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Abstract: Through beamforming, the desired signal is estimated by calculating the 

weighted sum of the input signals of an array of antenna elements. In the classical 

beamforming methods, computing the optimal weight vector requires prior knowledge on 

the direction of arrival (DoA) of the desired signal sources. However, in practice, the DoA 

of the signal of interest is unknown. In this paper, we introduce two different deep-neural-

network-based beamformers which can estimate the signal of interest while suppressing 

noise and interferences in two/three stages when the DoAs are unknown. Employing deep 

neural networks (DNNs) such as convolutional neural networks (CNNs) and bidirectional 

long short-term memory (bi-LSTM) networks enables the proposed method to have better 

performance than existing methods. In most cases, the output signal to interference and 

noise ratio (SINR) of the proposed beamformer is more than 10dB higher than the output 

SINR of the classical beamformers. 

 
 

Keywords: Adaptive Digital Beamforming, Bidirectional Long Short-Term Memory, 
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1 Introduction1 

EAMFORMERS boost the signal to interference 

plus noise ratio (SINR) by establishing a directional 

gain pattern around the antenna array. Applying the 

optimum weight vector to the received signal vector 

results in the mentioned gain pattern which is employed 

for signal estimation. In the conventional methods, the 

optimal weight vector is calculated based on 

beamforming criteria such as MMSE and MVDR [1].  

  In non-blind beamforming algorithms, a known 

training sequence is exploited to estimate the optimum 

weight vector [1, 2]. In contrast, in blind algorithms, the 

optimum weight vector is computed by employing 

known properties of the desired signal such as cyclic 

repetition [3, 4]. 
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   Generally, in classical beamforming methods, only, 

spatial samples of the received signals are employed to 

estimate the optimal weight vector. However, 

employing both spatial and temporal samples of the 

received signals can further improve the capability of 

the beamformer in suppressing interferences while 

multipath is present. As a result, space-time adaptive 

processing (STAP) is a beamforming method introduced 

for estimating the desired signal by employing both 

spatial and temporal properties of the signal [5]. 

   In practical applications, the autocorrelation matrix 

should be estimated with the help of snapshots of the 

received signals. Employing a finite number of 

snapshots results in an inaccurate estimation of the 

autocorrelation matrix. The inaccurate estimation 

degrades the performance of the beamformers. Thus, 

another class of beamformers called robust adaptive 

beamformers (RAB) are introduced which are more 

robust to the poor estimations in comparison with the 

classical beamformers. For example, in [6], the authors 

show higher-order statistics improve the robustness of 

the beamformer to the autocorrelation matrix and DoA 

mismatches. In [7], a diagonal matrix with complex 

constant elements in its main diagonal is added to the 

received signal autocorrelation matrix to boost the 

robustness of beamforming to the autocorrelation 

mismatches. 

   In an emerging class of beamforming, one or multiple 
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deep neural networks (DNNs) are exploited to estimate 

the signal of interest. Function approximation and 

generalization capabilities of DNNs such as 

convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks enable the DNN-based 

beamformers to steer the main beam toward the signal 

of interest and form nulls in directions of interferences 

when the DoA of the signal of interest is unknown. For 

example, in [8], two CNNs are fed with channel 

matrices to compute nearly-optimum weight vector 

when the DoA of the signal of interest is unknown. 

In [9], a deep Q-learning algorithm is employed for joint 

beamforming, power control, and interference 

coordination in downlink direction for 5G wireless 

communications. In this method, a DNN is fed with the 

state vector of the Q-learning algorithm. The optimal 

state-action value function of the Q-learning algorithm 

is estimated by the DNN. Finally, the state-action values 

are employed to choose appropriate transmit power and 

beamforming code from the candidate transmit powers 

and beamforming codebook. In [10], a DNN which is 

fed with the feature vector of the communication 

channel is exploited to estimate the optimal phase shift 

matrix of a reconfigurable intelligent surface (RIS). The 

introduced DNN-based beamformer incurs low 

computational complexity in comparison with the 

conventional beamformers. In [11], two CNNs are 

employed to estimate downlink transmit power, virtual 

uplink power, and normalized virtual uplink 

beamforming (VUB) weights by taking in the channel 

matrix. The estimated values are used for computing 

downlink beamforming weights. The introduced DNN-

based beamformer is capable of estimating 

beamforming weights without requiring complex 

operations and iterations. 

