Single Source Cross-Connected Reduced Activated SwitchedCapacitor Multilevel Inverter ($\mathbf{S}^{2} \mathbf{C}^{2}$ RASCMLI) with Self-Voltage Balancing for Horizontal/Vertical Extension

O. G Murugan*(C.A.), J. Arumugam**, S. Velliangiri***

Abstract

Single Source Cross Connected Reduced Activated Switched-Capacitor Multilevel Inverter ($\mathrm{S}^{2} \mathrm{C}^{2} \mathrm{RASCMLI}$) accompanied by fewer active switching components is appealing to nine-level of voltage with its simplicity and a solid network. In AC power distribution systems, multi-level inverters are used as DC-to-AC converter operations to achieve the desired output magnitude and frequency. It is employed for the smooth operation of electrical machines. The proposed $\mathrm{S}^{2} \mathrm{C}^{2}$ RASCMIL cell yields a nine-level voltage with ten switches, nine driver signals, and two flying capacitors for dynamic load operation with reduced active switches. It has the capability of boosting the input voltage double the times. The proposed multilevel inverter operated on nine switching modes and in each mode, three switches have been conducted. It can be extended horizontal and/or vertical structure to produce more levels of output voltages. The hardware prototype was made and the results have been presented. To demonstrate the advantages of the new proposed multilevel inverter topology, a comprehensive comparison with a few other similar multilevel inverter configurations is done. Analysis and simulation output waveforms for a variety of load conditions were tested to check the feasibility of the proposed new multi-level inverter. The proposed MLI offers better performance than existing multilevel inverters.

Keywords: H-Bridge, Multi-Level Inverter, Switched Capacitor, Voltage Balancing.

1 Introduction

MULTI-LEVEL inverters (MLIs) are used in a wide range of applications, comprising industrial drives and renewable energy generation.

[^0]Switches with high-quality output voltage and low voltage stresses are MLIs' key advantages [1]. The input sources, flying capacitor and H -Bridge are the most widely used multi-level inverter structures, because of their benefits: fewer capacitors, switches, input sources, automated capacitor voltage balance, and the ability to boost input voltage with maximum voltage gain [2]. These configurations have been extensively studied and are well-proven in industry sectors [3]. The boosting factor of the switchedcapacitor inverters is critical in grids powered by renewable energy sources, as the voltage output given by renewable energy cells [4] has been so much lower than the necessary grid voltage's peak. Power converters serve as important in smart grids because of their benefits such as reliability, consistency, temperature control and high energy efficiency [5]. Multi-level inverters are a special variant of converter that has many structural
advantages such as simple extension [6], minimal voltage stress $(d v / d t)$, fair load contribution, and effective power extraction, making them ideal for a variety of high-power applications [7]. Switchedcapacitor multilevel inverters are the most commonly utilized of the various MLIs due to their advantages in voltage boost over traditional MLIs with fewer DC sources [8]. Cascaded MLIs produce more levels of the voltage while reducing the number of devices used, but this results in increased voltage block plus it's not guaranteed for the function of voltage boost $[9,10]$.

The switched capacitor topology helps to reduce the number of voltage supplies. The packed E-cell topology is a capacitor-based topology that was proposed in [11, 12]. The output waveform can be generated at nine voltage levels using two voltage supply and two capacitors; however, the topology lacks input voltage boosting. Similar to [13] suggested nine-level inverter structures with two DC voltage supplies including two voltage regulating capacitors. Two new MLI configurations with two DC voltage supplies as well as two capacitors have been proposed by the researchers in [14]. Both topologies produce nine voltage levels around the load. To shift supply polarity, both MLI topologies use an H-bridge, which necessitates the use of highervoltage switches. The topologies cannot often boost.

Mostly in the latest multilevel inverter topology, several sub-multilevel converter groups and complete bridge converters are used [15]. While [16] proposes a basic configuration, multiple divided DC voltage sources are always needed. [17] Invented the coupled-inductor method for multilevel inverters.

Although the architectures are simplified, expanding this methodology to higher-level applications is difficult. Unique topologies focused on the switched capacitor [18] and boosting technologies were introduced in [19], however, their performance voltage levels are restricted to thirteen, seven, and nine comparatively. On the other hand, the multilevel topology used in [20] can be increased to higher levels. Utilizing the higher number of conduction switches tends to raise the price and element count in signal conditioning circuits. The switched capacitor technique inverter used in lots of applications often connects a DC-DC converter and H-bridge [21].

In the suggested topology, only a single DC voltage supply is connected. In Addition, several issues like voltage balancing, the higher number of conduction switches and more signal conditioning circuitry are avoided. The DC-DC transformation branch, which is made up of several Switched Cells (SC) is the most critical part of the entire topology. Two capacitors, four switches, and two diodes make up every SC except the last cell. As a result, by varying the number of switched-capacitor cells used, the output voltage levels of a proposed inverter can be varied.

2 Proposed Topology

2.1 The Configuration of the Suggested Topology

Figure 1 shows the proposed nine-level $S^{2} C^{2}$ RASCMLI topology. To attain the desired voltage level, the H -bridge is inserted in the backyard to change the polarity and then two capacitors are connected in series.

Fig. 1 Proposed nine-level inverter topology.

A single source of DC voltage $V_{i n}$, two flying capacitors $C_{1} \& C_{2}$, two power diodes $D_{l} \& D_{2}$ and ten semiconductor switches $\mathrm{S}_{1}-\mathrm{S}_{9}\left(\mathrm{~S}_{9}\right.$ back-to-back
connection) are also used in the proposed nine-level $S^{2} \mathrm{C}^{2}$ RASCMLI for producing a voltage at its peak
that is double the input voltage and has nine different output voltage levels ($0, \pm V_{i n} / 2, \pm V_{i n}, \pm 3 V_{i n} / 2, \pm 2 V_{i n}$).

2.2 Operational Modes of the Proposed $\mathbf{S}^{2} \mathbf{C}^{2}$ RASCMLI

Table 1 shows the switching patterns, states of diodes, and capacitors at each voltage level for the proposed nine-level inverter. And a better explanation, the various modes of action and current direction are also shown in Figure 2(a) - Figure 2(i)
for both positive and negative half-cycle. Where i_{o} denotes the current's path. Both capacitors were charged during $\pm V_{\text {in }} / 2$ and $\pm V_{\text {in }}$ level, resulting in an output voltage equal to $\pm V_{i n} / 2$ and $\pm V_{i n}$. During $\pm 3 V_{\text {in }} / 2$, capacitor C_{2} is discharged, resulting in an output voltage of $\pm 3 V_{i n} / 2$. While both capacitors C_{2} and C_{l} are discharged collectively during $\pm 2 V_{i n}$, producing an output voltage equal to $\pm 2 V_{i n}$, and so on, both capacitors are charged and discharged collectively during $\pm V_{\text {in }}$ and $\pm 2 V_{\text {in }}$ respectively.

Table 1 Switching patterns, states of diodes, and capacitors at each voltage level.

Voltage Levels	Switches in H-Bridge Circuit				Switches					Diodes		Capacitors	
	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}	D_{1}	D_{2}	C_{1}	C_{2}
$+2 V_{\text {in }}$	1	1	0	0	1	0	0	1	0	R	F	DS	DS
$+3 V_{i n} / 2$	0	1	0	0	0	0	0	1	1	R	F	NC	DS
$+V_{i n}$	1	1	0	0	1	1	0	0	0	F	F	CH	CH
$+V_{i n} / 2$	0	1	0	0	1	1	0	0	1	F	F	CH	CH
0	0	1	0	1	1	1	0	0	0	F	F	CH	CH
$-V_{i s} / 2$	0	0	1	0	1	1	0	0	1	F	F	CH	CH
$-\mathrm{V}_{\text {in }}$	0	0	1	1	1	1	0	0	0	F	F	CH	CH
$-3 V_{i s} / 2$	0	0	1	0	0	0	1	0	1	F	R	DS	NC
$-2 V_{\text {in }}$	0	0	1	1	0	1	1	0	0	F	R	DS	DS

In this case, 1 or 0 whether the switches are ON or OFF; F or R indicates whether the diodes are forward or reverse biased; and CH, DS, or NC indicates whether the capacitors are charged, discharged, or unchanged.

