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Abstract: Geometric Dilution of Precision (GDOP) is a coefficient for constellations of 

Global Positioning System (GPS) satellites. These satellites are organized geometrically. 

Traditionally, GPS GDOP computation is based on the inversion matrix with complicated 

measurement equations. A new strategy for calculation of GPS GDOP is construction of 

time series problem; it employs machine learning and artificial intelligence methods for 

problem-solving. In this paper, the Time Delay Neural Network (TDNN) is introduced to 

the GPS satellite DOP classification. The TDNN has a memory for archiving past event that 
is critical in GDOP approximation. The TDNN approach is evaluated all subsets of 

satellites with the less computational burden. Therefore, the use of the inverse matrix 

method is not required. The proposed approach is conducted for approximation or 

classification of the GDOP. The experiments show that the approximate total RMS error of 

TDNN is less than 0.00022 and total performance of satellite classification is 99.48%. 
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1 Introduction1 

HE satellite-based navigation system is conducted 
based on the Global Positioning System (GPS). 

This system is based on radio communication which 

broadcasts precise timing signals. GPS user's location is 

determined on the Earth based on radio signals [1]. The 

number of GPS satellites in space is 24, it is designed 

based on signal transmission by 2 frequency carrier 

waves and 2 sets random telegraphic codes (C/A code 

and P-code) [2, 3].  The Geometric Dilution of 

Precision (GDOP) is relationship between measurement 

error and position determination error; it is a factor that 

describes the effect of geometry on between 

satellites [4, 5]. Therefore, it is sometimes necessary to 
select the satellite subset that offers the best or most 

acceptable solution [6].  The common method for 

calculating GDOP is matrix inversion, this method is 

                                                        
Iranian Journal of Electrical and Electronic Engineering, 2020. 

Paper first received 19 October 2018, revised 13 August 2019, and 

accepted 25 August 2019. 

* The authors are with the Department of Electrical Engineering, 

Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran. 

E-mails: refan@sru.ac.ir and a.dameshghi@sru.ac.ir. 

Corresponding Author: M. H. Refan. 

designed based on all combinations and select the 

minimum one [7]. However, this process can guarantee 

to achieve the optimal subset, but the computational 

complexity is usually too intensive to be practical [8]. 

In [9, 10], the fundamentals of GPS GDOP are 

described. In [8] a method is presented thorough of the 

GPS GDOP metric and the associated bounds of GDOP 

based on formal linear algebra. Artificial Neural 

Networks (ANNs) is employed to rephrase the problem 

as function approximation [11]. The approximation 

problem is conducted based on a variety of ANN-based 

methods [12, 13]. The Support Vector 
Regression (SVR) method is another approximation 

strategy for GSP GDOP calculation [14]. Genetic 

Programming (GP) is used for GDOP approximation 

in [15]. In [16], backpropagation training algorithms is 

used for classification of GPS satellites. In [18], a new 

method is proposed based on novel NN for GPS GDOP 

classification; it used a neuro-fuzzy inference system for 

approximation. In [19], a new method based on GA is 

proposed for GDOP analysis; in this paper for proper 

selection of satellite a hybrid method for approximation 

of GDOP using optimum number of satellites based on 
popular optimization technique is introduced. In another 

paper [20], a GA method is used for optimal satellite 
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selection for GPS navigation. The weighted GDOP is 

introduced in [21] for applications of multi-GNSS 

(global navigation satellite system) constellations.  A 

satellite selection algorithm based on Particle Swarm 

Optimization (PSO) is proposed in [22]. A fast satellite 

selection algorithm is proposed in [23], this method is 

based on floating high cut-off elevation angle based on 

ambiguity dilution of precision (ADOP) for 

instantaneous multi-GNSS single-frequency relative 

positioning. 

   In this paper, the Time Delay Neural Network 
(TDNN) method is used to reduce the computational 

complexity and speed up of the computation. The small 

training time is one of the best features of this approach 

in comparison to the other forms of NNs. The TDNN 

method requires a small number of computations for 

output calculation [18]. In this paper, TDNN is utilized 

to GDOP approximation and classification. 

The TDNN is a type of recurrent neural 

networks (RNNs) [24, 25]. The RNN architecture 

presented in these papers utilizes a time-window of past 

values of a given time-series for one-step and multi-step 
ahead approximations. 

