}{dt} \vec{i}_o = -\omega_o \vec{i}_o + \frac{1}{L_o} \vec{V}_o$$

(8)

where ω_o is the MC output side angular frequency.

The equations describing the matrix converter steady state operation are:

$$\vec{V}_f = \vec{V}_{im}$$

(9)

$$M_d = \frac{q}{3}$$

(10)

$$M_i = \frac{q}{3}$$

(11)

$$\vec{V}_o = q \vec{V}_{im}$$

(12)

where q represents the MC input to output voltage ratio. The output and input side steady state currents are

$$\vec{I}_o = \frac{q \vec{I}_i}{Z_o}$$

(13)

$$\vec{I}_i = \frac{R_o}{Z_o} q \vec{V}_i$$

(14)

and the source current and voltage are

$$\vec{I}_s = (j \omega_o C_f + \frac{R_o}{Z_o^2} q^2 \vec{V}_i)$$

(15)

$$\vec{V}_s = (1 + j \omega_o C_f Z_i + \frac{R_o Z_o}{Z_o^2} q^2 \vec{V}_i)$$

(16)

where the input and output side impedances are defined by
To calculate the state space representation of the system as follows

\[
\frac{d}{dt}\vec{X} = A\vec{X} + B\vec{u}
\]

(19)

Equations (1)-(8) are linearized around steady state operating point calculated by equations (9)-(17). Considering the following vector of the state variables:

\[
\vec{X} = [\Delta i_{ad}, \Delta i_{d}, \Delta v_{id}, \Delta v_{iq}, \Delta i_{q}, \Delta v_{iq}, \Delta v_{gq}, \Delta v_{gq}]^T
\]

(20)

leads to

\[
A_1 = \begin{bmatrix}
-\frac{R_s}{L_i} & \omega_t & -1/L_i & 0 & 0 & 0 & 0 & 0 \\
-\omega_t & -\frac{R_s}{L_i} & 0 & -1/L_i & 0 & 0 & 0 & 0 \\
1/C_f & 0 & 0 & \omega_t & -q/C_f & 0 & q^2 R_o/C_f Z_o^2 & 0 \\
0 & 1/C_f & -\omega_t & 0 & 0 & 0 & 0 & q^2 R_o/C_f Z_o^2 \\
0 & 0 & q/L_o & 0 & -R_s/L_o & \omega_o & -q/L_o & 0 \\
0 & 0 & 0 & 0 & -\omega_o & -R_s/L_o & 0 & 0 \\
0 & 0 & -1/\tau & 0 & 0 & 0 & -1/\tau & 0 \\
0 & 0 & 0 & 1/\tau & 0 & 0 & 0 & -1/\tau \\
\end{bmatrix}
\]

(21)

The matrix \(B \) is not represented here because it has no effect on the stability.

2.2 Case 2: LC input filter and \(\vec{v}_{in} = \vec{v}_f \)

It is supposed that the modulation input voltage is measured at input filter (\(\vec{v}_{in} = \vec{v}_f \)) where \(\vec{v}_f \) can be calculated from following

\[
\vec{v}_f = L_f \frac{d}{dt}\vec{i}_s + j \omega_t \vec{i}_s + \vec{v}_i
\]

(22)

Therefore, after some manipulation we have

\[
A_2 = \begin{bmatrix}
-\frac{R_s}{L_i} & \omega_t & -1/L_i & 0 & 0 & 0 & 0 & 0 \\
-\omega_t & -\frac{R_s}{L_i} & 0 & -1/L_i & 0 & 0 & 0 & 0 \\
1/C_f & 0 & 0 & \omega_t & -q/C_f & 0 & q^2 R_o/C_f Z_o^2 & 0 \\
0 & 1/C_f & -\omega_t & 0 & 0 & 0 & 0 & q^2 R_o/C_f Z_o^2 \\
0 & 0 & q/L_o & 0 & -R_s/L_o & \omega_o & -q/L_o & 0 \\
0 & 0 & 0 & 0 & -\omega_o & -R_s/L_o & 0 & 0 \\
0 & 0 & -R_s/L_o / \tau L_i & 0 & L_s / \tau L_i & 0 & 0 & -1/\tau \\
0 & 0 & -R_s/L_o / \tau L_i & 0 & L_s / \tau L_i & 0 & 0 & -1/\tau \\
\end{bmatrix}
\]