   As mentioned in [12], the LSTM network is exploited 

to extract temporal features of signals. The LSTM 

network consists of memory cells that are fed with a 

data vector contains information of time samples and 

two state vectors that contains the data processed at the 

previous or following cells. The architecture of the 

memory cells enables the LSTM networks to extract the 

short-term and long-term dependencies of input data. 

Bidirectional LSTM (bi-LSTM) network is a more 

complicated version of the conventional LSTMs. Unlike 

conventional LSTMs which consist of only a forward 

layer, bi-LSTMs are composed of both forward and 

backward layers. Outputs of bi-LSTMs are concluded 

by concatenating the outputs of memory cells placed at 

backward and forward layers. In other words, the 

outputs of the network are dependent on information 

from both previous and following time samples. This 

property enables the bi-LSTM to detect temporal 

features of data better than the conventional LSTM [13]. 

   Besides, CNNs are dominant in extracting spatial 

features of input data. For instance, in [14], CNNs are 

employed to extract spatial and spectral features in 

hyperspectral images. 

   In this paper, the unique capabilities of bi-LSTM and 

CNN are employed for estimating the signal of interest 

and suppressing interferences. In the following, two 

different DNN-based beamformers are introduced for 

estimating signals whose DoAs are unknown. In the 

first scheme, at first, similar to [15], multiple 

overlapped subarrays are formed. Afterward, the 

autocorrelation matrix of one of the subarrays is 

calculated and fed into an interference estimator 

implemented with a CNN. The weights generated by the 

CNN are used for estimating the interference vector. 

Subtracting the interference vector from the received 

signal vector mitigates the effect of interferences. After 

that, another CNN is fed with the autocorrelation matrix 

of the interference-free signal vector (concluded in the 

previous stage) to generate the weights used for 

estimating the signal of interest. Multiplying the weights 

to the interference-free signal vector results in a more 

accurate estimation of the interference-free signal 

vector. Finally, a bi-LSTM takes in the interference-free 

signal vector to estimate the time samples of the signal 

of interest. 

   Similar to the first proposed neural beamformer, in the 

second proposed beamforming method, at first, the 

same grouping scheme is applied to form subarrays. 

Afterward, the space-time autocorrelation matrix of the 

signals received at the first subarray is estimated and fed 

into a CNN to estimate the weight vector. The 

interference-free signal vector is formed by applying the 

weight vector to the received signals. The signal 

snapshots are concluded by employing a bi-LSTM 

which is fed with the interference-free signal vector. 

   Unlike the conventional beamforming methods, the 

proposed beamformers do not require DoAs of signals 

to estimate the signal of interest. In addition, employing 

the proposed method results in a higher SINR at the 

output of the beamformers. 

…The rest of this paper is organized as follows. In 

Section 2, the general structures of the beamformers are 

specified. In Section 3, the structures of the employed 

DNNs are described. In Section 4, the capability of the 

beamformers in improving the SINR is evaluated. 

Section 5 concludes the paper. 
 

2 Architectures of the Beamformers 

   In the following, the signal model for a uniform linear 

array (ULA) is specified. In the first subsection, the 

method employed for estimating the signal of interest 

through space adaptive processing is explained. In the 

second subsection, a space-time adaptive processor is 

introduced for estimating the signal snapshots. Also, in 

the following, the structures of the neural beamformers 

are explained.  

 

2.1 Space Adaptive Processor 

   Similar to [15], in an array with M overlapped 

subarrays of size N×1, N–1 antenna elements are shared 
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between any two adjacent subarrays. Thus, as 

mentioned in [15], the signal vector of the m-th subarray 

is calculated as: 

          
1

1

1 1,

1

q

Q
j m

m q q m

q

k e s k k


  



 x a n  (1) 

 

   In (1), a1(θq) is the steering vector of the q-th signal 

received at the first subarray expressed as: 
 

   1

1 1,  , ,q q
T

j j N

q e e
      

 
a    (2) 

 

