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Abstract: In this study, a new long-duration holter electrocardiogram (ECG) major events 
detection-delineation algorithm is described operating based on the false-alarm error 
bounded segmentation of a decision statistic with simple mathematical origin. To meet this 
end, first three-lead holter data is pre-processed by implementation of an appropriate 
bandpass finite-duration impulse response (FIR) filter and also by calculation of the 
Euclidean norm between corresponding samples of three leads. Then, a trous discrete 
wavelet transform (DWT) is applied to the resulted norm and an unscented synthetic 
measure is calculated between some obtained dyadic scales to magnify the effects of low-
power waves such as P or T-waves during occurrence of arrhythmia(s). Afterwards, a 
uniform length window is slid sample to sample on the synthetic scale and in each slid, six 
features namely as summation of the nonlinearly amplified Hilbert transform, summation of 
absolute first order differentiation, summation of absolute second order differentiation, 
curve length, area and variance of the excerpted segment are calculated. Then all feature 
trends are normalized and superimposed to yield the newly defined multiple-order 
derivative wavelet based measure (MDWM) for the detection and delineation of ECG 
events. In the next step, a α-level Neyman-Pearson classifier (which is a false-alarm 
probability-FAP controlled tester) is implemented to detect and delineate QRS complexes. 
To show advantages of the presented method, it is applied to MIT-BIH Arrhythmia 
Database, QT Database, and T-Wave Alternans Database and as a result, the average values 
of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the 
detection of QRS complexes, with the average maximum delineation error of 5.7 msec, 3.8 
msec and 6.1 msec for P-wave, QRS complex and T-wave, respectively showing marginal 
improvement of detection-delineation performance. In the next step, the proposed method is 
applied to DAY hospital high resolution holter data (more than 1,500,000 beats including 
Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial 
Complex-PAC) and average values of Se=99.98% and P+=99.97% are obtained for QRS 
detection. In summary, marginal performance improvement of ECG events detection-
delineation process in a widespread values of signal to noise ratio (SNR), reliable 
robustness against strong noise, artifacts and probable severe arrhythmia(s) of high 
resolution holter data and the processing speed 163,000 samples/sec can be mentioned as 
important merits and capabilities of the proposed algorithm.  
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1   Introduction 
Heart is a special muscle which its constitutive cells 
(myocytes) possess two important characteristics 
namely as nervous excitability and mechanical tension 
with force feedback. The superposition of all myocytes 
electrical activity on the skin surface results a detectable 
potential difference which its detection and registration 
is called electrocardiography [1]. If according to any 
happening, nervous and/or mechanical function of a 
region of myocytes encounter with failure, the 
corresponding abnormal effects will appear in the ECG 
signal and in the heart hemodynamic performance. 
Today, 24 (48) hour ECG holters with high sampling 
frequency are widely used in ICUs to monitor and 
assess patients heart long-term function(s). Although, 
holter monitoring has remarkable merits, in high 
sampling rates, for a short or long time duration, strong 
noise and motion artifacts may be seen in some 
channels of holter data which decrease performance 
accuracy of implemented ECG events detector. On the 
other hand, statistical analysis of ECG parameters in 
long-term conditions can yield acceptable solutions for 
diagnosis of some certain phenomena such as T-Wave 
Alternans (TWA) [2,3], Atrial Fibrillation (AF) [4,5], 
QT-prolongation [6]. In addition, proper delineation of 
ECG waveforms can help to achieve more accurate 
results in applications such as pattern recognition or 
arrhythmia clustering and classification [7,8]. Therefore, 
parameterization and detection of ECG signal events 
using a reliable algorithm is the first stage in the 
computer analysis of the ECG signal. Numerous 
approaches have yet been developed for the aim of 
detection of the ECG events including mathematical 
models [9], Hilbert transform and the first derivative 
[10,11], second order derivative [14], wavelet transform 
and the filter banks [15-17], soft computing (Neuro-
fuzzy, genetic algorithm) [18], Hidden Markov Models 
(HMM) application [19], etc. The performance of QRS 
detection algorithms can easily be verified using the 
standard databases such as MIT-BIH Arrhythmia 
Database [20]; however, validation of a proposed 
algorithms for the detection-delineation of P and T-
waves has turned to a difficult problem due to the lack 
of a gold standard as universal reference [15]. The 
wavelet transform has three appropriate and useful 
properties; first, using this approach the original signal 
can be described in different time scales and therefore 
different spatial resolutions would be achieved. For 
instance, in the scale 21, the high energy waves (such as 
QRS complex) can be easily distinguished from other 
waves; however, in the scale 24 or 25, weak or very 
weak waves (such as T-wave P-wave or probable U-
waves) can be detected [16]. Thus, using a multi-step 
algorithm it would be possible to detect strong, weak 
and very weak waves. This feature should be noted as 
one of the most significant characteristics of the wavelet 
transform which can be implemented to obtain more 
accurate results. Second, factors such as noise, artifacts, 