   The main innovation of the article is as follows: 

1. One of the innovations is the use of a Time 

Delay Neural Network (TDNN) instead of the 

multilayered perceptron (MLP), which is better 

adapted to the dynamics of the system. 

2. The proposed method is implemented on an 

actual navigation simulator. 

   The remained of the paper is organized as follows. In 

Section 2, a brief review of GPS GDOP computation is 

discussed. TDNN method is discussed in Section 3. 
Section 4 shows the experimental setup and 

implementation procedure. The experimental result is 

presented in Section 5, and finally, our study is 

concluded in Section 6. 
 

2 GDOP 

   A simple interpretation of how much one unit of 

measurement error contributes to the derived position 

solution error is derived based on GPS GDOP factor. 

Four satellites for user position determination is the 
requirement of GPS. Fig. 1 is satellite geometry 

representation, based on this figure good satellite 

geometry is obtained if the four satellites spread apart; 

in this condition, GDOP is minimum value. The effect 

of satellite geometry is measured by a GDOP figure. 

   The value of the GDOP is changed over the time 

based on relative motion of the satellites and the 

receiver(s). The azimuth angle is a factor for the best 

four-satellite selection. Elevation and azimuth of 

satellite according to (1) are involved in the calculation 

of GDOP factor [12-14]. 
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The GDOP factor is (2): 
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where GTG is a matrix with 4×4 rank, the number of 

eigenvalues if this matrix is four, λi (i = 1, 2, 3, 4). The 

representation for four eigenvalues is based on λi
-1. 

Based on the fact that the trace of a matrix is equal to 

the sum of its eigenvalues (2), it can be represented 

as (3): 
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The mapping is performed by defining the four 

variables. 
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The λ-1 can be viewed as a functional R4 → R4 mapping 

G to λ-1 (Type 1). 
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The GDOP can be viewed as a functional R4 → R1 

mapping from Ḡ to GDOP (Type 2). 
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(a) 

 
(b) 

Fig. 1 Satellite geometry representation; a) Good DOP and 
b) Poor DOP. 
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3 Theory of TDNN 

  The weakness of the Feed Forward Neural 

Networks (FFNNs) is lack of memory; memory helps to 

create a communication map between input behaviors 

and output behaviors. In this paper, a TDNN is utilized 

for approximation and classification the GDOP. The 

utilized method is reduced structure of NARX-NN 

model. The NARX-NN and TDNN are based on 

RNNs [26, 27]. A type of RNN is NARX-NN. This 

network is used for modeling nonlinear systems. With a 

fixed step time, the proposed structure is such that the 
output is given as feedback to the input. The NAREX 

model is as (12). 
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where x(n) and y(n) are the input and output of the case 

study system at time step n, dx is input memory order 
and dy is output memory order. The nonlinear mapping 

function show with f(.).The output of the NARX-NN is 

as (13). 
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where wh0, wih, and wjh; i = 1, 2, …, dx; j = 1, 2, …, dy; 

h = 1, 2, …, N are the network weight vectors, bh and b0 

are the biases, the activation functions of the hidden and 

output layers are fh and f0, receptively. Fig. 2 is the 

structure of NARX NN. Based on this figure, NARX 

model have one input layer, one hidden layer and one 
output layer as three main layers. From this figure, x(n) 

and z-1 represents the unit time delay and external input, 

receptively. The NARX typical structure is based on a 

feedback connection from the output neuron. However, 

the NARX network is designed as a TDNN. For this 

goal, a reduced structure should be designed. The 

TDNN model is a feed-forward network without the 

delayed feedback loops [28]. A TDNN equation is 

as (14). In TDNN, (13) is reduces to (15). 
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   In the TDNN approximation model is based on past 

values of external input x(n). In traditional RNNs in 

contrast proposed TDNN the previously input is used as 

the same time-series that prediction should be done for 

it. Fig. 3 is the structure of TDNN. This topology is a 

reduced structure from NARX-NN by eliminating the 

tapped delayed lines for the output time-series. 
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Fig. 2 The structure of NARX–NN. 
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Fig. 3 The TDNN topology. 

 

3.1 Training of TDNN 

   Because of the similar structure of TDNN and 

multilayered perceptron (MLP), backpropagation can be 

applied to train the TDNN. The TDNN has three layers, 
including the input layer, hidden layer, and output layer. 

