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Abstract: In this study, a mathematical model is developed based on algebraic equations 

which is capable of generating artificially normal events of electrocardiogram (ECG) 

signals such as P-wave, QRS complex, and T-wave. This model can also be implemented 

for the simulation of abnormal phenomena of electrocardiographic signals such as ST-

segment episodes (i.e. depression, elevation, and sloped ascending or descending) and 

repolarization abnormalities such as T-Wave Alternans (TWA). Event parameters such as 

amplitude, duration, and incidence time in the conventional ECG leads can be a good 

reflective of heart electrical activity in specific directions. The presented model can also be 

used for the simulation of ECG signals on torso plane or limb leads. To meet this end, the 

amplitude of events in each of the 15-lead ECG waveforms of 80 normal subjects at MIT-

BIH Database (www.physionet.org) are derived and recorded. Various statistical analyses 

such as amplitude mean value, variance and confidence intervals calculations, Anderson-

Darling normality test, and Bayesian estimation of events amplitude are then conducted. 

Heart Rate Variability (HRV) model has also been incorporated to this model with HF/LF 

and VLF/LF waves power ratios. Eventually, in order to demonstrate the suitable flexibility 

of the presented model in simulation of ECG signals, fascicular ventricular tachycardia (left 

septal ventricular tachycardia), rate dependent conduction block (Aberration), and acute Q-

wave infarctions of inferior and anterior-lateral walls are finally simulated. The open-

source simulation code of above abnormalities will be freely available.  
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1 Introduction 
First models of heart refer to middle age and 

renaissance era depicted in the Leonardo da Vinci’s 

drawings [1]. Generally, modeling is an abstraction by 

which it would be possible to move from the known to 

the unknown as to the resulted model is consistent with 

observations and can be used for the prediction of 

unobserved set. The major aims of modeling can be 

summarily stated as management and control, prediction 

and simulation of phenomena, as well as education and 

familiarity with complicated understudy phenomena [1, 
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2]. Modeling of the electrical activity of heart as a 

complicated system can be conducted using 

microscopic methods which are based on cellular 

structure and dynamics, cellular automata [3], and 

reaction diffusion systems [4], or macroscopic 

approaches which are based on observed electrical 

behavior of the heart on the skin surface [5, 6]. Single-

lead [5], multi-lead [7] and high-resolution multi-lead 

[8, 9] electrocardiographic signals as electrical skin 

surface recordings can be a useful way in the 

macroscopic modeling of the heart. Some events in the 

electrocardiogram signals are indicators of specific 

electrocardiographic occurrences, the most typical of 

which in normal conditions are P-wave, QRS complex, 

and T-wave (Sometimes U-wave) that happen relative 

to each other with regular duration. Furthermore, the 

morphology of P, QRS, and T waves can vary in 

different leads regarding the fact that each lead 

illustrates a distinct picture of the heart electrical 

activity in a specific direction [10, 11]. For instance, 

when the ventricular septum is normally depolarized 

from the left side to the right side, R-wave and Q-wave 

will be observed in chest leads V1 and V6, respectively. 
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However, in the depolarization of the ventricular main 

muscle mass, S-wave and R-wave will instead be seen 

in leads V1 and V6 [10]. Depending upon the distance 

and orientation of the lead relative to the heart, the 

amplitudes of waves in each lead will differ from those 

in the other leads [10, 12]. 

The aim of this study is to achieve knowledge about 

the distribution of wave amplitudes relative to each 

other in a single ECG lead and relative to their 

corresponding waves in the other leads as well as 

developing a model based on this information in order 

to simulate some normal and abnormal events. To meet 

this end, the amplitude of events in each of the 15-lead 

ECG waveforms of 80 normal subjects at MIT-BIH 

Database (www.physionet.org) are derived and 

recorded. Various statistical analyses such as amplitude 

mean value, variance and the corresponding confidence 

intervals calculations, Anderson-Darling normality test 

[13], and Bayesian estimation of events amplitude are 

then conducted. A Gaussian (normal) probability 

density function (pdf) is then assumed for each of event 

differences with mean values and variances obtained 

from statistical analyses. Afterwards, a Bayesian 

estimator of the elevation of each event in all leads is 

designed with the amplitude of P-wave in lead 1 as an 

input. If so, the 15-lead ECG signal generator will 

consequently be created. In order to simulate the 

interaction of regulating sympathetic and 

parasympathetic mechanisms in the modulation of QRS 

complexes, the original work of McSharry-Clifford 

(2003) [5] is used in the next step and waves with 

HF/LF and VLF/LF power ratios (HF: high frequency, 

LF: low frequency and VLF: very low frequency), are 

incorporated to the power spectrum of RR-tachogram 

[5, 14]. The resulted algebraic model of this study has 

the following characteristics: 

• The model parameters have independent 

effects on the model output events, i.e. the 

amplitude, duration, and incidence time of each 

event can directly be considered as inputs to 

the program.  

• This model is capable of generating transient 

ST-segment episodes such as depression, 

elevation, and sloped ascending or descending, 

[15].  

• This model consists of algebraic mathematical 

equations Therefore, there would be no need to 

numerical solution routines. 

Finally, to illustrate the capabilities and flexibility of 

the presented model in generating artificial arrhythmias 

and ECG signal abnormalities, fascicular ventricular 

tachycardia (left septal ventricular tachycardia), rate 

dependent conduction block (Aberration), and acute Q-

wave infarctions of inferior and anterior-lateral walls 

are simulated. The open source simulation code of the 

aforementioned abnormalities will be freely available. 

 

2 Statistical Analysis of Wave Amplitudes 
For the aim of statistical analyses of events 

amplitudes and finding the corresponding relation 

between them in each lead, the 15-lead ECG data of 80 

normal subjects were derived from the MIT-BIH 

DATABASE (www.physionet.org). The position of 

electrodes on the body surface related to each lead can 

be seen in Fig. 1. The wave amplitudes of each lead 

were then obtained and recorded by implementing the 

wave detection algorithm of WaveForm DataBase 

(WFDB), [16]. The difference between the events 

amplitudes, i.e. P-Q, P-R, P-S, P-T, Q-R, Q-S, Q-T, R-

S, R-T, and S-T were then calculated for all 15-lead 

ECGs. It should be noted that Q-waves were not 

observed in some leads such as MLV1, MLV2, and 

MLV3 (see Table 2). Statistical analyses such as mean 

value and variance, and the corresponding confidence 

intervals calculations were then conducted as follows. 

Confidence interval (CI) of a parameter which has 

wide applications in engineering statistical analyses is 

actually an interval estimate of that parameter and has 

two characteristics: First, the point estimation of the 

parameter is located in this interval. Second, there 

would be a high probability for the true value of the 

parameter to belong to this interval. In this study, the 

results of the CI and variance calculations will be 

presented. More information about the CI and variance 

equations and the corresponding calculations can be 

found at [13]. 