and baseline wandering can be distinguished from heart 
electrical activity based on their specific frequency 
contents which lead to better performance for the 
detection algorithm. Third, the wavelet transform can be 
easily implemented in practical cases due to the fact that 
it is a cascade consisting of sequential short length unit 
impulse response digital Finite-duration Impulse 
Response (FIR) filters. The algorithms already 
developed in this area, such as [15-17], achieve 
acceptable results in the area of QRS detection, Finding 
the location of J and fiducial points, the beginning of P-
wave as well as the peak and end of T-wave. Applying 
some modifications to these methods, more innovative 
and more accurate approaches can be developed in the 
area of wave detection and delineation. By adding some 
innovations and modifications to previous methods, it 
would be possible to apply them to more challenging 
data including ambulatory holter ECG data which 
contains high-level noise and strong motion artifacts as 
well as severe arrhythmia with abnormal morphologies 
such as PVCs, PACs, a combination of these two, 
multifocal PVCs with complicated morphologies, etc. 
The corrections considered to be added to the previous 
methods, will make them more safe and robust in these 
cases, [16]. 

The results of the proposed detection algorithm were 
finally compared with the clinical manual annotations of 
different databases such as MIT-BIH Arrhythmia 
Database (Fs=360Hz) [20], QT (Fs=250Hz) [21], and 
TWA Challenge 2008 Database (Fs=500Hz) [23] as well 
as high resolution Holter data (MEDSET®-1000Hz, 3-
Channel, 32-bits) [16-17]. As a result, the average 
values of sensitivity and positive predictivity Se = 
99.96% and P+ = 99.96% are obtained for the detection 
of QRS complexes, with the average maximum 
delineation error of 5.7 msec, 3.8 msec and 6.1 msec for 
P-wave, QRS complex and T-wave, respectively. In the 
next step, the proposed method is applied to DAY 
hospital high resolution holter data (including BBB, 
PVC and PAC) and average values of Se=99.98% and 
P+=99.97% are obtained for sensitivity and positive 
predictivity respectively. The organization of paper is 
arranged as follow. In section 2, DWT pre-processing 
via à trous method and the MDWM structure with 
corresponding elements are described. In section 3, 
technical information of the implemented databases, 
obtained results from application of detection-
delineation algorithm, and procedure of verification of 
the MDWM -based detection-delineation method are 
extensively illustrated. Finally, in section 4, some 
conclusions obtained during fulfillment of this study 
will be presented. 

List of Abbreviations is as follows: 
RCA:                        Retrograde Conduction into Atrium 
FCP:                                         Full Compensatory Pause 
BBB:                                              Bundle Branch Block 
TP:                                                               True Positive 
P+:                                             Positive Predictivity (%) 



Homaeinezhad et al: A Unified Framework for Delineation of Ambulatory Holter ECG Events …                                3 