In (2), Φq = (2π/λ)dsin(θq) in which d is inter-element 

space. It is worth noting that, θ1 is the DoA of the signal 

of interest and θq for q = 2, …, Q+1 are the DoAs of the 

interferences. Also, s1,q denotes the q-th signal received 

at the first subarray and nm is the received noise of the 

m-th subarray. As mentioned in [15], we can assume, 

for m = 2, 3, …, M: 
 

     
m 1 Φ

, 1,  qj

m q qs k e s k
 
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   Assuming that K is the number of available snapshots 

from the time instant k0 to k0+K–1, autocorrelation 

matrix and cross-correlation vector of the subarrays for 

m = 1, 2, …, M are estimated as: 
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   It can be inferred from (5) and (6) that phase shift 
 1 qj m

e
  

in (3) does not affect the autocorrelation 

matrix and cross-correlation vector. The weight vector 

for estimating all  interferences is calculated as [15]: 
1
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in which, 
1
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The interferences for m = 1, 2, …, M are estimated as: 
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The interference vector, i.e. yA[k] is formed as: 
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where, 
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   The interference-free signal vector is calculated 

as [15]: 
 

           1 1,1   A A Ak k k s k k    A
x x y a n  (12) 

 

   In (12), xA[k] and nA[k] are respectively the signal 

vector and noise vector received at the first to M-th 

antenna elements. It can be assumed that the vector of 

(12) is the received signal vector of a virtual array of 

size M. Therefore, the same as before, we can group the 

virtual antenna elements into M' overlapped subarrays 

each with N' antenna elements. In other words, for m' = 

1, …, M', we have: 
 

     ' '

1, ,
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IF

m m m Nk x k x k  
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   In (13), x'j for j = m', …, m'+N'–1 is j-th element of x'. 

The vector of (13) for m' = 1, …, M' can be represented 

as: 
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   In (14), IF

mn is the noise vector received at the m'-th 

virtual subarray. Also, 1

IF
a is calculated as: 
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   Similar to (5) and (6), the autocorrelation matrix and 

cross-correlation vector of the virtual subarrays for m' = 

2, …, M' are estimated as: 
 

1
ˆ ˆIF IF

m R R  (16) 

1
ˆ ˆIF IF

m r r  (17) 
 

   In the m'-th virtual subarray, the desired signal is 

estimated as: 
 

 
H

IF IF IF
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in which, wIF is calculated as: 
 

 
1

1 1
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
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By applying the weight vector  of (19) to the received 

signal vector of the virtual subarrays, we have: 
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in which, aB(θ1) is computed as: 
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Also, nB represents the effect of noise at the outputs of 

the beamformers. 

   Fig. 1 shows our proposed neural space processor. 

Our proposed neural space processor is composed of 

three separate DNNs. In this scheme, two CNNs and a 

bi-LSTM are exploited to estimate the signal of interest. 

In the proposed beamforming method, at first, a
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Fig. 2 Architecture of the proposed neural space-time adaptive processor. 

 

CNN-based interference estimator takes in the 

autocorrelation matrix of the first subarray, i.e. 
1

R̂  to 

estimate the weight vector of (7), i.e. w. Afterward, the 

estimated weight vector is applied to the received signal 

vectors of subarrays and the interference vector of (10), 

i.e. yA is generated. After that, the interference-free 

signal vector of (12), i.e. x' is calculated. Afterward, the 

autocorrelation matrix of (16), i.e. 1
ˆ IF
R  is calculated and 

fed into the signal estimator CNN to estimate the weight 

vector of (19), i.e. wIF. After weight vector application, 

the interference-free signal vector of (20), i.e. yB is 

generated. Finally, the snapshots of the signal of interest 

i.e. s1,1 are estimated by the bi-LSTM which is fed with 

yB. 

   In comparison with the beamformer introduced in 

[15], the proposed beamformer produces higher SINR at 

its output due to employing virtual subarrays and 

additional CNN. However, the additional CNN 

increases the computational complexity. 