Back-propagation through time [29] is used to train the 

TDNN of this model. The performance index of the 

algorithm is 
 

2

0
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

  (16) 

 

where e(k) is the error between model output and 

training goal for each input at discrete time. Then, the 

chain rule of each error’s gradient can be expressed 

as (17): 
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where ωij
l is the weight of the neuron I in the l-th layer 

to the neuron j in the (l+1)-th layer. yj
l the output of the 

neuron in the l-th layer. For the layers l: 1 ≤ l ≤ L-1. 
 

 

 

 
1

, 0

0, Other

l

j l

l

j

y k t k t k T

x k


    

 
 

 (18) 

 

where xj
l is the input of the neuron i in the l-th layer and 
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ω is a vector of the weight, whose length is Tl. From 

(16)–(18), (19) and (20) can be obtained as the weight 

algorithm used to train the TDNN, where 
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where Δl
m(k) = [δl

m(k) δl
m(k+1) … δl

m(k+Tl-1)], η the 

coefficient used to adjust the step of BP algorithm, 

usually, it is between 0 and 1, xi
l(k) is the input of the 

neuron i in the l-th layer and f() is the Sigmoid function 

used in the neuron. 

 

4 Experimental Setup and Implementation 

   The experimental setup and implementation structure 

of the proposed method is based on Fig. 4. 

 

4.1 Proposed Strategy for Implementation 

   The proposed strategy in this paper includes various 

blocks as described below. 

(a) The receivers are placed at the same point, which 

causes the sharing satellite of two receivers and 
calculations with the same inputs. 

(b) An antenna for the receiver that is for inverse 

matrix calculation. 

(c) An antenna for the receiver that is used TDNN 

approximation and classification. 

(d) An experimental board to prepare the practical 

data. 

(e) Computer Number 1 for GDOP computing based 

on the inverse matrix. The input of this system 

(from receiver #1) includes elevation and azimuth 

of satellite according to (1). This information is 

provided on the basis of reading the binary 

protocol information. 
(f) Computer Number 2 for GDOP computing based 

on approximation and classification using the 

TDNN model. The input of this system (from 

receiver#2) is GDOP. This information is provided 

on the basis of reading the NMEA protocol 

information. 

(g) The block diagram of GPS GDOP clustering using 

TDNN. The GDOP classifier is employed for 

selecting one of the acceptable subsets. 

(h) The “h” subsection is for the two types of GDOP 

mappings, this topology is input-output 
communication based on TDNNs model. This map 

is nonlinear; this map cannot be solved 

analytically. The proposed NN approximates it 

easily and precisely. 

 

  
Fig. 4 Proposed strategy. Fig. 5 Experimental hardware. 
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4.2 Experimental Setup 

   Fig. 5 shows the hardware test rig, this hardware is 

implemented for the experimental setup. The 

compassion of the accuracy inverse matrix method with 

the accuracy of the TDNN proposed method is 

conducted based on this experimental setup. The 

microcontroller of this setup is ARM 7X 256. This setup 

is programmed by a USB connection. This hardware is 

responsible for correcting and displaying the GDOP. 

Generally, the hardware is designed on a two-layer 

board and it has several modules and a microcontroller. 
Based on two separate antennas, the proposed setup 

uses two GPS receivers simultaneously. In this research, 

two low-cost GPS (LEA-6H) [29] receivers 

manufactured by U-Blox Company is used. The LEA–

6H receiver is a single-board, fifty parallel-channels, 

L1-only coarse acquisition (C/A) code capability. This 

language protocol of receiver is a binary message, 

NMEA and RTCM. The LEA – 6H is tracked 16 

satellites and is operated with single frequency. The 

selection of the satellites is a capability of this receiver 

that is used for the implementation of this paper 
proposed strategy. 
 