In this case, 1 or 0 whether the switches are ON or OFF; F or R indicates whether the diodes are forward or reverse biased; and CH, DS, or NC indicates whether the capacitors are charged, discharged, or unchanged.

Figure 2(a) $V_{o}=+2 V_{i n}$, Figure 2(b) $V_{o}=+3 V_{i n} / 2$, Figure 2(c) $V_{o}=+V_{i n}$, Figure 2 (d) $V_{o}=+V_{i n} / 2$, Figure 2 (e) $V_{o}=0$, Figure 2 (f) $V_{o}=-V_{i n} / 2$, Figure $2(\mathrm{~g}) V_{o}=-V_{i n}$, Figure 2 (h) $V_{o}=-3 V_{i n} / 2$, Figure 2 (i) $V_{o}=-2 V_{i n}$.

Fig. 2 Various modes of action and current direction.

The most important properties of the proposed nine-level $S^{2} \mathrm{C}^{2}$ RASCMLI are (i) produces an output voltage that is double the applied input voltage (ii) Only three active switches and a couple of capacitors and diodes help to achieve the required output voltage level on each mode (iii) With less difficulty, self-balancing and self-voltage boosting maintain by the circuit and it does not need external circuits to balance capacitor voltage. (iv) Reduced switches for extension switched cells.

3 Extension of the Proposed Nine-Level $S^{2} \mathbf{C}^{2}$ RASCMLI

To achieve the necessary performance, the proposed nine-level $S^{2} C^{2}$ RASCMLI can be structurally extended to produce a greater number of voltage levels in all directions. There are two ways of extension such as the horizontal and vertical
extension. The horizontal and vertical extension of the proposed nine-level $S^{2} C^{2}$ RASCMLI is shown in Figure 3(a) and Figure 3(b) respectively to produce higher voltage levels. The cell is expended as first cell, second cell... $N^{t h}$ cell.

3.1 Horizontal Extension

Every cell contains the same unit of structure up to the $N^{\text {th }}$ cell except H -bridge interconnected switch S_{9}. The $1^{\text {st }}$ cell switches are $S_{51}, S_{61}, S_{71}, \& S_{81}$; while diodes $D_{11} \& D_{21}$ and capacitors $C_{11} \& C_{21}$. Similarly, $2^{\text {nd }}$ Cell switches are $S_{52}, S_{62}, S_{72}, \& S_{82}$; while diodes $D_{12} \& D_{22}$ and capacitors $C_{12} \& C_{22}$ are expended in the same manner up to $N^{\text {th }}$ cell. Here the capacitors are linked parallel to boost the voltage levels of an inverter. Further, the working of the proposed ninelevel $S^{2} C^{2}$ RASCMLI (HE) is discussed with the switching Table 2.

Figure 3(a)
Figure 3(b)
Figure 3(a) Horizontal Extension, Figure 3(b) Vertical Extension.
Fig. 3 Extension of proposed nine-level $\mathrm{S}^{2} \mathrm{C}^{2}$ RASCMLI.

Table 2 depicts the proposed nine-level $S^{2} \mathrm{C}^{2}$ RASCMLI (HE) switching sequence, which is depicted in Figure 3(a). Also, states of the capacitor such as charging, discharging and "NO" change details are mentioned in Table 2. For the low-level voltage output, the capacitors are charging long period. If chooses a high voltage level, the capacitor is discharging from higher to lower order number as shown in Table 2.
Further, the generalized equation (1) - equation (7) is given to construct the proposed nine-level $\mathrm{S}^{2} \mathrm{C}^{2}$ RASCMLI (HE).
$N_{I S}=4 n+2\left(\right.$ Included $\left.S_{9}\right)$
$N_{D C}=4 n+1\left(\right.$ Included $\left.S_{9}\right)$
$N_{V L}=4(n+1)$
$N_{C}=2(n-1)$
$N_{D}=2(n-1)$
$V_{\text {MOV }}=n V_{\text {in }}$
$V_{i n:} V_{o}=1: n$
where $N_{I S}$ represents the number of power electronics switches, $N_{D C}$ represents the number of driver circuits, $N_{V L}$ represents the number of voltage level, N_{C} represents the number of flying capacitors, N_{D} represents the number of power Diodes, $V_{M O V}$ represents Maximum Output Voltage And n represents the maximum voltage gain generated by the N^{h} cell with a single source, as an inverter satisfied the condition $n \geq 2$.

3.2 Vertical Extension

Figure 3(b) depicts the proposed nine-level $S^{2} C^{2}$ RASCMLI I's the vertical extension (VE). It is expended as First cell, second cell.... $N^{\text {Th }}$ cell. Every cell contains the same unit of structure up to the $N^{t h}$ cell which has H -bridge interconnected solid switch S_{9}. The $I^{s t}$ cell switches are S_{15}, S_{16}, S_{17}, \& S_{18}; while diodes $D_{11} \& D_{12}$ and capacitors $C_{11} \& C_{12}$. Similarly, $2^{\text {nd }}$ Cell switches are S_{25}, S_{26}, S_{27}, \& S_{28}; while diodes $D_{21} \& D_{22}$ and capacitors $C_{21} \& C_{22}$ are expended in the same manner up to $\mathrm{N}^{\text {th }}$ cell. Here all the capacitors are connected parallel to boost the voltage levels of an inverter. Figure 3(b) shows how equation (8) - equation (14) leads to nine-level $S^{2} C^{2}$ RASCMLI (VE) for expanding up to n.
$N_{I S}=4 n+2\left(\right.$ Included $\left.S_{9}\right)$
$N_{D C}=4 n+1\left(\right.$ Included $\left.S_{9}\right)$
$N_{V L}=4(n+1)$
$N_{C}=2(n-1)$
$N_{D}=2(n-1)$
$V_{\text {MOV }}=n V_{\text {in }}$
$V_{i n}: V_{o}=1: n$
where n denotes the maximum voltage gain produced by the $\mathrm{N}^{\text {th }}$ cell with a single source, and $n \geq 2$ denotes that the inverter fulfilled the condition. Table 3 shows the generalized switching pattern of the nine-level $S^{2} \mathrm{C}^{2}$ RASCMLI (VE) for $(n+1) V_{\text {in }}$ voltage levels generation. States of the capacitor such as charging,
discharging and no change details are mentioned in Table 3.

Table 2 The switching pattern of the proposed nine-level $S^{2} \mathrm{C}^{2}$ RASCMLI (HE).