 

2.2 Space-Time Adaptive Processor 

   The same as before, by employing M overlapped 

subarrays each with N antenna elements, we can 

estimate the desired signal through space-time 

processing. For a space-time processor, the received 

signal of an antenna element is processed by an L taps 

filter. Therefore, the signal vector received at the m-th 

subarray is represented as: 
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In (22), xm,i for i = 1, 2, …, N is the i-th element of 

vector of (1), i.e. xm computed as: 
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In (23), a1,i and nm,i for i = 1, 2, …, N are respectively 

i-th element of a1 and nm which are defined previously. 

The space-time autocorrelation matrix and cross-

correlation vector between the received signal vector 

and the desired signal are defined as: 
 

1
ˆ ˆSTAP STAP

m R R  (24) 

1 ˆ ˆSTAP STAP
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By employing the MMSE criterion, the weight vector is 

computed as: 
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Afterward, the desired signals for m = 1, 2, …, M are 

concluded as: 
 

 ,1

H
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m ms  w X  (27) 

 

By aggregating the outputs of all beamformers, we 

conclude: 
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(28) 
 

   We have proposed the architecture of Fig. 2 based on 

the explained analysis. At first, 1
ˆ STAP
R is estimated and
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fed into a CNN. Then, wSTAP is estimated by the CNN. 

After applying the weights to the received signals, the 

vector of (28) is concluded. Finally, the bi-LSTM is 

employed to estimate s1,1 by taking the vector of (28). 

 

3 Structure of the DNNs 

   Employing CNN and bi-LSTM in the architecture 

enables the proposed beamformers to extract temporal 

and spatial features of the signals. In the following, the 

detailed structures of the employed CNN and bi-LSTM 

are described. 

  As explained in [14], CNNs are used for detecting 

spatial features of 2-D data. On the other hand, LSTM 

networks are dominant in detecting temporal features of 

data and mitigating the effects of noise in the input 

signal [16, 17]. The properties of CNNs and LSTMs 

enable our proposed beamformers to estimate the signal 

of interest and mitigate noise and interferences. In our 

proposed beamformers, CNNs are employed to estimate 

the optimum weight vectors by taking in autocorrelation 

matrix. In addition, the bi-LSTM is exploited to 

estimate snapshots of the signal of interest by taking in 

the interference-free signal vector. 

   As mentioned previously, bi-LSTM networks consist 

of connected memory cells. As shown in Fig. 3, u(t) and 

v(t) are respectively input and output data vectors. Also, 

h(t–1) and c(t–1) are the input state vectors and h(t) and c(t) 

are the output state vector. Internal nodes of the cells are 

updated as: 
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In (29) to (34), Wui, Wuf, Wuo, and Wug are the values of 

the weights of the connections between the fully-

connected (FC) layers of the cell and the input data 

vector. Also, Whi, Whf, Who, and Whg are the values of 

the weights of the connections between the FC layers 

and the short-term state vector. bi, bf, bo, and bg denotes 

the biases of the FC layers. Fig. 4 shows that the bi-

LSTM is composed of two layers, namely, backward 

and forward layers. 

   In the following, the architectures of the employed 

DNNs are described. 
 
3.1 Neural Space Processor 

   As shown in Fig. 5, in the proposed space processor, 

the interference estimator CNN consists of three 

convolutional layers with respectively 16, 32, and 64 

kernels whose sizes are equivalent to 3×3. Also, their 

strides are equivalent to 1. All convolutional layers 

benefit from zero padding and ELU activation function. 

After these layers, a max-pooling (MP) layer is 

designed with kernels whose size and stride are 

respectively equivalent to 2×2 and 2. In addition, an FC 

layer with 200 neurons is designed before the output 

layer of the CNN. Input and output layers are composed 

of respectively N(N–1) and 2N neurons in which N is 

the number of antenna elements in each subarray. 

   The architecture of the signal estimator CNN is almost 

the same as the architecture of the interference estimator 

CNN except that the numbers of kernels from the first to 
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third convolutional layers are equivalent to 4, 8, and 16, 

respectively. Also, the hidden FC layer consists of 50 

neurons. Input and output layers of the CNN are 

composed of respectively N'(N'–1) and 2N' neurons in 

which N' is the number of antenna elements in each 

virtual subarray. 