To calculate the CI, it can be shown that if 
SM

µ̂  and 

2ˆ
SV

σ  represent the mean value and variance of n number 

of samples from a random population (
n

xxx ,...,,
21

=X ) 

with normal distribution and unknown variance, then a 

confidence interval of  100(1-α) % for the true mean 

value of observations, 
T

µ , can be obtained from the 

following equations, [13], 
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in which, ),( nt τ  is 100×τ percentage point from t-

distribution of n degrees of freedom and can be obtained 

from the following equation 
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Also to find the CI for the variance, If 
SM

µ̂  and 2ˆ
SV

σ  

represent the mean value and variance of n number of 

samples from a random population with normal 

distribution (
n

xxx ,...,,
21

=X ) and with unknown 

variance, then a confidence interval of  100(1-α) % for 

the true variance of observations, 2

T
σ , can be obtained 

from the following equation 
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where )1,2/(2 −nαχ  and )1,2/1(2 −− nαχ  are the 

upper and lower 100×α/2 percentile points of the chi-

square distribution of degrees of freedom  n-1, 

respectively, and can be calculated as, [13] 
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2.1 Anderson- Darling Distance Test 

In many applications, in order to provide the 

required prerequisites for the design of estimation and 

identification algorithms, we need to determine a 

distribution function which most probably describes the 

distribution of conducted observations. On the other 

hand, if the probability density function is considered 

for the observations set Ω , the structure of the 

corresponding estimator will implicitly be determined. 

In this study, a method called Anderson-Darling  

Distance Test (ADDT) is used for the calculation of 

goodness of fit relative to normal distribution. In this 

method, a statistic is defined on the basis of the 

following integral transform 

∫ ∞−
=

x

dsspxF )()(  (8) 

Using the mapping in the above integral, a certain 

distribution with the density )(xp  is converted to a 

uniform distribution. If so, it can be concluded that for 

independent and identically distributed (i.i.d.) random 

variables x1, x2,…, xn with  cumulative distribution 

function (CDF) of F(x),  the functions F(x1), F(x2),…, 

F(xn) will be independent uniform random variables in 

the interval (0,1).  In fact, Anderson-Darling Distance 

Test indicates how much closer is the value of F(x1), 

F(x2),…, F(xn) to the uniform distribution in the interval 

(0,1) [13]. 

In the ADDT it is assumed that the observation 

domain data are the members of a discrete random 

variable. For each Ω∈x , the value of )( xF ≤X is then 

calculated and restored. The best straight line crossing 

the points (x, F(x)) was next determined. The mean 

absolute distance value of the points relative to this line 

can be obtained as 

∑ =
−=
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where )(xL  represents the equation of the line in the (x, 

F(x)) plane. Using the Monte-Carlo algorithms [17], a 

sequence of the numbers belonging to a normal random 

population with known mean value and variance of the 

observation set was generated. The parameter )( N

MAD
AD  

for this sequence will then be calculated from the 

line )(xL . Afterwards, the fraction N

MAD

R

MAD
ADAD  is 

determined and compared with a specific threshold. If 

the fraction is greater than τ , the normality assumption 

will be rejected. In this study, the value 2.2=τ  is 

selected and the results of the normality test for the 

differences T-P, R-Q, and R-P are presented in Tables 1 

to 3. In Figs. 2 and 3, the probability )( xF ≤X  versus 

observation domains is plotted for the leads II and Vx. 

According to ADDT, when the values of probability 

)( xF ≤X are remarkably far from the straight line )(xL  

or build a curvature, the normality assumption for the 

data distribution cannot be acceptable. This can be 

observed in the Figs. 2 and 3. 
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Fig. 1. Overview of the landmarks used for the generation of heart electrical pictures; (a) Limb Leads I, II and III, (b) Lead avL, (c) 

Lead avR, (d) Lead avR [18], (e) Chest Leads [10], (f) Frank Vx, Vy and Vz leads [19] 

 

 

 

 

Table 1. Results of the statistical analyses conducted on the T-wave and P-wave amplitudes differences for the 15-lead ECGs: Mean 

value, variances, the corresponding confidence intervals with the value of 05.0=α  and Anderson-Darling Normality Test using a 

threshold 2.2=τ . 
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Table 2. Results of the statistical analyses conducted on the R-wave and Q-wave amplitudes differences for the 15-lead ECGs: Mean 

value, variances, the corresponding confidence intervals with the value of 05.0=α  and Anderson-Darling Normality Test using a 

threshold 2.2=τ . 

 
 

 

Table 3. Results of the statistical analyses conducted on the R-wave and P-wave amplitudes differences for the 15-lead ECGs: Mean 

value, variances, the corresponding confidence intervals with the value of 05.0=α  and Anderson-Darling Normality Test using a 

threshold 2.2=τ . 
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Fig. 2. (a,b,c): Dispersion of the data obtained from the wave amplitude difference calculations in lead II. The solid and dashed lines 

represent the mean value, σµ −  and σµ + of the data, respectively.  

(d,e,f): The probability )( xF ≤X  versus observation domain plot. The straight solid line represents the best line which can be fitted to 

the probabilities. The triangles illustrate the calculated probabilities. The normality test will be rejected in the cases that the triangles 

are far from the straight line or show high curvature. 
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Fig. 3. (a,b,c): Dispersion of the data obtained from the wave amplitude difference calculations in lead Vx. The solid and dashed lines 

represent the mean value, σµ −  and σµ + of the data, respectively. 

(d,e,f): The probability )( xF ≤X  versus observation domain plot. The straight solid line represents the best line which can be fitted to 

the probabilities. The triangles illustrate the calculated probabilities. The normality test will be rejected in the cases that the triangles 

are far from the straight line or show high curvature. 

 

 

2.2  Discussion 
Regarding the performed statistical analyses, it can 

be seen that for differences T-P, R-Q and R-P, 

according to the ADDT, there are approximately 

14.3% cases among all leads that fail the normality 

test. It is obvious that the normality test rejection 

(NTR) percent has inverse proportion to the threshold 

τ . Loosely speaking, if threshold τ  is chosen a large 

number say 4, most of the A/B ratios will remain under 

the threshold. Thus, NTR will tend to zero and 

consequently test does not reject the normality 

hypothesis. For ADDT, if threshold τ  is chosen to be 

5.22.1 ≤≤ τ , acceptable results would be expected 

from the test, [13]. In this study, by selecting 2.2=τ , 

it is shown that approximately 85.7% of all 

aforementioned differences, suitably pass the ADDT. 

This result can satisfactorily be generalized and applied 

to the remained differences omitted to appear in this 

study. It should be noted that according to the Central 

Limit Theorem (CLT), [13], if the number of samples 

chosen from random population is large enough, 

behavior of the selected population can be expected to 

be normal. Accordingly, due to sufficient number of 

subjects studied in this paper, the behavior of most of 

the differences will approximately be close to the 

normal distribution. Implementing the fact that the 

ADDT illustrates normal behavior of differences in 

most of the leads, the structure of appropriate 

estimators can be designed on the basis of various 

strategies. As a case in view, in this study it is assumed 

that the amplitude of the P-wave in lead I is measured 

and the amplitudes of the remaining waves in the same 

lead and the other leads are estimated by applying the 

proper estimator. Therefore, with the aid of this method 

a useful tool can be designed using which different 

electrical pictures of the heart electrical activity can be 

obtained. So far, numerous algorithms have been 

designed and developed based upon the finite element 

methods, [20], to generate such electrical pictures. 