(23)

2.3 Case 3: RLC input filter and \(\vec{v}_{in} = \vec{v}_i \)

The schematic of the proposed RLC filter is shown in Fig. 3b. The source voltage is

\[
\vec{v}_s = R_s \vec{i}_s + L_s \left(\frac{d}{dt} + j \omega_t \right) \vec{i}_s + \vec{v}_f
\]

(24)

The standard state space representation of (24) is
\[\frac{d}{dt} \bar{I}_s = \frac{1}{L_s} \bar{V}_s - \frac{1}{L_s} \bar{V}_f - \frac{R_x}{L_s} \bar{I}_s - j \omega_l \bar{I}_s \] (25)

The input filter inductor current is a state variable defined by

\[\frac{d}{dt} \bar{I}_f = \frac{1}{L_f} \bar{V}_f - \frac{1}{L_f} \bar{V}_i - j \omega_l \bar{I}_f \] (26)

If the source voltage \(\bar{V}_s \) is ideal and without distortion. The new state variables vector is

\[\vec{X} = [\Delta i_{sd}, \Delta i_{aq}, \Delta i_{id}, \Delta i_{iq}, \Delta v_{sd}, \Delta v_{aq}, \Delta v_{qf}, \Delta v_{qg}]^T \] (27)

And the matrix \(A_s \) is

\[
A_s = \begin{bmatrix}
-(R_x + R_f)/L_s & \omega_l & R_f/L_s & 0 & -1/L_s & 0 & 0 & 0 & 0 & 0 \\
-R_f/L_s & 0 & R_f/L_s & 0 & -1/L_s & 0 & 0 & 0 & 0 & 0 \\
0 & -R_f/L_s & \omega_l & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/C_f & 1/C_f & 0 & -\omega_l & 0 & 0 & 0 & 0 & -q/C_f & \gamma \\
0 & 0 & 1/C_f & 0 & -\omega_l & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -q/L_s & R_s/L_s & a_0 & -q/L_s & 0 & 0 \\
0 & 0 & 0 & 0 & a_0 & 0 & 0 & 0 & -\omega_l & 0 \\
0 & 0 & 0 & 0 & 1/\tau & 0 & 0 & -1/\tau & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/\tau & 0 & 0 & 0 & -1/\tau \\
\end{bmatrix}
\] (28)

where \(\gamma = q^2 R_s / C_f Z_a^2 \)

2.4 Case 4: RLC input filter and \(\bar{V}_{in} = \bar{V}_f \)

In this case, the voltage measurement point is at the input filter that is

\[\bar{V}_{in} = \bar{V}_f \] (29)

The linearized filter input voltage is

\[\Delta \bar{V}_f = R_s \Delta \bar{I}_s - R_f \Delta \bar{I}_f + \Delta \bar{V}_i \] (30)

Therefore, we have

\[\Delta \bar{V}_f = \frac{R_s}{\tau} \Delta \bar{I}_s - \frac{R_f}{\tau} \Delta \bar{I}_f + \frac{R_f}{\tau} \Delta \bar{V}_i - \frac{1}{\tau} \Delta \bar{V}_f \] (31)

The matrix \(A_s \) is

\[
A_s = \begin{bmatrix}
-(R_x + R_f)/L_s & \omega_l & R_f/L_s & 0 & -1/L_s & 0 & 0 & 0 & 0 & 0 \\
-R_f/L_s & 0 & R_f/L_s & 0 & -1/L_s & 0 & 0 & 0 & 0 & 0 \\
0 & -R_f/L_s & \omega_l & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/C_f & 1/C_f & 0 & -\omega_l & 0 & 0 & 0 & 0 & -q/C_f & \gamma \\
0 & 0 & 1/C_f & 0 & -\omega_l & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -q/L_s & R_s/L_s & a_0 & -q/L_s & 0 & 0 \\
0 & 0 & 0 & 0 & a_0 & 0 & 0 & 0 & -\omega_l & 0 \\
0 & 0 & 0 & 0 & 1/\tau & 0 & 0 & -1/\tau & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/\tau & 0 & 0 & 0 & -1/\tau \\
\end{bmatrix}
\] (32)