Voltage Levels	Switches in H-Bridge Circuit$S_{S_{l}, S_{2}, S_{3}, S}$	"ON" state Switches					Conducting Diodes		States of Capacitors	
		$\begin{gathered} S_{5 l}, S_{52}, \\ \ldots S_{5 n} \end{gathered}$	$\begin{gathered} S_{61,}, S_{62}, \\ \ldots S_{6 n} \end{gathered}$	$\begin{gathered} S_{71}, S_{72}, \\ \ldots S_{7 n} \end{gathered}$	$\begin{gathered} S_{81}, S_{82}, \\ \ldots . S_{8 n} \end{gathered}$	S9	$\begin{gathered} D_{I I}, D_{12}, \\ \ldots D_{I n} \end{gathered}$	$D_{21,}, D_{22},$	$\begin{gathered} C_{11,} C_{12}, \\ \ldots C_{I n} \end{gathered}$	$\begin{gathered} C_{21,} C_{22}, \\ \ldots C_{2 n} \end{gathered}$
$+(n+1) V_{i n}$	$S_{l,} S_{2}$	---	---	---	$\begin{gathered} S_{81}, S_{82}, \\ \ldots . . S_{8 n} \end{gathered}$	---	---	$\begin{gathered} D_{21,} D_{22}, \\ \ldots . D_{2 n} \end{gathered}$	$\begin{gathered} C_{11 d}, C_{12 d}, \\ \ldots C_{1 n d} \end{gathered}$	$\begin{gathered} C_{2 l d,}, C_{22 d}, \\ \ldots C_{2 n d} \end{gathered}$
...	\ldots	...	\ldots	\ldots	\ldots	...
$+5 \mathrm{~V}_{i n} / 2$	S_{2}	$\begin{gathered} S_{5 l}, \ldots \\ S_{5(n-2)} \end{gathered}$	$\begin{gathered} S_{61,}, \ldots \\ S_{6(n-2)} \end{gathered}$	---	$S_{8(n-1),}$ $S_{8 n}$	S9	$\begin{gathered} D_{I l}, \ldots \\ D_{l(n-2)} \end{gathered}$	$\begin{gathered} D_{21}, D_{22}, \\ \ldots D_{2 n} \end{gathered}$	$\begin{gathered} C_{11}, C_{12}, \\ \ldots C_{l(n-1) d}, C_{l n-} \end{gathered}$	$\begin{gathered} C_{21}, C_{22}, \\ \ldots C_{2(n-1) d,}, C_{2 n d} \end{gathered}$
$+3 V_{i n} / 2$	S_{2}	$\begin{gathered} S_{5 l}, \ldots \\ S_{5(n-1)} \end{gathered}$	S_{61}, \ldots $S_{\text {б(n-l) }}$	---	$S_{8 n}$	S9	$\begin{aligned} & D_{I l}, \ldots \\ & D_{I(n-l)} \end{aligned}$	$\begin{gathered} D_{21}, D_{22}, \\ \ldots . D_{2 n} \end{gathered}$	$\begin{gathered} C_{11}, C_{12}, \\ \ldots C_{1 n-} \end{gathered}$	$\begin{gathered} C_{21}, C_{22}, \\ \ldots C_{2 n d} \end{gathered}$
$+V_{i n} / 2$	S_{2}	S_{51}, S_{52}, ... $S_{5 n}$	$\begin{aligned} & S_{61,}, S_{62}, \\ & \ldots . S_{6 n} \end{aligned}$	---	---	S9	$\begin{gathered} D_{I 1}, D_{I 2} \\ \ldots D_{I n} \end{gathered}$	$\begin{gathered} D_{21}, D_{22}, \\ \ldots . D_{2 n} \end{gathered}$	$\begin{gathered} C_{11}, C_{12}, \\ \ldots C_{1 n} \end{gathered}$	$\begin{gathered} C_{21}, C_{22}, \\ \ldots C_{2 n} \end{gathered}$
0	$S_{2,} S_{4}$	$\begin{gathered} S_{51}, S_{52}, \\ \ldots . S_{5 n} \end{gathered}$	$\begin{gathered} S_{61}, S_{62}, \\ \ldots . S_{6 n} \end{gathered}$	---	---	---	$\begin{gathered} D_{I l}, D_{I 2}, \\ \ldots D_{I n} \end{gathered}$	$\begin{gathered} D_{21}, D_{22}, \\ \ldots . D_{2 n} \end{gathered}$	$\begin{gathered} C_{11}, C_{12}, \\ \ldots C_{l n} \end{gathered}$	$\begin{gathered} C_{21}, C_{22}, \\ \ldots C_{2 n} \end{gathered}$
- $V_{i n} / 2$	S_{3}	$\begin{aligned} & S_{51, S_{52}} \\ & \ldots S_{5} \end{aligned}$	$\begin{aligned} & S_{61}, S_{62}, \\ & \ldots . S_{6 n} \end{aligned}$	----	----	S9	$\begin{gathered} D_{11}, D_{12}, \\ \ldots D_{I n} \end{gathered}$	$\begin{gathered} D_{21}, D_{22}, \\ \ldots . D_{2 n} \end{gathered}$	$\begin{gathered} C_{11}, C_{12}, \\ \ldots C_{1 n} \end{gathered}$	$\begin{gathered} C_{2 l}, C_{22}, \\ \ldots C_{2 n} \end{gathered}$
...	...	\ldots	\ldots	\ldots	\ldots	\ldots	...
$-(n+1) V_{i n}$	S_{3}, S_{4}	---	---	$\begin{gathered} S_{71}, S_{72}, \\ \ldots S_{7 n} \end{gathered}$	----	--	$\begin{gathered} D_{I 2,} D_{I 2}, \\ \ldots D_{I n} \end{gathered}$	---	$\begin{gathered} C_{11 d}, C_{12 d}, \\ \ldots C_{1 n d} \end{gathered}$	$\begin{gathered} C_{2 l d}, C_{22 d}, \\ \ldots C_{2 n d} \end{gathered}$

$---:$ "OFF" state; $C_{1 x} \& C_{2 x}$: state of charging; $C_{1 x d} \& C_{2 x d}$: state of discharging; $C_{1 x-} \& C_{2 x-}$ state of "NO" Change where $\mathrm{x}=1,2 \ldots \mathrm{n}$.

Table 3 The switching pattern of the proposed nine-level $S^{2} C^{2}$ RASCMLI (VE).