Se:                                                              Sensitivity (%) 
SMF:                                                 Smoothing Function 
FIR:                              Finite-duration Impulse Response 
LE:                                                              Location Error 
MDWM: Multiple-order Derivative Wavelet based 
Measure 
HT:                                                        Hilbert Transform 
FAP:                                            False Alarm Probability 
pdf:                                     Probability Density Function 
LR:                                                          Likelihood Ratio 
ECG:                                                     Electrocardiogram 
DWT:                                   Discrete Wavelet Transform 
SNR:                                                Signal to Noise Ratio 
QTDB:                                                           QT Database 
MITDB:                         MIT-BIH Arrhythmia Database 
TWADB:                                T-wave alternans Database 
FP:                                                                False Positive 
FN:                                                              False Negative 
PVC:                          Premature Ventricular Contraction 
PAC:                                   Premature Atrial Contraction 
CHECK#0: Procedure of evaluating obtained results 
using MIT-BIH annotation files 
CHECK#1: Procedure of evaluating obtained results 
consulting with a control cardiologist 
CHECK#2: Procedure of evaluating obtained results 
consulting with a control cardiologist and also at least 
with 3 residents 
 
2 Materials and Methods 

2.1  Discrete Wavelet Transform Using à Trous 
Method 

Generally, it can be stated that the wavelet transform 
is a quasi-convolution of the hypothetical signal x(t)  
and the wavelet function (t)ψ  with the dilation 
parameter a  and translation parameter b , as follows 

( )xa

1W (b) x(t) (t b) a dt, a 0
a

ψ
+∞

−∞
= − >∫  (1) 

The parameter a  can be used to adjust the wideness 
of the basis function and therefore the transform can be 
adjusted in temporal resolutions. Suppose that the 
function xa

Y (b)  is obtained based on a quasi-

convolution of signal x(t)  and function (t)θ , as 
follows 

( )xa
Y (b) x(t) (t b) a dtθ

+∞

−∞
= −∫  (2) 

If the derivative of xa
Y (b)  is calculated relative to b, 

then 

( )xa
Y (b) 1 x(t) (t b) a dt

b a
θ

+∞

−∞

∂
′= − −

∂ ∫  (3) 

On the other hand, if (t)ψ  is the derivative of a 
smoothing function (t)θ , i.e. (t) (t)ψ θ′= , then 

x

x
a

a

Y (b)1W (b)
ba

∂
= −

∂
 (4) 

Accordingly, it can be concluded that wavelet 
transform at the scale a  is proportional to the quasi-
convolution derivative of the signal x(t)  and the 
smoothing function (t)θ . Therefore, if wavelet 
transform of the signal crosses of zero, it will be an 
indicative of local extremum(s) existence in the 
smoothed signal and the absolute maximum value of the 
wavelet transform in different scales represents a 
maximum slope in the filtered signal. Thus, useful 
information can be obtained using wavelet transform in 
different scales. If the scale factor a  and the translation 
parameter b  are considered as ka 2=  and kb 2 l= , the 
dyadic wavelet with the following basis function will be 
resulted [15], 

k / 2 k
k,l (t) 2 (2 t l); k,l Zψ ψ− − += − ∈  (5) 

To implement the à trous wavelet transform 
algorithm, filters H(z)  and G(z)  should be used 
according to the block diagram represented in Fig. 1, 
[15]. According to this block diagram, each smoothing 
function (SMF) is obtained by sequential low-pass 
filtering (convolving with 2kH(z )  filters), while after 

high-pass filtering of a SMF (convolving with 2kG(z )  
filters), the corresponding DWT at appropriate scale is 
generated. 

For a prototype wavelet (t)ψ  with the following 
quadratic spline Fourier transform, 

4
sin ( 4)( ) j

4
Ω

Ω Ω
Ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
Ψ  (6) 

the transfer functions H(z)  and G(z)  can be obtained 
from the following equation 

( )
( )

3j j 2

j j 2

H(e ) e cos( 2)

G(e ) 4je sin( 2)

ω ω

ω ω

ω

ω

=

=
 (7) 

and therefore, 
( )h [n] 1 8 { [n 2] 3 [n 1] 3 [n] [n 1]}

g[n] 2 { [n 1] [n]}

δ δ δ δ

δ δ

= + + + + + −

= + −
 (8) 