Although acceptable results can be gained using these 

algorithms in normal cases and some arrhythmias; 

however, they have their own specific limitations. The 

major advantage of the presented model of our study is 

that it almost has no limitation in the generation of the 

artificial ECG signals. It will be demonstrated that how 

complicated arrhythmias can be generated using this 

model. 

 

3 Description of the Algebraic Model of Artificial 
ECG Generator 

The presented mathematical model is based on the 

idea that the overall generated artificial signal is 

developed by the superposition of some events with 

least similarities in their domains. Indeed, the 

amplitude of event k  has no effect on the amplitude of 

the events 1−k  and 1+k , unless these two events are 

significantly close to each other. The studies conducted 

in this field indicate the fact that electrocardiogram 

waves generated due to the heart depolarization (i.e. P-

wave and QRS complex) will have rather symmetric 

morphologies; however, the repolarization waves such 

as T-wave will be asymmetric on the skin surface due 

to the impulsive and asymmetric morphology of the 

action potential on the epicardial surface [1, 20, 21]. 

Accordingly, assume that the event i  in the 

electrocardiogram signal of the lead j  and heart beat 

k  is defined as 

( )











−

−
=

2

2
)()(

)(2

1
exp)(),( kks

k
kCskE ijj

ij

ijij µ
σ

 
(10) 

where
ij

C , 
,ij

σ
ij

µ  are the corresponding parameters of 

the event 
ij

E  and should be determined as to the event 
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could be generated using the arbitrary amplitude, 

incidence time, and duration. According to the Eq. 10, 

it is obvious that the function )(sE
ij

 has a single 

extremum value of 
ij

C  at 
ij

s µ=  .Thus, 
ij

C  and 
ij

µ  

will represent the incidence amplitude and incidence 

time along the s-axis, respectively. In order to evaluate 

the duration of event )(sE
ij

, the event start point is 

illustrated by ij

ON
s  and the end point is depicted 

with ij
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s . It is supposed that function )(sE
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 has an 

infinitesimal positive value of ε  in the position ij
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If half of the duration of the event )(sE
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and the Eq. 10 can be re-written as: 
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Consequently, with the values of the 

parameters
ij

C ,
ij

λ ,
ij

µ  known, the amplitude, duration 

and incidence time for the event )(sE
ij

 will be 

determined independently. The superposition of these 

events can be a good approach to the development of 

an exhaustive set of all waveforms in the lead j , as 

follows 
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where )(kCij  and )(kijµ  represent the incidence 

amplitude and incidence time of the k-th beat along the 

s-axis, respectively. Note that the index ij indicates 

event i in the lead j. )(kijλ  is i-th event in j-th lead 

duration parameter that if is chosen according to Eq. 

(12), desired duration will be obtained. In Eq. (14), it is 

assumed that the independent variable )(ks
j

 is an arc 

length of a circle with an origin in 0=θ , and when 

tωθ = , it will be equal to trs ω=  (see Fig. 4). It 

should also be mentioned that all events in a heartbeat 

will occur in a complete revolution on the circle. 

Therefore, with a heart period of τ  for a complete 

heartbeat, the circular frequency for the revolution on a 

circle with radius r will equal 
τ

π
ω

2
= . Given the 

values of the parameters )(kC
ij

, )(kt
ij

µ
 and )(kt

ij

ξ
 by 

the user, the parameter values of )(k
ij

λ  and )(k
ij

µ in 

Eq. 10 for the event i  in the lead j  can be obtained 

from the following equation 


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(15) 

 
3.1  Adding Transient ST Segment Episodes to the 

Algebraic Model 
With the aim of modeling the effects of transient 

ST-episodes (TSE), an event with three distinct parts is 

considered in this section. The beginning and last parts 

are each consisting of the half of the Eq. 10 function, 

and a straight line with a positive, negative, or zero 

slope will connect these two parts. Therefore, a TSE 

wave will be characterized by 6 parameters, namely as 

)(k
ij

ξ ′ , )(k
ij

ξ ′′ , )(kC
ij
′ , )(km

ij
′ , )(k

ij
µ′ , )(k

ij
µ ′′ , which 

are schematically illustrated in Fig. 5. The ascending 

and descending rate of the ST-segment can be adjusted 

using the parameter )(km
ij
′ . With the values of the 

parameters )(k
ij

µ′  and )(k
ij

µ ′′  equal to each other, an 

asymmetric T-wave, which is close to reality [12], will 

be generated.   

 

3.2  Adding Heart Rate Variability (HRV) to the 
Algebraic Model 

The artificial RR-tachogram algorithm developed 

by McSharry-Clifford, 2003 [5], is implemented in this 

study in order to include the effect of HRV in the 

presented algebraic model. In their model, RR-

tachogram could be generated with the adjustment of 
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the power spectrum of RR time series using fast 

Fourier Transform (FFT) and inverse Fourier 

Transform [5, 14]. In this study, the power spectrum of 

RR time series in rest position is approximated with 

VLF/LF and HF/LF  power ratios and the resulted RR 

sequence is added to the algebraic model. In order to 

adjust the RR distances in the algebraic model, suppose 

that )(kRR
j

 represents the distance between two 

subsequent R-peaks in the heartbeats k-1 and k. Also 

assume that the time period of the complete heartbeat k 

in the lead j is equal to )(k
j

τ . 

If so, the position of all R-peaks can be obtained 

from the following recursive equation. For the value 

Ri = , )(kt
ij

µ
 represents the position of peak R in the 

beat k 





=

−+=

Ri

kRRktkt
jijij

)1()()(
µµ

 (16) 

If the end point of the beat k in the lead j is 

illustrated by )(kEP
j

, then )(k
j

τ can be calculated 

from the following equation 





=

×=−

Ri

ktkEPkt
jijjij

)()1()()( τµµ

 (17) 
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ij
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j
)1(

)()(
)(

µ

µ

τ
 (18) 

Finally, the following recursive equation can be 

used for the calculation of the end point of the beat k 

)()1()( kkEPkEP
jjj

τ+−=  (19) 

Solving the Eqs. 15 to 19, the end point of each 

heartbeat can be obtained as a function of 

instantaneous artificial heart rate, as to the time 

sequence )(kRR
j

 will be similar to the artificial 

values. Modulation of the QRS complexes using the 

presented algorithm is illustrated in Fig. 6. The effect 

of respiration is added to the model using a sinusoid 

signal with certain amplitude and frequency. A normal 

additive noise with the mean value of zero and 

variance 62 10−=σ  is also added to the model as the 

measurements noise in order to increase the similarity 

of the model to the actual signals. 