Voltage Levels	Switches in H-Bridge Circuit$S_{1}, S_{2}, S_{3}, S_{4}$	"ON" state Switches					Conducting Diodes		States of Capacitors	
		$\begin{gathered} S_{I 5}, S_{25,}, \\ \ldots S_{n 5} \end{gathered}$	$\begin{gathered} \hline S_{61,}, S_{26}, \\ \ldots S_{n 6} \end{gathered}$	$\begin{gathered} S_{17,} S_{27}, \\ \ldots . S_{n 7} \end{gathered}$	$\begin{gathered} S_{18,} S_{28}, \\ \ldots S_{n 8} \end{gathered}$	S_{9}	$\begin{gathered} D_{11}, D_{21}, \\ \ldots D_{n 1} \end{gathered}$	$\begin{gathered} D_{12,}, D_{22}, \\ \ldots . D_{n 2} \end{gathered}$	$\begin{gathered} C_{11,}, C_{21}, \\ \ldots C_{n 1} \end{gathered}$	$\begin{gathered} C_{212,} C_{22}, \\ \ldots C_{2 n 2} \end{gathered}$
$+(n+1) V_{i n}$	$S_{1, S_{2}}$	---	---	---	$\begin{gathered} S_{18,} S_{28,} \\ \ldots S_{n 8} \end{gathered}$	---	---	$\begin{gathered} D_{12,}, D_{22}, \\ \ldots D_{n 2} \end{gathered}$	$\begin{gathered} C_{1 I d,} C_{2 l d}, \\ \ldots . . C_{n l d} \end{gathered}$	$\begin{gathered} C_{12 d}, C_{22 d}, \\ \ldots . C_{n 2 d} \end{gathered}$
...	\ldots	...	\ldots	...	\ldots	\ldots	...
$+V_{i n} / 2$	S_{2}	$\begin{aligned} & S_{15, S_{25}}, \\ & \ldots S_{n 5} \end{aligned}$	$\begin{aligned} & S_{16,}, S_{26}, \\ & \ldots S_{n 6} \end{aligned}$	---	---	S9	$\begin{gathered} D_{1 l}, D_{2 l}, \\ \ldots D_{n 1} \end{gathered}$	$\begin{gathered} D_{12}, D_{22}, \\ \ldots . D_{n 2} \end{gathered}$	$\begin{gathered} C_{1 l}, C_{21}, \\ \ldots C_{n 1} \end{gathered}$	$\begin{gathered} C_{12}, C_{22}, \\ \ldots C_{n 2} \end{gathered}$
0	$S_{2,} S_{4}$	$\begin{gathered} S_{15}, S_{25}, \\ \ldots, S_{n 5} \end{gathered}$	$\begin{gathered} S_{I 6}, S_{26}, \\ \ldots . S_{n 6} \end{gathered}$	---	---	---	$\begin{gathered} D_{11}, D_{2 l}, \\ \ldots D_{n 1} \end{gathered}$	$\begin{gathered} D_{12}, D_{22}, \\ \ldots D_{n 2} \end{gathered}$	$\begin{gathered} C_{11}, C_{21}, \\ \ldots C_{n 1} \end{gathered}$	$\begin{gathered} C_{12}, C_{22}, \\ \ldots C_{n 2} \end{gathered}$
- $V_{i r} / 2$	S_{3}	$\begin{aligned} & S_{15, S_{25}}, \\ & \ldots S_{n 5} \end{aligned}$	$\begin{aligned} & S_{16,} S_{26}, \\ & \ldots S_{n 6} \end{aligned}$	----	----	S9	$\begin{gathered} D_{1 l,}, D_{21}, \\ \ldots . D_{n l} \end{gathered}$	$\begin{gathered} D_{12}, D_{22}, \\ \ldots . D_{n 2} \end{gathered}$	$\begin{gathered} C_{11}, C_{21}, \\ \ldots C_{n 1} \end{gathered}$	$\begin{gathered} C_{12}, C_{22}, \\ \ldots C_{n 2} \end{gathered}$
$-3 V_{i n} / 2$	S_{3}	$\begin{gathered} S_{15,}, \ldots \\ S_{(n-2) 5} \end{gathered}$	$\begin{gathered} S_{I 6}, \ldots \\ S_{(n-2) 6} \end{gathered}$	$S_{n 7}$	---	S9	$\begin{gathered} D_{1 l}, D_{2 l}, \\ \ldots D_{n l} \end{gathered}$	$\begin{gathered} D_{12}, \ldots \\ D_{(n-1) 2} \end{gathered}$	$\begin{gathered} C_{1 l}, C_{2 l}, \\ \ldots . C_{n l d} \end{gathered}$	$\begin{gathered} C_{12}, C_{22}, \\ \ldots C_{n 2} \end{gathered}$
$-5 V_{i n} / 2$	S_{3}	$\begin{gathered} S_{15}, \ldots \\ S_{(n-2) 5} \end{gathered}$	$\begin{gathered} S_{16,} \ldots \\ S_{(n-2) 6} \end{gathered}$	$\begin{gathered} S_{(n-1) 7,} \\ S_{n 7} \end{gathered}$	---	S_{9}	$\begin{gathered} D_{11}, D_{2 l}, \\ \ldots D_{n 1} \end{gathered}$	$\begin{gathered} D_{12}, \ldots \\ D_{(n-2) 2} \end{gathered}$	$\begin{aligned} & C_{11}, C_{21}, \\ & \ldots C_{(n-} \\ & { }_{1) 1 d,}, C_{n l d} \end{aligned}$	$\begin{gathered} C_{12}, C_{22}, \\ \ldots C_{(n-} \\ { }_{12)}, C_{n 2-} \end{gathered}$
...	\ldots	...	\ldots	\ldots	\ldots
$-(n+1) V_{i n}$	S_{3}, S_{4}	---	---	$\begin{gathered} S_{17}, S_{27} \\ \ldots . S_{n 7} \end{gathered}$	----	---	$\begin{gathered} D_{11}, D_{2 l}, \\ \ldots . D_{n l} \end{gathered}$	---	$C_{11 d,} C_{2 l d,}$... $C_{n l d}$	$\begin{aligned} & \quad C_{12 d,}, C_{2 d}, \\ & \ldots C_{n 2 d} \end{aligned}$

---: "OFF" state; $C_{x 1} \& C_{x 2}$: state of charging; $C_{x 1 d} \& C_{x 2 d}$: state of discharging; $C_{x 1-} \& C_{x 2}$: state of "NO" Change where $\mathrm{x}=1,2 \ldots \mathrm{n}$.

4 Modulation Technique

The desired sinusoid output voltage in typical multilevel inverters produced by the staircase waveform [10, 12]. To get better approximate sinusoidal waveforms by increasing the number of levels, but it is increasing the number of component cost and complexity of the signal circuit. However,
designer always stays with the quality of output, cost and efficiency of the inverters. The proposed and extended cell of the inverter constantly stays with a reduced component with reduced conduction switches to minimize the complexity of signal conditioning circuits.

Fig 4 Modulation strategy for the half-cycle fundamental frequency.

The modulation strategy for half-cycle fundamental frequency (f) helps to calculate the highest voltage level of the inverter from the given sinusoidal signal as shown in Figure 4. An electric grid of the nation synthesizes the frequency and output voltage. This application takes the frequency f $=50 \mathrm{~Hz}$. As per the operation of the circuit, the transition time of each voltage level is calculated by the given equation (15).
$T s=\frac{1}{\omega} \arcsin \left(\frac{2 s-1}{N-1}\right)$
where $s=1,2, \ldots, 8 ; \omega=2 \pi f$

$$
\begin{array}{cc}
t_{1}=4.000 \times 10^{-4} \mathrm{~ms} ; & t_{2}=1.223 \times 10^{-3} \mathrm{~ms} ; \\
t_{3}=2.156 \times 10^{-3} \mathrm{~ms} ; & t_{4}=3.399 \times 10^{-3} \mathrm{~ms} ; \\
t_{5}=6.666 \times 10^{-3} \mathrm{~ms} ; & t_{6}=7.854 \times 10^{-3} \mathrm{~ms} ; \\
t_{7}=8.788 \times 10^{-3} \mathrm{~ms} ; & t_{8}=9.663 \times 10^{-3} \mathrm{~ms} ; \\
t_{9}=\mathrm{T} / 2=0.01 \mathrm{~ms} ;
\end{array}
$$

The nine levels of the proposed inverter staircase are $0, V_{i n} / 2, V_{i n}, 3 V_{i n} / 2,2 V_{i n}$ getting from the transition time of $t_{l}-t_{9}$ (For negative half-cycle similar strategy is used).

5 Design of Voltage Balancing Capacitors

The capacitors have two discharging cycles for every half-cycle, according to the switching sequence mentioned in Table 1.

Figure 5(a)

$$
\begin{gathered}
C_{1}: \theta_{4}-\theta_{5} ; \theta_{5}-\theta_{6} \\
C_{2}: \theta_{3}-\theta_{4} ; \theta_{4}-\theta_{5}
\end{gathered}
$$

The capacitor voltage ripples $\Delta \mathrm{V}_{\mathrm{C}_{1}}$ and $\Delta \mathrm{V}_{\mathrm{C}_{2}}$ are calculated from equation (16) and equation (17).

$$
\begin{align*}
\Delta V_{C_{1}} & =\frac{1}{2 \pi f C_{1}} \int_{\theta_{4}}^{\pi-\theta_{3}} i_{C_{1}} d \theta \\
& =\frac{1}{2 \pi f C_{1}} \int_{\theta_{4}}^{\pi-\theta_{3}} i_{o} d \theta \tag{16}\\
\Delta V_{C_{2}} & =\frac{1}{2 \pi f C_{2}} \int_{\theta_{3}}^{\pi-\theta_{5}} i_{C_{2}} d \theta \\
& =\frac{1}{2 \pi f C_{2}} \int_{\theta_{3}}^{\pi-\theta_{5}} i_{o} d \theta \tag{17}
\end{align*}
$$

where f is the fundamental frequency for switching; i_{o} is the output current, resulting in $\Delta V_{C_{1}}=\Delta V_{C_{2}}=$ 887 mV . It can be noted that two capacitors voltage ripples are equal because of its same interval. From equation (16) and equation (17), the output current is the same in discharging circuit mode operation of output voltage levels $3 V_{i n} / 2$ and $2 V_{\text {in }}$. A benefit of the proposed inverter is that it produces equivalent capacitor values by implementing a ripple voltage of 7.5% of the capacitor's maximum voltage. As a result, it has been selected $C_{1}=C_{2}=4700 \mu \mathrm{~F}$.