4.3 Setting of Proposed Structure 

   The hardware to be located at the top of the building 

of the building of GPS Research Lab in Shahid Rajaee 

Teacher Training University, which has the approximate 

position of (xp = 3226206.85 yp = 4054570.66 

zp = 3709308.89) m in WGS-84 ECEF coordinate. The 

GDOP is computed every 2 min by hardware and 

receiver. Simulation is conducted using a core i7 
2.90 GHz computer. The MATLAB 2016a version 

software is used for the computer coding. In this paper, 

the TDNN model is utilized to perform the Type 1 and 2 

mappings. The accuracy of the GDOP approximation 

models is evaluated by (21): 
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RMS x x
M 

   (21) 

 

where xi is the GDOP from direct matrix inversion and 

x'i is output from the approximation function obtained 

from approximation methods, M is the number of test 

data. The GDOP approximation error is defined as (22): 
 

1,2  , matrix TDNN GPSE GDOP GDOP   (22) 
 

   To evaluate the classification performance of the 

TDNN algorithm, the GDOP quality range must be 

clear. GDOP factor value rarely is close to 1. When this 
factor is much higher than 6 the positioning is 

impossible. Range 0 < g ≤ 2 is excellent and GPS 

receiver shows more accurately positioning. Table 2 

shows the GDOP ratings. 
 

5 Experimental Result 

5.1 Evaluation of TDNN 

   The GDOP calculation based on matrix inverse is 

according to (2). The average value of GDOP for our 

GPS data is 2.354 and the run time is about 0.112 s. 

Fig. 6 is a represented of all satellites in view. Fig. 7. is 

the DOP as function time for all satellites. 

   The GDOP solution by matrix inversion shows with 

black point in Fig. 8. In this figure, the green point 

shows TDNN approximation performance (Type 1) and 

the red point is very close to the green point which 

means the excellent approximation performance for 

TDNN. Fig. 9 shows GDOP approximation error. The 

TDNNs have great approximation ability and suitability 
in GDOP estimation. In Fig. 10 the second map is used 

to approximate GDOP by TDNN. This figure shows 

GDOP approximation by TDNN (Type 2) and the 

purple point closes to the green point. The 

approximation error of this type is more concentrated 

around zero (Fig. 11). Results showed that, after 

approximation, the one-output architectures, provided 

better GDOP mapping accuracy than the four-output 

architectures. RMS error for TDNN (Type 2) is 0.002 

that is less than the first type approximation error (Table 

2). The results of Figs. 8 and 10 are obtained with 100 
epoch and 4 neuron hidden layers. 

 
Table 1 Classification range of GDOP. 

Class number GDOP value Rating 

Class 1 0 < g ≤ 2 Excellent 
Class 2 2 < g ≤ 3 Good 
Class 3 3 < g ≤ 4 Moderate 
Class 4 4 < g ≤ 5 Fair 
Class 5 > 5 Poor 

 

 
Fig. 6 Sky plot in view of satellites. 

 
Table 2 Statistical measures of approximations error. 

Parameters RMS MAX MIN AVE VAR 

E1 (Type1) 0.00029 1.1 0 0.025 0.126 
E1 (Type 2) 0.00023 0.65 0 0.016 0.037 
E2 0.00123 1.8 0.08 0.045 0.115 

 

 
Fig. 7 GDOP value. 
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Fig. 8 GDOP approximated by TDNN (Type 1). 

 

 
Fig. 9 GDOP approximation error (Type 1). 

 

 
Fig. 10 GDOP approximated by TDNN (Type 2). 

 

 
Fig. 11 GDOP approximation error (Type 2). 
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   The E2 in Table 2 is the error between internal 

algorithms of GPS receiver with the output of the 

inverse matrix. It is clear that the proposed method has 

better accuracy than it. There must be a trade-off for the 

selection of training patterns. Increasing the number of 

hidden neurons and increasing the training patterns has 

some disadvantages, including high memory size for 

software implementation and time complexity for 

hardware implementation. 

   This paper 100 epochs with 4 neuron hidden layer is 

best in terms of accuracy and speed (tradeoff). The low 
training time for real-time operation is very important. 

Increasing the number of neurons or epochs increases 

the training time to minutes and hours, which is not 

suitable for positioning. The classification performances 

by TDNN are shown in histogram form (Fig. 12). This 

result is based on 3 neurons hidden layer and 50 epochs. 

As can be seen, the TDNN algorithm is successful in 

classification. In this algorithm, in fair and poor 

categories are 1.2% and 1.4% errors, respectively. 

Recognition present is given by (23): 
 

 1

1
100

1 error percent for any class

m

i m



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The algorithm has a success rate of 99.48 present. 