It should be noted that for frequency contents of up 
to 50 Hz, the à trous algorithm can be used in different 
sampling frequencies. Therefore, one of the most 
prominent advantages of the à trous algorithm is the 
approximate independency of its results from sampling 
frequency. This is because of the main frequency 
contents of the ECG signal concentrate on the range less 
than 20 Hz [15,16]. After examination of various 
databases with different sampling frequencies (range 
between 136 to 10 kHz), it has been concluded that in 
low sampling frequencies (less than 750 Hz), scales 2λ 
(λ=1,2,…,5) are usable while for sampling frequencies 
more than 750 Hz, scales 2λ (λ=1,2,…,8) contain 
profitable information that can be used for the purpose 
of wave detection, delineation and classification. 
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SMF 24 
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Fig. 1 FIR filter-bank implementation to generate discrete 
wavelet dyadic scales and smoothing functions transform 
based on à trous algorithm. 
 

2.2  The Structure of Multiple-Order Derivative 
Wavelet-Based Measure (MDWM) 

Nonlinearly amplified Hilbert transform (HT), first 
and second order derivatives, curve length, area and 
second order statistical moment (variance) are the basic 
constitutive elements of the MDWM. Below, some 
justifications for the selection of each measure are 
presented.  
 
2.2.1 Summation of Nonlinearly Amplified Hilbert 

Transform 
A quadrature filter with the following transfer 

function is called Hilbert transform (HT) which is an 
all-pass filter that  changes the phase of the input signal 
-900 and has an impulse response of 1 ( t)π  [15], 

j 0
G( ) jsign( ) 0 0

j 0

ω
ω ω ω

ω

− >⎧
⎪= − = =⎨
⎪+ <⎩

 (9) 

Therefore, the Hilbert transform of the signal s(t) 
can be obtained from the following convolution, 

H

1 1 s( )
s (t) s(t) d

t t
λ

λ
π π λ

+∞

−∞
= ∗ =

−∫  (10) 

The most significant characteristic of Hilbert 
transform is its mapping of local maxima and minima 
values of the original signal to the values crossing of the 
zero, [15, 16]. 

As previously abovementioned, the HT rotates -90o 
the phase of its input signal, therefore, if the 
hypothetical signal x(t)  is represented by the Fourier 
series expansion x̂(t)  [33], as follows 

n n n
n 0

ˆx(t) x(t) X sin( t )ω φ
+∞

=

≈ = +∑  (11) 

where nX  and nφ  are the n-th term of the Fourier series 
expansion amplitude and phase, respectively. The 
approximate HT Hx̂ (t)  of the original signal x(t) can 
be obtained as follows 

H H n n n
n 0

n n n n n n
n 0 n 0

ˆ ˆx (t) x (t) H[x (t) ] H X sin( t )

X sin( t / 2) X cos( t )

ω φ

ω φ π ω φ

+∞

=

+∞ +∞

= =

⎡ ⎤≈ = = +⎢ ⎥⎣ ⎦

= + − = − +

∑

∑ ∑
 

(12) 

According to Eq. 12, it is seen that if signal x(t)  
crosses from its absolute extremum points, then by 
rotation of the argument phase n ntω φ+  by -90o, then 
the dominant value of the trigonomic components will 
push the Hx (t)  signal to cross from zero [11-12]. For 
instance, in Fig. 2, a generic test signal 

2

n n n
n 1

x(t) X sin( t )ω φ
=

= +∑  given 1X 1.0= , 2X 1.25= , 

1 7.85ω = , 2 4.712ω = , 1 0φ = , 2 7.2φ = o , and its HT 
is shown to numerically validate the aforementioned 
property of the HT. In the next step, by application a 
nonlinear exponential transformation to the HT of the 
original signal x(t)  as follows, the zero crossing 
locations of the HT are amplified while other points are 
pushed toward zero 

( )N Hx (t) exp x (t) , 0ξ ξ= − >  (13) 

where ξ  is attenuation coefficient and if chosen large 
enough, only zero crossing (or zero vicinity) locations 
of the Hx (t)  are magnified toward unity while other 
points are pushed to zero. In other words, if x (t)  curve 
includes absolute extremums, the Hx (t)  will 
approximately be greater than zero in the vicinity of 
each absolute extremum location. According to this 
conclusion, in the k-th slid of the analysis window with 
the length of WL samples, the HT based measure can be 
obtained from following summation 

Lk W

H N
t k

M (k) x (t)
+

=

= ∑  (14) 

From another point of view, HM (k)  shows the 
number of impulses occurred in the analysis window. 
 