   In the employed bi-LSTM, 100 cells are placed at 

both backward and forward layers. The FC layers of the 

cells are composed of 100 neurons whose activation 

function is hyperbolic tangent. In the proposed scheme, 

the bi-LSTM is fed with 100 vectors of size 2M'×1 in 

which M' is the number of virtual subarrays. Also, the 

bi-LSTM outputs 100 vectors of size 2×1. The 

activation layer of the bi-LSTM benefits from the linear 

activation function. 

   Similar to [18], input vectors of the interference 

estimator CNN is formed of elements located at the 

upper or lower triangular part of 1R̂  which is denoted as 

b: 
 

      12 231 2 1
,  ,  ,  ,  ,  ,  , 

N N N N
R R R R R


    
 

b  (35) 

 

Inputs of the CNN are generated as: 
 

1 
b

z
b

 (36) 

 

   In the training phase, (z1, w) forms the input/output 

pair of the interference estimator CNN. 

   In addition, the signal estimator CNN is trained with 

(z2, wIF) in which z2 is a normalized vector which is 

formed of elements of the upper or lower triangular part 

of 1
ˆ IF
R . 

   The bi-LSTM is trained with 100 consecutive time 

samples of yB, and 100 consecutive time samples of s1,1. 

In other words, (yB, s1,1) forms the input/output pair of 

the cells of the bi-LSTM network in the training phase. 

The loss function of the CNN is computed as follows: 
 

 
2

2

1
,CNN L L

cN
 c c   c c  (37) 

 

   In (37), while c is the vector produced at the output of 

the CNN, cL is the label of the CNN in the training 

phase. Besides, Nc is the number of output nodes of the 

CNN. Similarly, the loss function of the bi-LSTM is 

denoted as: 
 

        
1

1
, ,

T
bi LSTM L bi LSTM L

t t t

tbTN

 



 b b b b  (38) 

 

In (38), b(t) is the t-th actual output of the bi-LSTM and 

bL
(t) is the t-th desired output of the bi-LSTM and Nb is 

the size of output vectors of the bi-LSTM. In addition, 

      ,
bi LSTM L

t t t


b b  is calculated as:  

 

          

2

2
,bi LSTM L L

t t t t t

  b b b b  (39) 

 

In (39), T is the number of memory cells in the bi-

LSTM. As mentioned previously, in our proposed 

beamformer, in the interference estimator CNN and 

signal estimator CNN, cL is respectively equivalent to 

the weight vector of (7) and (19). Also, bL
(t) is 

equivalent to s1,1. 

   It is worth noting that, in the training phase, the 

ADAM optimizer [19] is used for training the networks. 

   In the test phase, the proposed beamformer is tested 

with inputs that are not in the training set. 

 

3.2 Neural Space-Time Processor 

   As mentioned before, in the architecture of the neural 

space-time processor a CNN-based signal estimator and 

a bi-LSTM are employed. The architecture of the CNN 

is almost the same as the architecture of the CNN 

employed for estimating interferences in the space 

processor except that its input and output layers consist 

of respectively LN(LN–1) and 2LN neurons. Also, the 

values of the hyperparameters of the bi-LSTM are 

almost the same as the values of the hyperparameters of 

the bi-LSTM employed for space processing except that 

its activation layer benefits from the Tanh activation 

function. The inputs of the bi-LSTM are vectors of size 

2M×1 and its outputs are vectors of size 2×1. 

   For testing the CNN, the elements of triangular part of 

1
ˆ STAP
R  are aggregated in a vector. Afterward, the 

concluded vector is normalized and used as inputs of the 

CNN. The optimal weights of the array i.e. wSTAP are 

estimated by the CNN. Also, in this beamformer, the bi-

LSTM takes in 100 consecutive time samples of ySTAP to 

produce 100 consecutive time samples of i.e. s1,1. 

   In comparison with the proposed space processor and 

also the processor proposed in [15], employing the 

proposed space-time processor for estimating the 

desired signal has its own pros and cons. As mentioned 

previously, there is no need to train the neural space-

time processor with weight vectors whose computation 

requires prior knowledge on DoAs and powers of 

interferences (such as the weight vector of (7))  to make 

sure that the beamformer presents a promising 

performance in the test phase. This property can be 

considered an advantage for the proposed space-time 

processor over the proposed space processor. However, 

one of the disadvantages is that the proposed neural 

space-time processor has promising performance only 

for low values of input interference to signal ratio (ISR) 

compared to the proposed neural space processor. In 

addition, it can estimate the signals with less 

complicated structures. For example, while the space 

processor is capable of estimating the QAM modulated 

signal, the space-time processor does not have 

acceptable performance in estimating the signal. 