Figure 5 (b)

Fig. 5 Curves of minimal capacitance vs. output frequency and resistive load.
(Ro). It has been discovered as the rated power dissipation increases, the capacitance must be increased to maintain the ripple voltage in an

In addition, Figure 5 shows Curves of minimal capacitance vs. output frequency and resistive load
acceptable range Figure 5(b), and that the greater the frequency the smaller the capacitance Figure 5(a).

6 Analysis of Power Losses

The conduction and switching losses are
measured using the reference [22] equations and procedure. The forward voltage drops of the diodes $D_{1} \& D_{2}$ are represented in Table 4 by $V_{F_{1}}$ and $V_{F_{2}}$ respectively.

Table 4 Specifications of components.

Component	Resistance value
Capacitor $C_{1} \& C_{2}$	$4700 \mu \mathrm{~F}, r_{c}=0.124 \Omega$
Conduction resistance of switches $S_{1}-S_{6}$	$r_{h} \& r_{f}=0.032 \Omega$
Conduction resistance of switches $S_{7} \& S_{8}$	$r_{s}=0.0092 \Omega$
Conduction resistance of switches S_{9}	$r_{l}=0.0422 \Omega$
Diode $D_{1} \& D_{2}$	$\mathrm{~V}_{\mathrm{F}_{1}} \& \mathrm{~V}_{\mathrm{F}_{2}}=0.964 \mathrm{~V}$

where r_{l} is the conduction resistance of the switch S_{9}, r_{h} is the conduction resistance of H -bridge resistance $S_{I}-S_{4} . R_{o}$ is the load resistance of the inverter. r_{c} is the series resistance (equivalent) of a capacitor, r_{f} is the conduction resistance of the $S_{5} \& S_{6}, r_{s}$ is the conduction resistance of the $S_{7} \& S_{8}$. The power losses are calculated using the values given in Table 4.
(i) When the capacitor charges at output voltage levels of $0, V_{i n} / 2$ and $V_{i n}$ from the parallel-connected voltage source, the capacitor losses happen with each half-cycle. The respected capacitor power losses can be expresses as equation (18).
$P_{\left(\text {loss }_{\text {capacitor }}\right)}=3 f \sum_{j=1}^{2} \Delta V_{C_{j}}$
where $\Delta V_{C_{j}}=C_{j}\left(\Delta V_{C_{j}}\left(V_{F_{1}}+V_{F_{2}}\right)+\Delta V^{2} C_{j}\right) ; j$

$$
=1,2 .
$$

$P_{(\text {loss_capacitor })}=$
$3 f C_{1}\left(\Delta V_{C_{1}}\left(V_{F_{1}}+V_{F_{2}}\right)+\Delta V^{2} C_{1}\right)+3 f C_{2}\left(\Delta V_{C_{2}}\right.$ $\left.\left(V_{F_{1}}+V_{F_{2}}\right)+\Delta V^{2} C_{2}\right)$
(ii) The load receives the energy from the input source at $V_{i n} / 2$ and $V_{i n}$ levels. During the period, the conduction loss of capacitor is the calculation from the equation (19) and equation (20).
$P_{\left(\text {loss }_{-} \text {disch } 1\right)}=$
$4 f \frac{\theta_{2}-\theta_{1}}{2 \pi f}\left[\left(r_{1}+r_{h}\right)\left(\frac{\frac{v_{\text {in }}}{2}-\left(V_{\mathrm{F}_{1}}+V_{\mathrm{F}_{2}}\right)}{\mathrm{R}_{\mathrm{o}}+\mathrm{r}_{1}+\mathrm{r}_{\mathrm{h}}}\right)^{2}+\right.$
$\left.\left(V_{\mathrm{F}_{1}}+V_{\mathrm{F}_{2}}\right)\left(\frac{\frac{\mathrm{V}_{\mathrm{in}}}{2}-\left(V_{\mathrm{F}_{1}}+V_{\mathrm{F}_{2}}\right)}{\mathrm{R}_{\mathrm{o}}+\mathrm{r}_{1}+\mathrm{r}_{\mathrm{h}}}\right)\right]$

$$
\begin{align*}
& P_{(\text {loss_disch2 })}= \\
& \quad 4 f \frac{\theta_{3}-\theta_{2}}{2 \pi f}\left[2 r_{h}\left(\frac{V_{i n}-\left(V_{F_{1}}+V_{F_{2}}\right)}{R_{o}+2 r_{h}}\right)^{2}+\right. \tag{20}\\
& \left.\left(V_{F_{1}}+V_{F_{2}}\right)\left(\frac{V_{i n}-\left(V_{F_{1}}+V_{F_{2}}\right)}{R_{o}+2 r_{h}}\right)\right]
\end{align*}
$$

(iii) The discharging phase of the capacitor losses calculated in the levels of $3 V_{\text {in }} / 2$ and $2 V_{\text {in }}$ by equation (21).

Where $I_{1} \& I_{2}$: The current in the discharging phase of the capacitors.

$$
\begin{equation*}
P_{(\text {loss_disch } 3)}=\left(3 \Delta V_{C_{d 1}}+3 \Delta V_{C_{d 2}}\right) \tag{21}
\end{equation*}
$$

where:

$$
\Delta V_{C_{d 1}}+=I_{1}^{2} r_{1} \frac{\theta_{4}-\theta_{3}}{2 \pi f}=\left(\frac{\frac{3}{2} V_{i n}}{R_{o}+r_{1}}\right)^{2} r_{1} \frac{\theta_{4}-\theta_{3}}{2 \pi f}
$$

$$
\begin{gathered}
r_{1}=r_{c}+r_{f}+r_{s}+r_{l}+r_{h} \\
\Delta V_{C_{d 2}}=I_{2}^{2} r_{2} \frac{\pi-2 \theta_{4}}{2 \pi f}=\left(\frac{4 V_{i n}}{R_{o}+r_{2}}\right)^{2} r_{2} \frac{\pi-2 \theta_{4}}{2 \pi f} \\
r_{2}=2 \times r_{c}+r_{f}+r_{s}+2 \times r_{h}
\end{gathered}
$$

(iv) Switching losses (equation (22)) associated with each switch's ON and OFF of $P_{\text {Switch }}$, where ($\left.N_{(\text {Switch })}\right)$ is the number of switches in the topology.

$$
\begin{align*}
& P_{(\text {Switch_total })}= \\
& \sum_{q=1}^{N_{(\text {Switch })}}\left[\sum_{p=1}^{N_{(p)}} P_{\text {Switch,on }(p q)}+\right. \tag{22}\\
& \left.\sum_{p=1}^{N_{(p)}} P_{\text {Switch }, o f f(p q)}\right]
\end{align*}
$$