 

              

Fig. 4. The definition of the variable trs ω=  and its 

positive direction. It is assumed that an object with the 

angular velocity ω  moves on a circle with the radius r  

 

 

Fig. 5. Representation of the transient ST-segment Episodes 

(TSE). Each TSE is specified by 6 parameters )(k
ij

ξ ′ , 

)(k
ij

ξ ′′ , )(kC
ij
′ , )(km ij

′ , )(k
ij

µ′ , )(k
ij

µ ′′ , and can have a 

positive, negative, or zero slope. 
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Fig. 6. Modulation of QRS complexes based on Eq.s 17 to 19 

using artificial RR-tachogram generator introduced in [9]  
 

3.3  Design of Bayesian Estimator of 
WaveAmplitude Algebraic Model 

In section B it was shown that the differences 

between the waves amplitudes can be cast in a 

probabilistic framework. Thus, it will determine the 

estimator structure after the selection of estimation 

strategy. In this study, we have used the idea that the 

            
)(k

ij
µ′ )(k

ij
µ ′′

)(k
ij

ξ ′ )(k
ij

ξ ′′

)(kC
ij
′ )(kmSlope

ij
′=

y

r

tωθ =

+

trs ω=

x
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probability density function of the P-wave amplitude in 

the lead I is determined using statistical analyses and 

the amplitude of all other waves in the same lead and 

other leads can then be determined with the 

observation of the P-wave amplitude in the lead I.  

It should be noted that there is a wide definition for 

the expression of normality (healthy) in the medical 

terminology (for instance a “normal” fat smoker and a 

“normal” young athlete). Therefore, the designed 

estimator will not be capable to present precise results. 

The reasonable, but not accurate, predictions of the 

presented model using the collected data is the most 

significant point of the presented strategy. 

Assume the random variable X  defined in the 

domain Ω , i.e. { }ΩX ∈xp ;  where Xp  is the 

probability density function for x=X , specifies a 

family of distributions for the random observation Y . 

Also, suppose that the random observation Y  has the 

values y  defined in the domain Γ . It is aimed to 

determine a mapping like ΩΓ→:x̂  as to )(ˆ yx be the 

best guess for random variable X  for the observed 

value y=Y . To meet this end, a cost function of 

RΩΩ →×:C  is defined, in which ]),(ˆ[ xyxC  is the 

imposed cost of the estimation of the actual value of 

the random variable X  with the value )(ˆ yx . If so, cost 

average over Y  for each Ω∈x  can be defined as 

follows, [17], 

[ ]{ }xxxCExR
x

== XY),(ˆ)ˆ(  (20) 

Regarding this equation, the Bayesian Risk which 

is in fact the mean value of the cost average )ˆ(xR
x  

can 

be described as 

{ }
[ ]{ }

[ ]{ }{ }YXY

XY
X

),(ˆ

),(ˆ)ˆ(

)ˆ()ˆ(

xCEE

xCExr

xRExr

B

B

=

=

⇒=
 

(21) 

Accordingly, the Bayesian estimation of the 

random variable X  for each value Γ∈y  can easily be 

found by the minimization, if it exists, of the following 

posterior cost 

[ ]{ }yyxCE =YX),(ˆ  (22) 

If the random variable X  has the probability 

density )( yxp
yX

 for each y=Y ,
 

Γ∈y , then the 

Bayesian estimation )(ˆ yx for each value Γ∈y  can be 

determined from the following equation 

[ ] dxyxpxyxCI
ypr

)(),(ˆ
X

Ω∫=  (23) 

In order to achieve the Minimum Mean Square 

Error (MMSE) estimation, the cost function ]),(ˆ[ xyxC  

is defined as follows 

[ ] ( )2
)(ˆ),(ˆ xyxxyxC −=  (24) 

Since this cost function measures the estimator 

performance in terms of error square, it can be 

implemented in many cases and the resulted estimation 

will also have a closed form [17]. If so, the Bayesian 

estimator will be an MMSE estimator and the posterior 

cost for y=Y
 
will be equal to 
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{ } { }

[ ] { }
{ }yE

yEyxyx

yEyyxE

yyxEyyxE

=+

=−=

=+=−

===−

YX

YX

YXYX

YYX

2

2

2

22

)(ˆ2)(ˆ

)(ˆ2

)(ˆ)(ˆ

 
(25) 

As can be observed, the above equation is a 

quadratic function of )(ˆ yx  and can be re-written as 

follows 

[ ]{ }
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22

2
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(26) 

This expression will have its minimum value if the 

complete square expression controlled by )(ˆ yx is equal 

to zero. Indeed 

[ ]{ }
{ }yEyx

yyxE
yx

==⇒

==−
∂

∂

YX

YX

)(ˆ

0)(ˆ
)(ˆ

2

 
(27) 

Solution of this equation will lead to a point in 

which the cost function achieves its unique minimum 

and the derivative of the cost function with respect to 

)(ˆ yx is equal to zero.  

The MMSE estimation will consequently be the 

average conditional value of the random variable X  

for y=Y . Thus, the random variable X  should be 

averaged as follows 

{ }yEyx == YX)(ˆ  (28) 

If so, it is necessary to obtain a posterior 

conditional density ( )( yxp
yX

) of the likelihood 

function ( )( xyp
xY

) using the following theorem: 

Lemma 3: If )( xyp
xY

 represents the conditional 

density (likelihood function), and random variables X  

and Y  have marginal density functions )(xpX  and 

)(ypY  respectively, then a posteriori density function, 

)( yxp
yX

 can be obtained from the following equation, 

[22] 
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Proof: 
If )(⋅F  represents the Cumulative Distribution 

Function (CDF), then 

)(lim

)(

21
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2

∆+≤<∆+≤<=

=∆+≤<
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yyxxF

yxxF

YX

YX
 (30) 

Using the conditional probability function [23] 

properties, the latter equation can be written as 
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(31) 

and the right side of the Eq. 31 will be as follows 
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If the numerator and denominator of the right hand 

side of the Eq. 31 is divided by 
2

∆ , then 
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Also, if both sides of the Eq. 33 are divided by 
1

∆  

and both 
1

∆  and 
2

∆  are tended to zero, i.e. 

0,0
21

→∆→∆ , then 
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According to the definition of the conditional 

density function in terms of conditional probability 

function [23] we have 

)(

)()(
)(
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xpxyp
yxp

x

y

Y

XY

X
=  (35) 

On the other hand, if the conditional density 

)( xyp
xY

 and the marginal density )(xpX  are both at 

hand, the marginal density )(ypY  will simply be 

calculated by integrating Eq. 32 as follows 
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x

y

Y

XY

X
=  (36) 

Because according to the Eq. 32, we can write 

)()(),( xpxypyxp
x XYXY =  (37) 

and this is the end of the proof. Therefore, using the 

Eqs. 28 and 36, )(ˆ yx
MMSE

 can be derived from the 

following equation 
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(38) 

Assume X and Y to be two random variables, 

where X is a normal random variable with the density 

),( 2

xx
N σµ  and the random variable XY −  has the 
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normal pdf ),( 2

00
σµN . The likelihood density function 

will then have the normal density pdf ),( 2

00
σµ xN +  

for x=X  and we have 

),(~)( 2

00
σµNXY −  (39) 

),(~ 2

xx
N σµX  (40) 

 









−−−=

+
=

2

02

00

2

00

)(
2

1
exp

2

1

),(~

xy

xN
x

µ
σσπ

σµXY

 (41) 

According to the Eq. 38, the )(ˆ yx
MMSE

estimation 

using the observation y will be as follows 

∫

∫









−−








−−−









−−








−−−

=

Ω

Ω

dxxxy

dxxxyx

yx

x

xx

x

xx

MMSE

2

2

2

02

00

2

2

2

02

00

)(
2

1
exp

2

1
)(

2

1
exp

2

1

)(
2

1
exp

2

1
)(

2

1
exp

2

1

)(ˆ

µ
σσπ

µ
σσπ

µ
σσπ

µ
σσπ

 (42) 

which can be simplified to the following equation 
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In the Eq. 43, the values of the integrals in 

numerator and denominator should be computed for 

y=Y  in order to obtain the value of )(ˆ yx
MMSE

. 