However, it has a good performance in estimating 

signals with less complicated structures such as QPSK 

modulated signals. It is worth noting that although the 

proposed space processor produces higher output SINR
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Fig. 6 Output SINR versus input SNR of the space adaptive 
 

processors in the first scenario. 

Fig. 7 Output SINR versus input SNR of the space adaptive 
 

processors in the second scenario. 

 

than the processor introduced in [15], it incures larger 

computational complexity due to the additional CNN. 

   In the following, the performance of the proposed 

beamformers is presented in detail. 

 

4 Performance Analysis 

   In this section, the beamformers are analyzed in terms 

of output SINR for varying input SNR and input ISR. 

The inter-element distance is equivalent to λ/2. In the 

following, at first, the performance of the neural space 

processor is evaluated. Then, the performance of the 

neural space-time processor is analyzed. 

 

4.1 Performance of Space Processors 

   For the neural space adaptive processor, the whole 

antenna array is grouped into M = 9 subarrays each with 

N = 10 antenna elements. Thus, the total number of 

antenna elements is N + M – 1 = 18. Also, the number 

of virtual subarrays is M' = 5 and each virtual subarray 

consists of N' = 5 virtual antenna elements. In the 

simulations, the signal of interest is a QAM-16 [6] 

modulated signal which is estimated in presence of 

chirp interferences [20]. 

   In the following, the scenarios of simulations are 

explained. In the simulations, the number of available 

time samples is equivalent to K = 100. In these 

scenarios, the bi-LSTM and signal estimator CNN are 

trained with the signal source whose DoA differs 

respectively from –90° to 90° with steps of 2° and from 

–90° to 90° with steps of 0.1°. The batch size, mini-

batch size, and the number of epochs are respectively 

equivalent to 9100, 1000, and 80 for the bi-LSTM in the 

training phase. These values are respectively equivalent 

to 1801, 1800, and 300 for the CNN. The learning rate 

is equivalent to 0.001 and 0.05 for respectively the 

CNNs and bi-LSTM in the training phase. 

   The interference estimator CNN is evaluated in three 

different scenarios explained in the following. 

   In the first scenario, the CNN-based interference 

estimator is trained with multiple interferences whose 

DoAs are equivalent to 20°, –20°, 40°, –40°, and 60° in 

training and inference phase. While the DoA of the 

signal of interest differs from –90° to 90° with steps of 

5° in the training phase, its DoA is equivalent to –30° in 

the test phase. In the test phase, the input ISR is 

36.20dB. The output SINR of five different 

beamformers including the proposed one, optimum 

MMSE [15], MMSE [1], MVDR [1], and two-stage 

neural beamformer [15] versus input SNR is shown in 

Fig. 6. It can be inferred from the figure that in most 

cases, the output SINR of the proposed beamformer is 

more than the output SINR of the conventional 

beamformers and the two-stage beamformer introduced 

in [15]. The batch size, mini-batch size, and the number 

of epochs are respectively equivalent to 3600, 3600, and 

300 in the training phase. 

   In the second scenario, two interference sources are 

employed to train the interference estimator CNN 

whose DoAs differs respectively from –90° to –30° with 

steps of 3° and from 30° to 90° with steps of 3°. The 

DoA of the signal of interest varies from –30° to 30° 

with steps of 3° in the training phase. In the test phase, 

the DoA of the signal of interest and interference 

sources are respectively equivalent to 25°, –70°, and 

35°. Input ISR is 20.85dB, in both the training and 

inference phases. Fig. 7 shows the results for this 

scenario. The batch size, mini-batch size, and the 

number of epochs are respectively equivalent to 9261, 

4000, and 300 in the training phase. 