3 Stability Analysis

The benchmark system parameters are shown in Table 1. The stable operating region when the input filter is an LC circuit is depicted in Fig. 4. If the filter input voltage is used as the input into the modulation algorithm \((\bar{V}_{in} = \bar{V}_f) \), the digital filter time constant \((\tau) \) should be at
least 0.4 ms to guarantee the stability. Greater filter time constants reduce the speed of system response input side distortions. If the voltage at the filter input is fed to the modulation algorithm \(v_m = v_f \), the system becomes more stable. The digital filter time constant to ensure the stability over the entire operational region \((0.0 < q < 0.87)\) is about 0.23 ms.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source voltage</td>
<td>380 V (rms)</td>
</tr>
<tr>
<td>Input side frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Grid resistor</td>
<td>0.25 Ω</td>
</tr>
<tr>
<td>Grid inductor</td>
<td>0.4 mH</td>
</tr>
<tr>
<td>Filter inductor</td>
<td>0.6 mH</td>
</tr>
<tr>
<td>Filter capacitor</td>
<td>10.0 µF</td>
</tr>
<tr>
<td>Load inductor</td>
<td>20 mH</td>
</tr>
<tr>
<td>Load resistor</td>
<td>10 Ω</td>
</tr>
<tr>
<td>Output side frequency</td>
<td>25 Hz</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>4.0 KHz</td>
</tr>
</tbody>
</table>

The effects of the network inductance, the voltage measurement point and the digital filter time constant for the LC filter case is shown in Fig. 5. It can be seen the stable voltage ratio limit decreases as the network inductance increases regardless of the voltage measurement point. However, for the case of strong network with small inductive properties and without digital filter \((\tau = 0)\), measuring \(v_f\) will clearly increase the voltage ratio limit from 0.3 to 0.9. The difference between two measurement strategies becomes lower when a slow synchronous rotating digital filter having large time constant \((\tau = 0.4 \text{ ms})\) is employed. The input filter voltage measurement strategy establishes stable operation in ranges \((0 < q < 0.87)\) for network
inductance as large as 1.0 mH. However, the MC input voltage measurement strategy leads to instability when the network inductance is greater than 0.89 mH. Finally, it can be concluded that using v_f in the modulation algorithm increases the stability of the MC drive for all network conditions.

![Graph showing effect of network inductance, voltage measurement point and digital filter time constant (RL filter case) on stability.](image)

Fig. 5. Effect of network inductance, voltage measurement point and digital filter time constant (RL filter case) on stability.

For the RLC filter case the effect of the filter resistor, the digital filter time constant and the voltage measurement point on the stability of the system is shown in Fig. 6. By using the v_f as the input of the modulation algorithm, the stable operating region is increased as does the previous case. Reduced values of the input filter resistance will extend the stable operating region. However, this increases the filter losses. In addition, this voltage measurement strategy may deteriorate the input power factor [2]. In the following section, the significant change of losses and power factor is evaluated.

4 Effects of Input Filter

4.1 Loss

The input filter resistor increases the stability of the MC drive system as shown in the previous section. The scope of this section is to calculate the steady state loss resulting from the filter resistor. With respect to Fig. 3b we have
Fig. 6. Effect of digital voltage measurement point, input filter resistor and digital filter time constant (RLC filter case) on stability.

$$\bar{I}_r = \frac{j \omega_0 L_f}{R_f + j \omega_0 L_f} \bar{I}_s$$

(33)

where \bar{I}_r is the input filter resistor current. The capital letters are used to define variables in steady state condition. Therefore, the power loss in the input filter is

$$P_{loss} = R_f \left| \frac{j \omega_0 L_f}{R_f + j \omega_0 L_f} \bar{I}_s \right|^2$$

(34)

With definition of output power as

$$P_{out} = R_o \left| \frac{Q V_f}{Z_o} \right|^2$$

(35)

the matrix converter efficiency can be calculated. Fig. 7 shows that the efficiency of the system is almost 100% even for the smallest value of the filter resistor. Therefore, choosing the suitable value for the filter resistor to ensure the stability does not decline the efficiency.