However, analytical solution of these integrals is a hard 

and tedious task and certain numerical methods can be 

implemented. In the Fig. 7, )(ˆ yx
MMSE

 is illustrated for 

0
0

== µµ
x

 in three cases of 0,0 <= yy , and 0>y . 

In Fig. 7, the lower surface illustrates the performance 

of the estimator of the Eq. 43 for ,0=y and 

,
0

σ ,
x

σ variations in the (0,1.5) range. As can be 

observed, when ,0=y  the estimation magnitude will 

be higher for an increase in 
0

σ  or 
x

σ . When ,0≠y  

and 
x

σ  is very small, the upper part of Fig. 7, the best 

estimation will be equal to zero for all positive or 

negative observations. This result seems logical, 

because the infinitesimal value of 
x

σ  will suggest a 

deterministic behavior for the random variable X . 

However, for a great value of 
x

σ , there would be a 

decrease in the estimation magnitude relative to 

observation when 
0

σ increases. This is due to the fact 

that an increase in 
0

σ , will result in an increase in the 

observations variance, and this causes the best 

estimation to be a very small value. For a high value of 

0
σ , the same justification as 

x
σ  can be implemented. 

 
 
 
Table 4. Parameters of normal ECG signal in lead avr 

 Events 

 

Parameters 

 
P Q R T 

µ

ij
t  <sec> 

 
8.75 8.89 8.92 9.14 

ij
C <mV> 

 
-0.2 -1.0 0.1 -0.3 

ξ

ij
t <sec> 0.1266 0.0448 0.0448 0.3250 

 

 

 

 

 

 

Table 5. Parameters of normal ECG signal in lead V1 

 Events 

 

Parameters 

 
P R S T 

µ

ij
t  <sec> 

 
12.14 12.26 12.29 12.57 

ij
C <mV> 

 
-0.1 0.19 -1.11 -0.2 

ξ

ij
t <sec> 

 
0.1036 0.0448 0.0822 0.2622 
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Table 6. Parameters of normal ECG signal in lead V3  

 Events 

 

Parameters 

 
P R S T 

µ

ij
t  <sec> 

 
8.45 8.61 8.64 8.83 

ij
C <mV> 

 
0.2 0.97 -2.04 0.81 

ξ

ij
t <sec> 

 
0.1266 0.0448 0.0448 0.3921 

 

Table 7. Parameters of normal ECG signal in lead V6  

 Events 

 

Parameters 

 
P Q R S T 

µ

ij
t  <sec> 

 
9.55 9.695 9.715 9.74 10 

ij
C <mV> 

 
0.05 -0.2 1.2 -0.4 0.5 

ξ

ij
t <sec> 

 
0.1769 0.0291 0.0448 0.0448 0.2041 
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Fig. 7. Bayesian Estimation of the random variable X based on normal observation y=Y describes by Eq. (42)  

(up-left), 0<y , (up-right), 0>y  and (bottom), 0=y  

 

 

4 Simulation Results 
The results of various simulations will be illustrated 

in this part. 

4.1 15 Lead Normal ECG Generator (including 
Probable U-Waves) 

First, the simulation method of generating 15-lead 

normal ECG signal with U-wave are presented. Some 

abnormal electrocardiographic phenomena are then 

simulated. In Figs. 8 to 11, a normal beat is shown in 

the leads AVR, V1, V3, and V6, respectively and the 

corresponding parameter values are presented in Tables 

4 to 7. It should be noted that the lead AVR and V1 

have no S-wave, and no Q-wave, respectively. 

However, the lead V6 contains all events. In Fig. 12, an 
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example of a heart beat with a U-wave is depicted and 

the corresponding parameters are represented in Table 

8. 
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Fig. 8. Simulated normal ECG signal in lead avr 
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Fig. 9. Simulated normal ECG signal in lead V1 
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Fig. 10. Simulated normal ECG signal in lead V3  
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Fig. 11. Simulated normal ECG signal in lead V6 
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Fig. 12. Simulated normal ECG signal in lead I including U-

wave 

 

 

4.2  Fascicular Ventricular Tachycardia (Left 
Septal Ventricular Tachycardia) 

A left septal Ventricular Tachycardia (VT) has 

been described as arising in the left posterior septum, 

often preceded by a fascicular potential, and is 

sometimes called a fascicular tachycardia (Fig. 13). 

The simulated abnormal left septal ventricular 

tachycardia waveforms are demonstrated in Figs. 14 to 

17 and the corresponding parameter values are 

presented in Tables 9 to 12. The comparison of the  

simulated waveforms and real shapes of 

electrocardiographic signals (depicted in Fig. 13) 

indicates the high flexibility of the introduced model in 

generating artificial abnormal ECG waveforms. 

 
 

 
Fig. 13. Left septal ventricular tachycardia. This tachycardia 

is characterized by a right bundle branch block contour. 

In this instance, the axis was rightward. The site of the 

ventricular tachycardia was established to be in the left 

posterior septum by electrophysiological mapping and 

ablation, adopted from [12] 
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Fig. 14. Simulated left septal ventricular tachycardia in leads (a) avf, (b) avl, and (c) avr 
 

 

Table 8. Parameters of normal ECG signal in lead I including U-wave 
 

 Events 

Parameters P Q R S T U 

µ

ij
t  <sec> 9.44 9.6 9.65 9.7 10 10.3 

ij
C <mV> 0.1 -0.2 0.8 -0.4 0.1 0.07 

ξ

ij
t <sec> 0.1769 0.1266 0.1266 0.0448 0.325 0.1769 

 

 

Table 9. Parameters of left septal ventricular tachycardia in leads (a) avf, (b) avl, and (c) avr 
 

 Events 

Parameters P Q R 

µ

ij
t  <sec> 

-

0.5 
3 3.5 

ij
C <mV> 10 5 -5 

ξ

ij
t <sec> 5 6 7 

(a) 

 Events 

Parameters P Q R 

µ

ij
t  <sec> 0 3 5.1 

ξ

ij
t <sec> 5 5 6 

ij
C <mV> 2 7 0.8 

(b) 

 Events 

Parameters P Q 

µ

ij
t  <sec> 0 4.7 

ξ

ij
t <sec> 9 8 

ij
C <mV> 10 8 

(c) 
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(c) 

 

Fig. 15. Simulated left septal ventricular tachycardia in leads (a) I, (b) II, and (c) III 

 

 

Table 10. Parameters of left septal ventricular tachycardia in leads (a) I, (b) II, and (c) III 
 