   In the third scenario, besides the desired signal source, 

an interference source is employed to train the 

interference estimator CNN. The DoA of the signal of 

interest differs from 0° to 90° with steps of 3° and DoA 

of the interference source differs from –90° to 0° with 

steps of 3°. In the test phase, the DoA of the desired 

signal source and the interference source are 5° and –5°, 

respectively. In both the training and inference phases, 

the input SNR is 5dB. Fig. 8 shows the results of the 

simulations. The batch size, mini-batch size, and the 

number of epochs are respectively equivalent to 961, 

900, and 500 in the training phase. 

   To show the robustness of the neural beamformer in 

rejecting the interferences other than a chirp, we trained 

the neural beamformer with chirp interferences and 

evaluate its performance in presence of SCWI [21]. 

Fig. 9 shows the output SINR of the beamformers in 

presence of five interferences. The figure confirms the



Multi-Stage Beamforming Using DNNs  P. Ramezanpour et al. 
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 2, 2022 8 

 

 

 

Fig. 8 Output SINR versus input ISR of the space adaptive 
 

processors in the third scenario. 

Fig. 9 Output SINR versus input SNR of the space adaptive 
 

processors in the first scenario in presence of SCWI. 
 

     
Fig. 10 Scatter plot of constellations of the beamformers’ outputs. 

 

acceptable performance of the proposed beamformer in 

presence of SCWI. 

   The scatter plot of constellations of the outputs of the 

beamformers for the third scenario is shown in Fig 10. 

 

4.2 Performance of Space-Time Processors 

   In the following, the performance of the proposed 

neural space-time processor in rejecting the 

interferences is scrutinized in three different scenarios. 

The simulated ULA consists of 7 antenna elements each 

with 4 taps. The ULA is grouped into 4 subarrays. The 

signal of interest is a QPSK modulated signal which is 

estimated in presence of SCWI or MCWI [21]. In this 

section, the output SINR of the neural beamformer is 

compared with the output SINR of MMSE, optimum 

MVDR, and MVDR beamformers. In the MVDR 

beamforming method, the optimal weight vector is 

defined as [22]: 
 

   

    

1

1 1 1

1

1 1 1 1 1

ˆ

ˆ

STAP

STAP

MVDR
H STAP



 






R b
w

b R b

 (40) 

 

In (40), b1(θ1) is calculated as: 
 

   1 1 1 1  b a β  (41) 
 

In (41), β is a vector of size L×1 and all of its elements 

are equivalent to one. When the interference plus noise 

space-time autocorrelation matrix is available, the 

optimum MVDR weight vector is computed as: 
 

   

    

1

1 1 1

  1

1 1 1 1 1

STAP

STAP

Optimum MVDR
H STAP



 






C b
w

b C b
 (42) 

 

In (42), C1
STAP is the interference plus noise space-time 

autocorrelation matrix of the first subarray. 

   In the following, three different scenarios are 

explained for evaluating the performance of the 

processors. In these scenarios, the bi-LSTM is trained in 

the same way mentioned in the previous subsection. 

Also, the learning rate of the CNN and the bi-LSTM are 

equivalent to 0.001 and 0.05 in the training phase. The 

batch size, mini-batch size, and the number of epochs 

are respectively equivalent to 9100, 1000, and 400 when 

the bi-LSTM is trained. 

   In the first scenario, the CNN is trained with three 

MCWIs whose DoAs are equivalent to 45°, –45°, and 0° 

in both the training and inference phases. The signal 

DoA varies from –90° to 90° with steps of 0.1° in the 

training phase. In the test phase, the DoA of the signal 

of interest is equivalent to 30°. In this scenario, input 

ISR is equivalent to 20dB. The performance of four 

different methods is presented in Fig. 11 when K = 400. 

The batch size, mini-batch size, and the number of 

epochs are respectively equivalent to 1801, 1800, and 

300 in the training phase. 

   In the second scenario, in the training phase, the CNN 

is trained with an SCWI whose frequency varies from 

0.5MHz to 2.4MHz with steps of 0.1MHz and its DoA 

is equivalent to 30° in both the training and inference 

phases. In the training phase, the CNN is trained with 

the signal of interest whose DoA varies from –90° to 

90° with steps of 2°. In the test phase, the DoA of the 

signal of interest is equivalent to 50°. In this scenario, 

input ISR is equivalent to 15dB. Fig. 12 shows the 

performance of different beamformers. The batch size, 

mini-batch size, and the number of epochs are 

respectively equivalent to 1820, 1800, and 300 in the 

training phase. 