The switching power losses on the $q^{\text {th }}$ turn-ON the p in a loop is represented by $P_{\text {Switch,on(pq) }}$ turnOFF the switch in the same way with the same switch
on conduction failure. In a switching loop, $N_{(p)}$ donates the turn-ON/turn-OFF switch p. In other words, $q=1,2, \ldots, N_{(p)} . V_{\text {off }}^{\text {state }(p q)}$ $)$ is the OFF-state voltage p after an OFF-action q and $I_{o n_{\text {state } 1,(p q)}}$ the current throughout switch p before an ON of q, the expression in the equation (22) is calculated with equation (23) and equation (24).
$P_{(S w i t c h, o n(p q)}=\frac{f V_{o f f_{\text {state }(p q)} I_{o n}}{ }_{\text {state } 1,(p q)} t_{o n}}{6}$
$P_{(S w i t c h, o f f(p q))}=\frac{f V_{\text {off }}^{\text {state }(p q)}}{} I_{o n_{\text {state } 2,(p q)}} t_{\text {off }}$
The cumulative power losses are determined using the above equation (18) - equation (24). The efficiency can be obtained from equation (25).
$\eta=\frac{P_{\text {out }}}{P_{\text {out }}+P_{\text {Loss }}}$
In this part, simulation outcomes for power losses against complex load are compared with conduction and switching losses of a proposed $\mathrm{S}^{2} \mathrm{C}^{2}$ RASCMLI's every switch. From equation (23) and equation (24), the conduction and switching losses are calculated for IGBT as well as diodes in Figure 6. The overall conduction and switch losses are quite low because the reduced active / conduction switch on each mode is only three. H-bridge switches always block the double voltage compare to the input voltage. Switch S_{9} losses are very low from the other switches due to the voltage oscillation across the switch is +50 V to 50 V . Crossed connected switches S_{7} / S_{8} is conducted only at high voltage levels. S_{5} / S_{6} switches are conducted for all level of the inverter output voltage as shown in Figure 6.

Fig 6 Conduction and switching losses of switches.

7 Comparison of the Proposed $S^{2} \mathbf{C}^{2}$ RASCMLI with other Topologies

Table 5 Shows the contrast of the suggested $S^{2} C^{2}$ RASCMLI with topologies of different kinds based on the number of power electronics switches $N_{I S}$, The number of different voltage levels - $N_{V L}$, The number input - $N v_{i n}$, Number of flying capacitors N_{C}, Number of the switches in conduction path $-N_{S C}$, Voltage across the capacitors - $V_{C}(V)$, Total standing voltage of the inverter- $V_{T S}(V)$, Maximum blocking voltage on switches - $V_{B V}(V)$, Number of active devices including diodes - $N_{C D}$, Maximum output voltage - $V_{o_{-} \max }(V), R=V_{B V}(V) / V_{o_{-} \max }(V)$ (minimum value), the Voltage gain of the inverter, - Ratio of the number of time Discharging and Charging - DC/C (minimum value).

Table 5 shows that the number of conduction switches in the suggested topology is lower than any of the other topologies in the table. Due to these reduced active switches, the power consumption is less and the cost for switches becomes low when
compared to another topology. It is the notable advantage of the proposed topologies. The extension HE and VE cells switches have fewer is another advantage of the suggested network. As compared to other proposed circuits, the proposed nine-level $S^{2} C^{2}$ RASCMLI has the best overall efficiency and the least amount of loss.

8 Results and Discussion

The title discusses the computation and test results to validate the proposed $S^{2} C^{2}$ RASCMLI's performance. Initially, the proposed inverter was simulated in MATLAB/SIMULINK with an input source of 100 V and the capacitor of 4700 F with a resistance of $r_{c}=0.124 \Omega$ against varying load for fundamental frequency $f=50 \mathrm{~Hz}$ and switching signal frequency of 5 kHz . The IGBTs (75GB063D) with a ratio of 600 V and 75 A have a dead time of 4μ seconds from the Driver circuit (TLP250). The load is made up of a variable $R L$ - load with a maximum power rating of 1.25 kW .

8.1 Results of the Proposed $\mathbf{S}^{\mathbf{2}} \mathbf{C}^{\mathbf{2}}$ RASCMLI

Figure 7 depicts the proposed topology's simulation performance.

Table 5 Comparison of the proposed $\mathrm{S}^{2} \mathrm{C}^{2}$ RASCMLI with other topologies.

Ref.	$N_{V L}$	$N_{I S}$	N_{D}	$N v_{i n}$	N_{C}	$N_{S C}$	V_{C}	$V_{T S}$	$V_{B V}$	$N_{C D}$	$V_{o _ \text {max }}$	R	GA	DC/C	(η \%)
[2]	9	13	-	1	3	7	$V_{\text {in }}$	$25 V_{\text {in }}$	$4 V_{\text {in }}$	6	$4 V_{\text {in }}$	1.0	4.0	3.0	85.9
[9]	9	11	1	1	1	6	$V_{i n}$	$11 V_{\text {in }}$	$2 V_{i n}$	4	$2 V_{i n}$	1.0	2	1.0	96.2
[11]	9	8	4	1	1	4	$2 V_{\text {in }}$	$16 V_{\text {in }}$	$4 V_{\text {in }}$	4	$4 V_{\text {in }}$	1.0	4	1.0	95.9
[13]	13	16	2	2	4	7	$V_{i n}$	$33 V_{\text {in }}$	$6 V_{\text {in }}$	8	$6 V_{\text {in }}$	1.0	6	2.0	92.1
[14]	9	10	-	1	2	4	$V_{\text {in }} / 4$	$6 V_{i n}$	$V_{i n} / 2$	5	$V_{\text {in }} / 2$	1.0	0.5	1.0	98.5
[15]	9	12	-	1	1	5	$V_{\text {in }}$	$8 V_{\text {in }}$	$V_{i n}$	4	$V_{\text {in }}$	1.0	1	1.0	92.3
[16]	5	10	-	1	2	6	$V_{\text {in }}$	$14 V_{\text {in }}$	$2 V_{\text {in }}$	4	$2 V_{\text {in }}$	1.0	2	1.0	94.0
[17]	7	9	1	1	1	4	$V{ }_{\text {in }}$	$16 V_{\text {in }}$	$2 V_{\text {in }}$	4	$1.5 V_{\text {in }}$	1.3	1.5	2.0	97.2
[18]	9	10	1	1	2	4	$V_{\text {in }} / 2$	$24 V_{\text {in }}$	$2 V_{\text {in }}$	2	$2 V_{\text {in }}$	1.0	2	1.0	95.0
[19]	9	12	-	1	2	7	$V_{\text {in }} / 2$	$11 V_{\text {in }}$	$V_{i n}$	4	$2 V_{\text {in }}$	0.5	2	1.0	80.6
[20]	9	11	-	1	2	6	$V_{\text {in }} / 2$	$11 V_{\text {in }}$	$V_{\text {in }}$	4	$2 V_{i n}$	0.5	2	1.0	NA
[21]	9	12	-	1	2	6	$2 V_{\text {in }}$	$21 V_{\text {in }}$	$2 V_{i n}$	5	$4 V_{i n}$	05	4	1.0	NA
Propose d	9	10	2	1	2	3	$V_{\text {in }} / 2$	$14 V_{\text {in }}$	$2 V_{\text {in }}$	5	$2 V_{\text {in }}$	1	2	1	98.6
Propose d (HE)	13	14	4	1	4	4	$V_{i n} / 2$	$20 V_{\text {in }}$	$3 V_{i n}$	7	$3 V_{i n}$. 67	3	0.5	97.4
Propose $\mathrm{d}(\mathrm{VE})$	13	14	4	1	4	4	$V_{i n} / 2$	$20 V_{\text {in }}$	$3 V_{\text {in }}$	7	$3 V_{\text {in }}$. 67	3	0.5	97.8

NA - Not Available

Figure 7(a)

Figure 7(d)

Figure 7(b)

Figure 7(e)

Figure 7(c)

Figure 7(f)

Figure 7(a) voltage at the output - Vo, Figure 7(b) Current at the output - i_{o}, Figure 7(c) Voltage across the capacitor ($V c_{1} \& V c_{2}$), Figure 7(d) - (f) the voltage and current waveform on load varying condition.