 Events 

Parameters P Q 

µ

ij
t  <sec> 0 5 

ξ

ij
t <sec> 9 8 

ij
C <mV> 10 4.5 

(a) 

 Events 

Parameters P Q R 

µ

ij
t  <sec> 0 1.75 3.8 

ξ

ij
t <sec> 3.5 5 7.4 

ij
C <mV> 7 3 -12 

(b) 

 Events 

Parameters P Q R 

 0 4 4.5 
ξ

ij
t <sec> 5.5 6 8 

ij
C <mV> 7 2.3 -10 

(c) 

 

 

 
Table 11. Parameters of left septal ventricular tachycardia in leads (a) V1, (b) V2, and (c) V3 

 

 Events 

Parameters P Q R 

µ

ij
t  <sec> 

-

0.5 
1.2 2.5 

ξ

ij
t <sec> 2.8 3 4 

ij
C <mV> 2 8 10 

(a) 

 

 

 Events 

Parameters P Q R 

µ

ij
t  <sec> -2 5 6 

ξ

ij
t <sec> 7 6 8 

ij
C <mV> 5 12 -20 

(b) 
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(c) 

Fig. 16. Simulated left septal ventricular tachycardia in leads (a) V1, (b) V2, and (c) V3 
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(c) 

Fig. 17. Simulated left septal ventricular tachycardia in leads (a) V4, (b) V5, and (c) V6 

 

Table 12. Parameters of left septal ventricular tachycardia in leads (a) V4, (b) V5, and (c) V6 

 Events 

Parameters P Q R 

µ

ij
t  <sec> 0 1.2 4.5 

ξ

ij
t <sec> 3 5 6 

ij
C <mV> 

-

20 
10 7 

(a) 

 Events 

Parameters P Q R 

µ

ij
t  <sec> -2 3 2.9 

ξ

ij
t <sec> 3.5 4 8 

ij
C <mV> 5 2 -11 

(b) 
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 Events 

Parameters P Q R 
µ

ij
t  <sec> -1 3.5 4 

ξ

ij
t <sec> 5 5.5 8 

ij
C <mV> 4 1.5 -8 

(c) 

 
4.3 Rate-Dependent Conduction Blocks or 
Aberration (Tachycardia, Bradycardia) 

Conduction delays in the intra-ventricular parts can 

be due to changes in heart rate, or pathological lesions 

in the conduction system. Rate-dependent block 

(aberration) can occur in relatively low or high heart 

rates. A very pervasive kind of rate-dependent block 

which has the electrocardiographic pattern of Right 

Bundle Branch Block (RBBB) or Left Bundle Branch 

Block (LBBB) is called acceleration (tachycardia)-

dependent block, in which conduction delay happens 

when heart rate exceeds a specific critical threshold. On 

the other hand, in deceleration (bradycardia)-dependent 

block conduction delay takes place when heart rate is 

less than the specific critical threshold. Deceleration-

dependent block is less prevalent in comparison to 

acceleration-dependent block and only occurs in 

patients with remarkable defect in the conduction 

system. 

In Fig. 18-a, a sample acceleration-dependent QRS 

aberration is depicted. As can be seen in this picture, the 

duration of the basic cycle, C is equal to 760 

milliseconds, and left bundle branch block (LBBB) 

occurs when C reaches the value of 700 milliseconds, 

which is annotated by some points. The occurred block 

will then continue with the cycle duration of 700msec in 

Fig. above and 840msec in Fig. below, which is 

annotated by arrowheads. Eventually, the conduction 

system returns to its normal conditions after a heart beat 

with duration of 600msec. The beginning of each cycle 

with normal duration is illustrated by letter S, [12]. A 

simulated sample of this phenomenon is represented in 

Fig. 18-b. It should be noticed that three parameter sets 

will be required in this case which will apply to the 

points C, arrowhead, and S, which can be seen in Tables 

13 to 15. 

 

 

 
(a) 

 

 
(b) 

Fig. 18. (a) Electrocardiographic pattern of acceleration-dependent QRS aberration, adopted from [12],  

(b) the simulated signal with similar features 

 

 

Table 13. parameters of acceleration-dependent aberration, phase I  

 Events 

Parameters P Q R S S' T 

µ

ij
t  <sec> 

0.

2150 

0.

3375 

0.

3950 

0.

4125 

0.

5450 

0.

7150 

ij
C <mV> 

0.

7 

-

0.4 

0.

8 

-

0.7 

0.

6 

0.

6 

ξ

ij
t <sec> 

0.

0850 

0.

0375 

0.

0650 

0.

0375 

0.

0850 

0.

0850 
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Table 14. Parameters of acceleration-dependent aberration, phase II 

 Events 

Parameters Q S T T' 

µ

ij
t  <sec> 0.2950 0.4500 0.7100 0.7250 

ij
C <mV> -0.8 -0.11 0.3 0.1 

ξ

ij
t <sec> 0.1050 0.050 0.1900 0.0750 

 
Table 15. Parameters of acceleration-dependent aberration, phase III 

 Events 

Parameters Q S S' 
µ

ij
t  <sec> 0.2750 0.3500 0.4000 

ij
C <mV> -0.6 -0.6 -0.8 

ξ

ij
t <sec> 0.0250 0.0500 0.1000 

 
 
In Fig. 19-a, an example of deceleration-dependent 

aberration is presented. The basic rhythm is sinus 

rhythm with a Wenckebach (type I) atrioventricular 

(AV) block. With 1:1 AV conduction, the QRS 

complexes are normal in duration; with a 2:1 AV block 

or after the longer pause of a Wenckebach sequence, left 

bundle branch block (LBBB) appears, [12]. A simulated 

sample of this phenomenon is represented in Fig. 19-b. 

It should be noticed that two parameter sets will be 

required in this case (see Tables 16 and 17). 
 

 
(a) 

 

 
(b) 

Fig. 19. (a) Electrocardiographic pattern of deceleration-dependent aberration, [12]. (b) the simulated signal with similar features  

 

Table 16. Parameters of deceleration-dependent aberration, phase I 

 Events 

Parameters P Q R R' S 

µ

ij
t  <sec> 

0.

5 

0.

55 

0.

9500 

1.

025 

1.

3 

ij
C <mV> 

0.

02 

-

0.16 

0.

02 

0.

01 

-

0.01 

ξ

ij
t <sec> 

0.

1 

0.

0500 

0.

3500 

0.

0750 

0.

1 

 

Table 17. Parameters of deceleration-dependent aberration, phase II s 

 Events 

Parameters P Q R S T 

µ

ij
t  <sec> 

0.

35 

0.

625 

0.

8000 

1.

1500 

1.

5000 

ij
C <mV> 

-

0.1 

0.

2 
-2 1 

0.

1 

ξ

ij
t <sec> 

0.

1 

0.

0750 

0.

2000 

0.

3500 

0.

2000 
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4.4 Acute Q- Wave Infarctions of anteriorlateral and 
inferior walls 

Approximate classification and variability of 

electrocardiographic patterns of acute myocardial 

ischemia are illustrated in Fig. 20. It should be noted 

that this classification cannot be applied to all cases. As 

a case in view, a Q-wave infarct can evolve to a Q-wave 

infarct and an ST-elevation can be developed by a non-

Q wave infarct. Reversely, ST- segment depression and 

T-wave inversion can occur by the happening of a Q-

wave infarct, [12]. 