4.2 Phase shift

If the parallel combination of an inductor and a resistor of the RLC input filter causes a large phase difference between \bar{v}_i and \bar{v}_f, the input power factor will no longer be unity when the voltage is measured across the filter capacitor. To determine the phase shift, the voltage drop across the filter can be calculated by
Fig. 7. Effect of the input filter resistor and the voltage transfer ratio on the MC loss.

\[V_{\text{drop}} = \frac{j \omega L_i R_f}{R_f + j \omega L_f} I_i \]

(36)

Substituting \(\bar{T}_s \) from (15) in (36) leads to

\[V_{\text{drop}} = \frac{j \omega L_i R_f}{R_f + j \omega L_f} (j \omega C_f + \frac{R_o}{Z_o^2} q^2 \bar{V}_i) \]

(37)

Regarding \(R_f \gg \omega L_f \), the above expression is simplified as

\[V_{\text{drop}} = \frac{\omega R_o q^2}{L_j Z_o} |\bar{V}_i| \angle (\frac{\pi}{2} - \tan^{-1}(PF_{\text{load}})) \]

(38)

where \(PF_{\text{load}} \) is the load power factor. For parameters shown in Table. 1, we have

\[\omega R_o L_f / Z_o^2 = 0.017 \]

which leads to \(|V_{\text{drop}}| \leq 0.01 |\bar{V}_i| \). Therefore, the voltage drop across the input filter is negligible, so a considerable phase shift between \(\bar{V}_i \) and \(\bar{V}_f \) is not produced.

4.3 Frequency Response

The LC filter input current transfer function in Laplace (s) space is

\[I_i(s) = \frac{C_f s}{1 + L_j C_f s^2} V_f(s) + \frac{1}{1 + L_j C_f s^2} I_i(s) \]

(39)

And for the RLC filter we have,

\[I_i(s) = \frac{(R_f + L_f s) C_f s}{R_f + L_f s + L_j C_f s^2} V_f(s) + \frac{R_f + L_f s}{R_f + L_f s + L_j C_f s^2} I_i(s) \]

(40)

Therefore, the grid current \((I_g) \) is affected by the input voltage \((V_f) \) and the MC input current \((I_i) \). The filter should eliminate the switching harmonics of \(I_i \) to increase the quality of the grid current. Fig. 8 shows the frequency response of the transfer function between the input and the grid currents. There is the possibility of magnification of the input current distortions at the filter resonance frequency. The resonance frequency is calculated by \(f_{\text{res}} = 1/2 \pi \sqrt{L_j C_f} \).
However, the resonance can be avoided by proper choice for the filter resistor. Fig. 8 shows that for $R_f = 5 \, \Omega$, the magnitude of the frequency response is greatly reduced. Therefore, the input current distortions are not amplified. Reduction of the filter resistor decreases the magnitude of the resonance but at the same time, this diminishes the filter ability for reducing the input filter distortions. Fig. 9 shows the effect of the filter resistor on the frequency response magnitude at the switching frequency. Reducing the R_f decreases the filter ability for switching harmonic elimination. As a result, a careful choice for the filter resistor is necessary to compromise the harmonic reduction and the distortion amplification because of the resonance occurrence.

It can be concluded that by using an RLC filter, measuring the voltage at filter input and a proper choice of filter resistance the stable operation is provided and the need for the digital filter is eliminated.

5 Simulation Results

The benchmark system shown in Fig. 2 is simulated using PSCA/EMTDC software to confirm the results of the proposed analysis. The space vector modulation (SVM) algorithm is implemented.