Fig 7 Simulation results of proposed $S^{2} \mathrm{C}^{2}$ RASCMLI.

Figure 7(a) - Figure 7(c) shows the output voltage and current for $R=50$ and $L=10 \mathrm{mH}$. Figure 7 (c) and Figure 7(f) display the voltage around the capacitor in the study and dynamic conditions, respectively. It is observed high ripple in this configuration using capacitors of $4700 \mu \mathrm{~F}$ using capacitors of 4700 microfarads. This adjustment effectively reduces the ripple to below 4%. However,
it's important to note that opting for larger capacitors may lead to an increase in the overall weight of the inverter. However, some motor drives or lighting systems, a 10% ripple can be within an acceptable range.

To reaffirm the complex mission, the suggested topology is simulated for load variation from ($50 \Omega+$ $10 \mathrm{mH})$ to $(100 \Omega+110 \mathrm{mH})$. The resultant voltage
and current waveforms are shown in Figure 7(d) Figure 7(f). Form this validation; capacitors can maintain the 50 V with allowable ripple voltages. In Figure 7 likely includes some form of RL component for smooth start and output filtering, such as a lowpass LC (inductor-capacitor) filter. This LC filter is designed to smooth out the output voltage and current
waveforms, making them less prone to rapid fluctuations or ripples.

Figure 8 shows the experimental prototype model. To reduce the inrush current in the capacitor, a small inductor is linked in series with the input supply. The value of the inductor chosen for the loop circuit is determined by the capacitor ripple voltage and device performance.

Fig 8 Hardware prototype model.

The proposed $S^{2} C^{2}$ RASCMLI topology compare to other recently proposed topologies, the number of active switches and the driver circuits is low. It allows checking circuit connection frequently and improves extended cell operation. In addition,

Floating the grounds using diodes can help reduce common-mode voltage, which is often a concern in MLI designs. Common-mode voltage can lead to issues such as electromagnetic interference (EMI).

Figure 9(a) Pure Resistive load at 100Ω, Figure 9(b) RL - load of $110 \mathrm{mH} \& 50 \Omega$, Figure 9(c) 10 mH to 110 mH with 50Ω resistor, Figure 9 (d) 10 mH to 110 mH with 100Ω resistor, Figure 9 (e) 50Ω to 100Ω with 10 mH , Figure 9 (f) 50Ω to 100Ω with 110 mH .

Fig. 9 Experimental output voltage and current waveforms at fixed and dynamic load condition.

Figure 9 depicts the proposed inverter's voltage and current waveforms with varied inductor and resistor loads in a dynamic scenario. Figure 9(a)
shows a purely resistive load with voltage and inphase current and the smooth sinusoidal current waveform generated by an inverter with a high
inductance value. It is shown in Figure 9(b).
The twice voltage gain as shown by the output voltage is one of the key features of the proposed topology, which has a 200 V peak resulting from the

Figure 10 (d)

Figure 10(a)
$100 V_{i n}$. Further, Figure 9(c) - Figure 9(f) shows the output voltage and current on various dynamic load conditions.

Figure 10(b)

Figure 10 (e)

Figure 10(a) voltage across the capacitor, Figure 10(b) Current through the capacitors, Figure 10(c) voltage stresses on $V_{S 7} \& V_{S 8}$, Figure $10(\mathrm{~d})$ voltage stresses on $V_{S 5}, V_{S 6} \& V_{S 9}$, Figure $10(\mathrm{e})$ voltage stresses on H-bridge switches $V_{S 1}, V_{S 2}, V_{S 3} \& V_{S 4}$.

Fig. 10 The capacitor voltage, current and voltage stress of the switches at the dynamic load condition.

Figure 10 shows the voltage and current at different components in the proposed nine-level $S^{2} C^{2}$ RASCMLI at the dynamic variation of loading conditions of $500 \Omega+110 \mathrm{mH}$ to $50 \Omega+110 \mathrm{mH}$. The balanced capacitor voltage and current waveforms are shown in Figure 10(a) and Figure 10(b) respectively. Both capacitor voltages $V_{c 1}$ and $V_{c 2}$ are equally distributed and equal to half of the $V_{i n}$. The voltage across the switches on $R L$ dynamic load is shown in Figure 10(c) - Figure 10(e) at an input voltage of 100 V . Furthermore, at an output power of 400 W and a fundamental frequency of 50 Hz , the proposed inverter's efficiency has been estimated to be 98.6%. All of these findings show that the proposed ninelevel $S^{2} C^{2}$ RASCMLI topology is sustainable and feasible under different load varying conditions.

8.2 Result of the Proposed 13-Level $\mathbf{S}^{2} \mathbf{C}^{2}$ RASCMLI (HE \& VE)

The performance of the suggested 13-Level $S^{2} C^{2}$ RASCMLI is addressed in this chapter. The horizontal and vertical extension topology simulation
waveforms are shown in Figure 11(a) - (f) at $f=50$ Hz under dynamic $R L-$ Load.

Although experimental results of horizontal and vertical extension inverter waveforms are shown in Figure 13. Figure 13(a) - Figure 13(d) demonstrating the feasibility of the suggested extension network and shows the output voltage, current and voltage across the capacitors under dynamic load variation.

From the extension operation, the long-time charging capability of capacitors increases the performance of the inverter particularly at the low voltage boosting. However, the proposed vertical extension topology has a better performance compared to the horizontal extension as per the voltage ripple factor of the capacitor as shown in Figure 12(b) and Figure 12(d). As per the calculation, the maximum efficiency of horizontal and vertical extension topologies is 97.4% and 97.8% respectively on a load of $(50 \Omega+110 \mathrm{mH})$.

Figure 11(a) Voltage at the output, Figure 11(b) current at the output, Figure 11(c) voltage across the capacitor at dynamic load conditions of horizontal extension. Similarly Figure 11(d) - (f) output voltage, current and voltage across the capacitor of the vertical extension.

Fig. 11 Waveforms of the proposed 13-Level $S^{2} \mathrm{C}^{2}$ RASCMLI in simulation.

Figure 12(a) Waveforms of output voltage and current (HE), Figure 12(b) voltage across the capacitors (HE), Figure 12(c) Waveforms of output voltage and current (VE), Figure 12(d) voltage across the capacitors (VE).

Fig. 12 Experimental output voltage and current waveforms of the 13-level inverter.

9 Conclusion

This paper proposes a new nine-level $S^{2} C^{2}$ RASCMLI topology. The proposed nine-level boost inverter topology is based on a switched-capacitor with fewer active switches. The proposed topology shoes that in conditions of reduced active component needs for the same number of voltage levels is highlighted in a comprehensive comparative study. Furthermore, the proposed $S^{2} C^{2}$ RASCMLI is expanded to n levels and serves as the foundation for the proposed Horizontal or Vertical extensions. A formalized switching table is given for further processing in the proposed extension inverter. The results of simulations and experiments presented here have confirmed the proposed topology's ability to manage a variety of loading conditions. Finally, the extensive relative study confirmed the qualities of the proposed topology and demonstrating its feasibility for a variety of applications, especially in renewable energy sources at dynamic load conditions.