 
 
 
 
 

 

 
 
Fig. 20. A general classification, but not always accurate, of myocardial ischemia, Adopted from [13] 

 

 

 
4.5  QRS Changes 

Due to the existence of real infarctions, 

depolarization changes (QRS complexes) are always 

followed by abnormal repolarization (ST-T) [15, 24]. 

Necrosis of a rather large part of the myocardial tissue 

can lead to reductions in R-wave or Q-wave amplitude 

of anterior, lateral, or inferior leads. This can be a result 

of lack of electromotive forces in the infracted area. It 

was assumed in the past that abnormal Q-waves are 

markers of transmural myocardial infarction and 

subendocardial (transmural)  infarctions do not make Q-

waves. However, profound studies of pathological 

electrocardiographic signals suggested that transmural 

infarcts can occur with no Q-wave, or subendocardial 

infarcts can be accompanied by Q-waves. Therefore, a 

better way for the classification of infarcts is to divide 

them into Q-wave and Non-Q wave infarcts, instead of 

transmural or non-transmural infarcts [12]. 

 

4.6  Evolution of Electrocardiographic Changes 
Evolution of Electrocardiographic Changes in 

ischemic ST-elevation and hyper-acute T-wave changes 

serve as the first symptoms of acute infarction. In a time 

period of some hours to some days, these symptoms 

will be followed by T-wave inversion and sometimes Q-

waves. In the state of chronic ischemia or evolutionary 

condition, T-wave inversion will somehow be related to 

the long duration of the ventricular action potential and 

these ischemic changes are always followed by QT 

prolongation. After days or weeks, T-wave inversion 

will be resolved or will continue infinitely. The 

largeness of the infracted area is a good reflective of the 

quality of T-wave evolution (see Fig. 21). Transmural 

infarction with fibrosis of entire wall will exist, if T-

waves have a negative value in the leads with a Q-wave. 

However, T-waves with a positive value in the leads 

with a Q-wave are a symptom of non-transmural 

infarction with workable myocardium of the wall [12]. 

The depolarization and repolarization change patterns 

are illustrated in Fig. 21 in the case of Q-wave 

infarction. Anterior-lateral infarcts will lead to ST-

segment elevation in leads I, AVL, and pericardial leads 

which will be accompanied by ST-segment depression 

in the leads II, III, and AVF. On the other hand, acute 

inferior (or posterior) infarcts can be followed by 

reciprocal ST-segment depression in the leads V1 to V3. 

In Fig. 22, some selected samples of patterns depicted in 

Fig. 21 with different types of transient ST-segment 

episodes are simulated. 

The corresponding parameter values for simulation 

of ST-T events during acute Q-wave infarction are 

presented in Table 18. 

 

 

 

Noninfarction subendocardial 
ischemia (including classic angina)

 
Transient ST depressions 

Non-Q-wave infarction 
 

ST depressions or T-wave inversions 

without Q-waves 

Myocardial 
Ischemia 

Noninfarction transmural 
ischemia (including Prinzmetal 

variant angina) 
 

Transient ST elevation or 

paradoxical T-wave normalization, 

sometimes followed by T-wave 

inversions 

ST elevation  
Q-wave infarction 

 

Approximate classification 

and variability of 

electrocardiographic patterns 
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Fig. 21. Sequence of electrocardiographic patterns of depolarization and repolarization changes during Q –wave infarction in the 

early and evolving regimes, (top): acute anterior- lateral and (bottom): acute inferior wall Q-wave infarctions, Adopted from [12] 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 
 

(g) 
 

(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m)  

(n) 
 

(o) 
 

(p) 

Fig. 22. Simulated ST-T episodes during acute Q-wave infarction: 

Acute anterior-lateral wall Q-wave infarction in early regime for (a) lead I, (b) lead V2, (c) lead V4, (d) lead V6 

Acute anterior-lateral wall Q-wave infarction in evolving regime for (e) lead I, (f) lead V2, (g) lead V4, (h) lead V6 

Acute inferior wall Q-wave infarction in early regime for (i) lead I, (j) lead V2, (k) lead V4, (l) lead V6 

Acute inferior wall Q-wave infarction in evolving regime for (m) lead I, (n) lead V2, (o) lead V4, (p) lead V6 

 
Table 18. The corresponding parameters for simulation of ST-T events during acute Q-wave infarction 

 Events 

Parameters AE1 AE2 

µ

ij
t  <sec> 0.2500 0.3250 

ij
C <mV> -0.02 0.02 

ξ

ij
t <sec> 0.0500 0.0750 

><=′′><=′><=′′

><=′><=′><=′

sec7.0)(,sec3.0)(,sec15.0)(

sec1.0)(,sec/0.0)(,03.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 Events 

Parameters AE1 AE2 

µ

ij
t  <sec> 0.3000 0.3250 

ij
C <mV> 0.01 -0.03 

ξ

ij
t <sec> 0.0500 0.0250 

><=′′><=′><=′′

><=′><=′><=′

sec55.0)(,sec35.0)(,sec15.0)(

sec1.0)(,sec/01.0)(,03.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

(a) (b) 
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 Events 

Parameters 

 
AE1 AE2 

µ

ij
t  <sec> 0.3100 0.3550 

ij
C <mV> -0.02 0.01 

ξ

ij
t <sec> 0.0400 0.0450 

><=′′><=′><=′′

><=′><=′><=′

sec55.0)(,sec35.0)(,sec25.0)(

sec0.0)(,sec/0.0)(,1.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.3000 0.3250 0.3650 

ij
C <mV> 0.005 -0.02 0.02 

ξ

ij
t <sec> 0.0500 0.0250 0.0350 

><=′′><=′><=′′

><=′><=′><=′

sec555.0)(,sec35.0)(,sec17.0)(

sec1.0)(,sec/02.0)(,03.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.2950 0.3650 0.7500 

ij
C <mV> -0.08 0.2 -0.08 

ξ

ij
t <sec> 0.0550 0.0550 0.1500 

><=′′><=′><=′′

><=′><=′><=′

sec55.0)(,sec35.0)(,sec15.0)(

sec0.0)(,sec/0.0)(,03.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 

 Events 

Parameters 

 
AE1 AE2 

µ

ij
t  <sec> 0.3350 0.8000 

ij
C <mV> -0.015 -0.01 

ξ

ij
t <sec> 0.0850 0.2000 

 

 Events 

Parameters 

 
AE1 AE2 

µ

ij
t  <sec> 0.3350 0.9000 

ij
C <mV> -0.015 -0.01 

ξ

ij
t <sec> 0.0850 0.3000 

 

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.2900 0.3350 0.9000 

ij
C <mV> -0.015 0.02 -0.008 

ξ

ij
t <sec> 0.0600 0.0850 0.3000 

 
 

 

 