   In the third scenario, two MCWIs are employed to 

train the CNN. While, DoA of one of the interference
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Fig. 11 Output SINR versus input SNR of the space-time 
 

adaptive processors in the first scenario. 

Fig. 12 Output SINR versus input SNR of the space-time 
 

adaptive processors in the second scenario. 

  

Fig. 13 Output SINR versus input SNR of the space-time 
 

adaptive processors in the third scenario. 

Fig. 14 Output SINR versus input ISR of the space-time adaptive 
 

processors in the first scenario. 

 

 

.  

(a) (b) (c) 

Fig. 15 Output MSE versus epoch of components of the proposed space processor in the training and test phase of the second 
 

scenario: a) Interference Estimator CNN, b) Signal Estimator CNN, and c) bi-LSTM. 
 

sources is equivalent to 30° in both the training and 

inference phases, the DoA of another interference 

source varies from 0° to 90° with steps of 1° in the 

training phase. Also, in this phase, the DoA of the signal 

of interest varies from –90° to 0° with steps of 1°. The 

neural beamformer is tested when the signal DoA is 

equivalent to –10° and the DoA of interferences are 

equivalent to 10° and 30°. Fig. 13 shows output SINR 

versus input SNR for this scenario in which the input 

ISR is 18dB. The batch size, mini-batch size, and the 

number of epochs are respectively equivalent to 8281, 

100, and 100 in the training phase. 
   Fig. 14 presents output SINR versus input ISR for the 

first scenario. It can be inferred from the figure that the 

proposed beamformer has effective performance for 

varying ISR from 0dB to 20dB. 

   As mentioned in [23], when the mean squared error 

(MSE) of the model over the test set is not sufficiently 

low, an underfitted model is obtained. On the other 

hand, when the gap between the MSE of the model over 

the training and test set is large, an overfitted model is 

concluded which is not desirable. To make sure that the 

training process results in a proper model (neither 

underfitted nor overfitted), the MSE of the model versus 

epochs should be analyzed. In Figs. 15 and 16, the final 

MSE of the model in the training phase and the gap 

between the MSE of the model in the training and test 

phase show that training process results in a fitted 

model. 

   While using a CPU (Intel Core i7 with 4GB dedicated 

memory), for the space processing, the proposed 

beamformer, MMSE beamformer, and MVDR 

beamformer respectively require 1.0480 s, 0.0049 s, and 

0.0049 s to produce 10000 snapshots of the desired
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(a) (b) 

Fig. 16 Output MSE versus epoch of components of the proposed space-time processor in the training and test phase of the second 
 

scenario: a) Signal estimator CNN and b) Bi-LSTM. 

 

signal. For space-time processing, these values are 

equivalent to 0.8874 s, 0.0059 s, and 0.0019 s, 

respectively. 

 

5 Conclusion 

   In this paper, two different DNN-based beamformers 

are introduced for estimating the signal of interest in 

presence of noise and interferences. The proposed 

neural beamformers estimate the signal of interest in 

either two or three stages. 

   In the proposed beamforming methods, at first, the 

whole antenna array is grouped into multiple overlapped 

subarrays. Afterward, the interference-free signal vector 

is estimated with the help of either one or two CNNs. 

Then, a bi-LSTM is employed to estimate the samples 

of the signal of interest by taking in the interference-free 

signal vector. The proposed beamformers employ 

capabilities of CNNs and LSTMs such as their 

dominance in detecting spatial and temporal features to 

find the most prominent features of signals. These 

capabilities significantly improves the performance of 

beamforming in presence of strong interferences. 

   While classical beamformers such as MMSE and 

MVDR are not capable of estimating the snapshots of 

the desired signal in absence of prior knowledge on 

DoA of signals, our proposed neural beamformers can 

estimate the signal of interest when the DoA of the 

signals is unknown. 

   Robustness to autocorrelation matrix mismatches is 

another superiority of the proposed methods over the 

conventional methods. It can be inferred from the 

simulation results that output SINR of the proposed 

methods is more than 10dB higher than the existing 

methods even when the number of accessible time 

samples is too low. 
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