Reference

[1] M. Jagabar Sathik, N. Sandeep, D. Almakhles, and F. Blaabjerg, "Cross Connected Compact SwitchedCapacitor Multilevel Inverter (C3-SCMLI) Topology with Reduced Switch Count," IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp. 3287-3291, 2020.
[2] Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 878-887, Feb. 2012.
[3] S. Kakar, S. B. M. Ayob, A. Iqbal, N. M. Nordin, M. Saad Bin Arif, and S. Gore, "New Asymmetrical Modular Multilevel Inverter Topology with Reduced Number of Switches," IEEE Access, vol. 9, pp. 2762727637, 2021.
[4] M. F. Talooki, M. Rezanejad, R. Khosravi, and E. Samadaei, "A Novel High Step-Up SwitchedCapacitor Multilevel Inverter with Self-Voltage Balancing," IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4352-4359, Apr. 2021.
[5] A. Salem, H. Van Khang, K. G. Robbersmyr, M. Norambuena, and J. Rodriguez, "Voltage Source Multilevel Inverters with Reduced Device Count: Topological Review and Novel Comparative Factors," IEEE Trans. Power Electron., vol. 36, no. 3, pp. 27202747, Mar. 2021.
[6] F. Masoudina, E. Babaei, M. Sabahi, and H. Alipour, "New Cascaded Multilevel Inverter With Reduced Power Electronic Components," Iran. J. Electr. Electron. Eng., vol. 16, no. 1, pp. 107-113, 2020.
[7] W. Lin, J. Zeng, J. Liu, Z. Yan, and R. Hu, "Generalized Symmetrical Step-Up Multilevel Inverter

Using Crisscross Capacitor Units," IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7439-7450, Sep. 2020.
[8] C. Dhanamjayulu, D. Prasad, P. Sanjeevikumar, P. K. Maroti, J. B. Holm-Nielsen, and F. Blaabjerg, "Design and Implementation of Seventeen Level Inverter with Reduced Components," IEEE Access, 2021.
[9] Y. Ye, K. W. E. Cheng, J. Liu, and K. Ding, "A step-up switched-capacitor multilevel inverter with self-voltage balancing," IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6672-6680, Dec. 2014.
[10] F. Deng, Y. Lü, C. Liu, Q. Heng, Q. Yu, and J. Zhao, "Overview on submodule topologies, modeling, modulation, control schemes, fault diagnosis, and tolerant control strategies of modular multilevel converters," Chinese J. Electr. Eng., vol. 6, no. 1, pp. 1-21, Mar. 2020.
[11] E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo, and M. Sabahi, "A New Cascaded Switched-Capacitor Multilevel Inverter Based on Improved Series-Parallel Conversion With Less Number of Components," IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3582-3594, 2016.
[12] Q. Li, J. Chen, and D. Jiang, "Periodic variation in the effect of switching frequency on the harmonics of power electronic converters," Chinese J. Electr. Eng., vol. 6, no. 3, pp. 35-45, 2020.
[13] T. Roy, P. K. Sadhu, and A. Dasgupta, "CrossSwitched Multilevel Inverter Using Novel Switched Capacitor Converters," IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8521-8532, 2019.
[14] N. Sandeep and U. R. Yaragatti, "Operation and Control of an Improved Hybrid Nine-Level Inverter," IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5676-5686, 2017.
[15] Y. Zhang, Q. Wang, C. Hu, W. Shen, D. G. Holmes, and X. Yu, "A Nine-Level Inverter for LowVoltage Applications," IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1659-1671, Feb. 2020.
[16] K. Zou, M. J. Scott, and J. Wang, "Switched-capacitor-cell-based voltage multipliers and dc-ac inverters," IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1598-1609, 2012.
[17] J. Liu, J. Wu, and J. Zeng, "Symmetric/Asymmetric Hybrid Multilevel Inverters Integrating Switched-Capacitor Techniques," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 3, pp. 1616-1626, 2018.
[18] R. Barzegarkhoo, M. Moradzadeh, E. Zamiri, H. Madadi Kojabadi, and F. Blaabjerg, "A New Boost Switched-Capacitor Multilevel Converter with Reduced Circuit Devices," IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6738-6754, 2018.
[19] S. S. Lee, "Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multilevel

Inverter," IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8204-8207, 2018.
[20] J. S. Mohamed Ali and V. Krishnasamy, "Compact Switched Capacitor Multilevel Inverter (CSCMLI) with Self-Voltage Balancing and Boosting Ability," IEEE Trans. Power Electron., vol. 34, no. 5, pp. 40094013, 2019.
[21] N. Sandeep, J. S. M. Ali, U. R. Yaragatti, and K. Vijayakumar, "Switched-Capacitor-Based QuadrupleBoost Nine-Level Inverter," IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7147-7150, 2019.
[22] A. Ioinovici, Power Electronics and Energy Conversion Systems, vol. 1. 2013.

Oorappan G Murugan was born in Thiruvallur, India, in 1982. He received the B.E (Electrical \& Electronics Engineering) degree from Dr. M.G.R Engineering College affiliated by the Anna university University, Chennai, India in 2006, he received M.E (Mechatronics) degree from MIT, Chrompet Campus at Anna University, Chennai, India in 2009 and he submitted Ph.D. thesis at the Anna University in 2023. In 2009, he started his career as a lecturer in the Department of Electrical Engineering, Anna University affiliated college. In July 2016, he joined the Department Mechatronics, Bannari Amman Institute of Technology, as an Assistant Professor. He became an Assistant Professor (selection grade) in 2023. His area of interest includes power conversion technology especially in multilevel inverter topologies, Electrical Drives, Simulink code conversion for various micro-controllers and Servo motor operation using group drive technology for different kinematics. He has published numerous research articles in SCI and Scopus-indexed journals and conferences in his research area. Further he has been involved in Research and development projects as a Co-Principal Investigator funded by IIT Madras (RuTAG).

Jeevanandham Arumugam received B.E. Electrical and Electronics Engineering from Coimbatore Institute of Technology, Coimbatore in 1996, M.E. Power Systems Engineering from Government College of Technology, Coimbatore in 2005 and Ph.D. in Faculty of Electrical Engineering, Anna University, Chennai in 2010. At present he is working as a Professor in the Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore. In the past 25 years of service, he served in various academic positions upto the level of Professor and Head in various Leading Institutions and Industries in India. He has been awarded with Postdoctoral Fellows during 2013 for his Research Contributions in San Diego State University, California, USA as
well as in The University of Texas at San Antonio, Texas, USA. As a Visiting Professor, he contributed to the development of Curriculum and Syllabi for the new program on 'Power Engineering' at San Diego State University, California, USA. He published his research findings in various International Journals with high impact factor as well as in various National and International Conferences. He took on various consultancy projects in leading industries across the country. Three of his research scholars were awarded with Ph.D. degree from Anna University, Chennai and five of his scholars are pursuing Ph.D. under his Supervision. His areas of interest are Electromagnetics, Power System Dynamics, Applications of Artificial Intelligence to Power Systems, Intelligent Controllers, Distributed Generation, and High Solar Penetration.

Suresh Velliangiri received the B.E and M.E degrees from the Faculty of Electrical Engineering, Anna University, and Chennai in 2008 and 2011, respectively. From then he was working as an Assistant Professor in the Department of Electrical and Electronics Engineering of Bannari Amman Institute of Technology, Sathyamangalam. His research interests are multi-level power converters and electric vehicles.

[^0]: Iranian Journal of Electrical \& Electronic Engineering, 2023. Paper first received 12 May 2021 and accepted 19 Dec 2023.

 * The author is with the Department of Mechatronics, Bannari Amman Institute of Technology, Sathamangalam - 638 401, India.
 E-mail: oorappan@bitsathy.ac.in.
 ** The author is with the Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore - 641008, India.
 E-mail: jeevanandhama@skcet.ac.in.
 *** The author is with the Department of Electrical and Electronics Engineering, Bannari Amman Institute of Technology, Sathamangalam-638 401, India.
 E-mail: sureshv@bitsathy.ac.in.
 Corresponding Author: O. G Murugan.