Table 3 and Fig. 12 show TDNN clustering results for 

GPS GDOP. 

5.2 Compression 

   The results of GPS GDOP approximation using FFNN 

with BP are shown in Table 4. As it is shown the best 

result is obtained with 4 neurons in the hidden layer. In 

order to improve the accuracy, results are calculated 

after 10-50-100-150 epoch’s training. Thus, increasing 

the hidden layer neurons number does not necessarily 

increase accuracy. Increasing the number of epoch’s 

increases accuracy, but it increases the computational 

time that is not desirable. There must be a tradeoff 

between the accuracy and speed. The execution time (s) 
for different case shows in Table 4. The TDNN results 

are shown in Table 5. Based on different neuron 

numbers in the hidden layer and different epoch’s, 

Table 5 shows the RMS error for GDOP approximation. 

Based on the new topology and improved structure of 

TDNN, the TDNN average error is less than FFBP. It is 

illustrated in this table that with four-neuron in hidden 

layer, result is best. The run time is reported in the last 

column of Table 5. Table 6 is compression TDNN 

method with [12, 14 15] in classification accuracy, the 

results of this table show that the proposed method is 
more or equal to other methods. Based on simulation 

results with a CORI7 (CPU), TDNN has the least time 

consuming compared to other methods. 

 

 

Table 3 TDNN clustering results for GPS GDOP. 

Cluster 1 2 3 4 5 Total Err. [%] 

Excellent 327 0 0 0 0 327 0 
Good 0 824 0 0 0 824 0 

Moderate 0 0 199 0 0 199 0 
Fair 0 0 0 81 1 82 1.2 
Poor 0 1 0 0 67 68 1.4 

 

Fig. 12 GDOP classification result. 
 

Table 4 FFNN-BP GDOP approximation results. 

N. neuron 

1
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3 8.09e−04 0.018 6.09e−04 0.028 4.19e−04 0.088 3.09e−04 0.118 
4 5.03e−04 0.018 3.03e−04 0.028 2.86e−04 0.085 2.01e−04 0.113 

5 5.11e−04 0.021 4.11e−04 0.028 3.18−04 0.085 4.11e−04 0.121 
6 7.98e−04 0.026 5.98e−04 0.048 4.98e−04 0.108 3.98e−04 0.121 

Average 6.55e-04 0.020 4.80e-04 0.096 3.80e-04 0.091 3.29e-04 0.118 
 

Table 5 TDNN GDOP approximation results. 
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3 9.99e−04 0.012 5.59e−04 0.128 3.63e-04 0.188 2.09e−04 0.218 
4 4.33e−04 0.012 2.68e−04 0.028 2.20e-04 0.035 1.86e−04 0.213 

5 4.43e−04 0.012 3.11e−04 0.028 2.86e-04 0.045 4.11e−04 0.221 
6 5.88e−04 0.021 4.98e−04 0.065 3.87e-04 0.118 3.98e−04 0.291 

Average 6.15e-04 0.014 4.09e-04 0.062 3.14e-04 0.096 3.01e-04 0.235 
 

Table 6 Compression TDNN method with other methods. 

Method TDNN BP [12] SVM [14] GP [15] 

Accuracy 99.48 91 98.40 99.60 
Time Complexity 0.028 0.096 0.125 0.056 
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6 Conclusion 

   This paper is presented a study on the approximation 

and classification of GPS GDOP using TDNN. The 

TDNN is compared with other methods.  The GPS 

GDOP approximation is a problem with nonlinear 

behavior.  The experimental results show that this 

method has better performance than other methods. 

More accurate calculation of GDOP will increase the 

accuracy of low-cost GPS receiver. The TDNN-based 

GDOP approximation and classification is successfully 

conducted. The advantages of the TDNN network are 
summarized as follows: a simple local neural network 

that can treat as a lookup table, fast learning speed, high 

convergence rate, good generalization capability, and 

ease of implementation by hardware, etc. The 

experimental results show that the TDNN clustering for 

GDOP is highly effective. The average RMS error for a 

TDNN approximation is 3.14e-04 and the correct 

clustering percentage is more than 99%. This result 

indicates good clustering. The results demonstrate the 

superiority of the proposed algorithm with respect to the 

receiver internal algorithm. 
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