![Fig. 8. The frequency response of LC and RLC input filters.](image-url)
Fig. 10a shows when the digital filter time constant is zero, in case of the LC filter and the measured voltage at the terminal of the filter capacitor, the system will move towards the unstable region if q is greater than 0.33. From the results presented in Fig. 4, clearly without using the digital filter, the MC is unstable when q goes beyond 0.3. Therefore, the simulation and analytical results are in good agreement. As it is clear from Fig. 4, for the stable operation of the MC the digital filter time constant should be around 0.4 ms. This result is approved by simulation as shown in Fig. 10b. For $\tau = 0.4$ ms, the MC system is stable for q between 0.1 and 0.87.

If the voltage measurement point is at the input filter ($v_{im}=v_f$), without digital filter, the analytical result shown in Fig. 10c reveals that when q is greater than 0.47 the system is unstable. The simulation result shows the maximum limit of q for stable operation is 0.43. Therefore, the simulation results validate the findings of the linear system eigenvalue analysis in this case.

This system can be stabilized by an appropriate choice for τ which can be any value greater than 0.25 ms according to Fig. 4. By supposing $\tau = 0.25$ ms, the simulated three phase input currents shown in Fig. 10d are stable independent of the value of q. It can be concluded that the eigenvalue analysis is a proper tool to evaluate the stability if the LC input filter is used.
Fig. 10. The voltage transfer ratio (upper) and the input current (bottom) of the matrix converter for the LC input filter configuration (a) $\tau = 0, \bar{v}_{im} = \bar{v}_f$, (b) $\tau = 0.4 \text{ ms}, \bar{v}_{im} = \bar{v}_f$, (c) $\tau = 0, \bar{v}_{im} = \bar{v}_f$, (d) $\tau = 0.4 \text{ ms}, \bar{v}_{im} = \bar{v}_f$.

Fig. 11a shows that without using the digital input filter, even if the voltage is measured at the filter input and the RLC filter is used, the system experiences instability for q greater than 0.61. The filter resistor is $10 \, \Omega$. Fig. 6 demonstrates that for this value of filter resistance, the maximum limit of q prior to instability is 0.68. The analytical and simulation results show a good agreement. For this configuration and the given set of parameters, using \bar{v}_f for the modulation algorithm ensures stable operation over all q values as shown in Fig. 6 and Fig. 11b. In this case, there is no need for a digital filter.

Fig. 12 shows the THD of the source and load current for the LC and the RLC filter types. For the LC filter type, the THD is plotted with and without presence of the digital filter.
Fig. 11. The voltage transfer ratio (upper) and the input current (bottom) of the matrix converter for the RLC input filter configuration (a) $\tau = 0, v_{im} = v_f$ (b) $\tau = 0, v_{im} = v_f$.

Regarding the source current, Fig. 12a indicates that using the RLC filter type and measuring the modulation voltage before the input filter leads to minimum current distortion with the maximum THD value below 7%. Without using the digital filter, the source current of the system with the LC filter is distorted. The digital filter can stabilize this system; however, the THD of the source current remains considerably higher than the acceptable range.

THD of the load current which is shown in Fig. 12b indicates that the load current contains negligible distortions for all cases as long as the system is stable. This is an interesting characteristic of the matrix converter that generates the high-quality output current even if the input current is highly distorted. Moreover, the presence of the digital filter besides increasing
the stable operation range improves the load current quality when the LC filter configuration is used.

6. Conclusion
With respect to stability issue, analytical and simulation studies show that the RLC input filter configuration provides superior operation of a matrix converter over the LC filter. Moreover, the modulation algorithm fed by the voltage at the input filter further improves the stability of the system. A proper choice of the filter resistor along with use of the measured voltage at the input filter leads to stable operation of the system over all the voltage ratio ranges: \(0 < q < 0.87\). This simplifies the modulation algorithm in the absence of the digital filter at the input voltage. However, the power loss in added resistor and the deviation of the input power factor from unity can be drawbacks. These are calculated and shown that the drop of efficiency arising from the filter resistor, and the change in the input power factor are negligible.

References
[10] D. Casadei, G. Serra, A. Tani, and L. Zarri, “Effects of input voltage measurement on stability...