 Events 

Parameters AE1 AE2 

µ

ij
t  <sec> 0.2900 0.3350 

ij
C <mV> 0.2 -0.05 

ξ

ij
t <sec> 0.0600 0.0850 

><=′′><=′><=′′

><=′><=′><=′

sec6.0)(,sec35.0)(,sec15.0)(

sec0.0)(,sec/1.0)(,03.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 

 Events 

Parameters AE1 AE2 AE3 

µ

ij
t  <sec> 0.2950 0.3400 1.1500 

ij
C <mV> 0.02 -0.06 0.03 

ξ

ij
t <sec> 0.0450 0.0400 0.4500 

><=′′><=′><=′′

><=′><=′><=′

sec6.0)(,sec35.0)(,sec35.0)(

sec0.0)(,sec/0.0)(,05.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.3150 0.3400 0.9500 

ij
C <mV> -0.01 0.2 0.05 

ξ

ij
t <sec> 0.0750 0.0400 0.3500 

 

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.2900 0.3800 0.9500 

ij
C <mV> 0.2 -0.015 0.05 

ξ

ij
t <sec> 0.0900 0.0200 0.3500 

 
 

 

 

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.3800 0.3150 0.8500 

ij
C <mV> -0.02 0.2 0.05 

ξ

ij
t <sec> 0.0200 0.0650 0.2500 

 

 Events 

Parameters 

 
AE1 AE2 AE3 

µ

ij
t  <sec> 0.2900 0.3550 1.5000 

ij
C <mV> 0.021 -0.12 0.08 

ξ

ij
t <sec> 0.0600 0.0750 0.2000 

 
 

 

 

(c) (d) 

(f) (e) 

(g) 
 (h) 

  (j) (i) 

(k) (l) 

(m) 
(n) 
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 Events 

Parameters AE1 AE2 

µ

ij
t  <sec> 0.2750 1.000 

ij
C <mV> 0.2 0.1 

ξ

ij
t <sec> 0.0750 0.2000 

 

 Events 

Parameters AE1 AE2 

µ

ij
t  <sec> 0.3050 0.3550 

ij
C <mV> -0.02 0.15 

ξ

ij
t <sec> 0.0450 0.0750 

><=′′><=′><=′′

><=′><=′><=′

sec1.1)(,sec1.1)(,sec2.0)(

sec3.0)(,sec/0.0)(,05.0)(

kkk

kmVkmmVkC

ijijij

ijijij

µµξ

ξ  

 
4. 7   Discussion 

In the previous sections, generation of different 

arrhythmias using the presented model was 

demonstrated. Because of the fact that arrhythmias are 

the result of abnormal occurrences with occasionally 

distinct natures in the heart electrical activity [12], the 

modification of FEM-based or electrical element-based 

models to generate any kind of abnormal ECG signal 

can be difficult or even impossible. The major 

advantage of the presented model is its high capability 

in the generation of approximately all observed 

arrhythmias including transient or permanent 

phenomena. Therefore, this model will enable the user 

to generate the desired signal in any shape by first 

choosing a suitable structure of the model and then its 

parameterization. In Fig. 23, a procedure for the model 

application in arrhythmias classification is illustrated. 

In this method, the ECG signal is preprocessed and the 

corresponding base-line wander is removed. Then, a 

specific segment such as ST-segment, RR interval, PR 

interval, etc is picked up from the ECG signal. Finally, 

the same segment is parameterized by the presented 

model for a certain arrhythmia and the model 

parameters are approximately estimated using a 

nonlinear adaptive algorithm like nonlinear least 

squares (Gauss-Newton Approximation) or maximum 

likelihood (Newton-Raphson Approximation) [22]. 

Provided a high accordance between the estimated 

output of the nonlinear adaptive filter and the actual 

ECG signal, it can be concluded that the certain 

arrhythmia will exist in the ECG signal with a high 

incorporation.  

The alternate usage of the developed model is that 

the model parameters of each arrhythmia can be 

assigned to its specific class and therefore, different 

sets of parameter values for different arrhythmias can 

be obtained. If the intersection of the resulted 

parameter sets is not high, the status of the real present 

signal can be assigned to its proper class by 

implementing an appropriate classification algorithm. 

Consequently, the arrhythmia(s) are detected.  

In Fig. 24, another scheme of the application of the 

presented model is developed. In this plan, a specific 

segment of the actual ECG signal is selected and the 

corresponding segment is simulated by the model. 

Then, a suitable transform (such as wavelet or any 

other kind of time-frequency transforms) is taken from 

both the real and simulated signals. Finally, the 

obtained parameters are compared together using a 

specific classification algorithm such as principal 

component analysis (PCA) or independent component 

analysis (ICA) and the fitness percentage of the actual 

signal to the certain arrhythmia is approximately 

calculated.  

In summary, it can be stated that in the first plan the 

structure of the model is implemented for the 

parameter classification, however, in the second 

approach, the model output is used as a classification 

tool. Both these tests are currently under study and the 

results will be presented in the future work. 
 

 
Fig. 23. An adaptive scheme for use of the proposed model. In this methodology a nonlinear adaptive filter is used to identify the 

parameters of the artificial model. Obtained parameters, filter output or both can be used for the purpose of classification. 

Nonlinear Adaptive 
Filter 

Original Baseline 
Wander Removed ECG 
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Parameters 
Feature Extraction and 

Classification  Arrhythmia Detection 

(p) (o) 



Iranian Journal of Electrical & Electronic Engineering, Vol. 5, No. 2, Jun. 2009 90 

Fig. 24. A secondary scheme for identification of arrhythmia based on an appropriate time-frequency transformation. In this method 

a time-frequency transformation is taken from the original signal and the simulated corresponding signal and feature spaces are 

constructed. Then a suitable classifier is used to find the dominant abnormal phenomenon. 

 

 

 

5 Conclusion 
In this study, we developed a mathematical model 

based on algebraic equations to generate artificially 

normal events of electrocardiogram (ECG) signals such 

as P-wave, QRS complex, and T-wave. This model 

was also implemented for the simulation of abnormal 

phenomena of electrocardiographic signals such as ST-

segment episodes (i.e. depression, elevation, and 

sloped ascending or descending) and repolarization 

abnormalities such as T-Wave Alternans (TWA). The 

presented model was also used for the simulation of 

ECG signals on torso plane or limb leads. To meet this 

end, the amplitude of events in each of the 15-lead 

ECG waveforms of 80 normal subjects at MIT-BIH 

Database (www.physionet.org) are derived using 

wave- detector module existing in Waveform Database 

(WFDB) and then recorded. Various statistical  

analyses such as amplitude mean value, variance 

and confidence intervals calculations, Anderson-

Darling normality test, and Bayesian estimation of 

events amplitude were next conducted. Heart Rate 

Variability (HRV) model was also incorporated to this 

model with HF/LF and VLF/LF waves power ratios. 

Eventually, in order to demonstrate good flexibility of 

the presented model in simulation of ECG signals, left 

septal ventricular tachycardia, rate dependent 

conduction block (Aberration), and acute Q-wave 

infarctions of inferior and anterior-lateral walls were 

finally simulated. The source code (Matlab
®
 m-file) of 

the proposed computer model is distributed freely in 

the hope that it will be useful for cardiologists and 

biomedical engineers. 
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