2.2.2 Summation of Absolute First-Order 
Derivative 

If signal x (t)  is sampled from the continuous 
waveform by sampling frequency Fs, then the 
summation of absolute first order derivative of x (t)  
signal in the analysis window is obtained as 

Lk W 1

d f I s
t k

M (k) F x(t 1) x(t)
+ −

=

⎡ ⎤= + −⎣ ⎦∑  (15) 

This measure clearly detects the activity extent of 
the high-frequency components of the original signal. In 
other words, in weak P or T-waves, in which their 
amplitude and area are not large enough, this quantity 
shows better sensitivity to such phenomena. 
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2.2.3 Summation of the Absolute Second-Order 
Derivative 

Summation of the absolute second-order derivative 
of the signal x (t)  with the sampling frequency Fs , in 
the k-th slid of the analysis window can be obtained as  

L

d f II

k W 2
2

s
t k

M (k)

F x (t 2) 2 x (t 1) x(t)
+ −

=

=

⎡ ⎤+ − + +⎣ ⎦∑
 (16) 

This measure indicates the ascend/descend rate or 
kurtosis of the signal x (t)  and detects the activity 
period of the source generating signal. The measure 

d f IIM (k)  shows remarkable fluctuations during activity 
of the heart individual events. A large value of MdfI and 
MdfII indicates a sharp transition from low to high or 
from high to low value in the excerpted segment. 
Consequently, these measures detect the probable edges 
of the signal in the analysis window. So, this quantity 
makes the MDWM sensitive to behavior of the signal in 
the edges. 
 

2.2.4 Curve Length (Nonlinear First-Order 
Derivative) 

Curve length of the signal x (t)  in the k-th slid of 
the analysis window is obtained approximately as [16, 
17] 

( )
Lk W 1 2

CL s
t ks

1M (k) 1 x (t 1) x (t) F
F

+ −

=

⎡ ⎤≈ + + −⎣ ⎦∑  (17) 

The curve length is suitable to measure the duration 
of the signal x (t)  events, either being strong or weak.  
 

2.2.5 Area under Curve 
The approximate area under curve x (t)  in the k-th 

slid of the analysis window is obtained from the 
following equation 

Lk W

AR
t ks

1M (k) x (t)
F

+

=

≈ ∑  (18) 

 
2.2.6 Centralized Mean Square Value 

An estimate of the centralized mean square value of 
the excerpted segment of signal x (t)  can be obtained 
as  

Lk W 2

MS k
t kL

1M (k) x (t)
W

μ
+

=

= −⎡ ⎤⎣ ⎦∑  (19) 

where kμ  is the sample mean of the x (t)  in the 
analysis window that can be obtained from the 
following equation 

Lk W

k
t kL

1 x (t)
W

μ
+

=

= ∑  (20) 

The physical meaning of the MSM (k)  is the average 
power of the events while this quantity graphically 

shows the dispersion of the samples around the mean 
value [13].  The MSM (k)   indicates  difference  between 

Fig. 2 Illustration of the main characteristic property of the HT 
of an embedded in noise signal. This figure shows that by 
crossing of the original signal from its extremums, 
equivalently the HT of the signal crosses from zero value.

 
absolute maximum and minimum values of an 
excerpted segment. This difference may not be seen via 
mean value because it is possible that the mean of a 
segment is a small value whilst the difference between 
its maximum and minimum values is large. 
 
2.2.7 Construction of the multiple-order derivative 

wavelet based measure (MDWM) 
The MDWM is the superposition of all calculated 

measures effect. However it should be noted that the 
largeness extent (order) of the 

jM (k), j H, dfI, dfII, CL, AR, MS= are not analogous 
to each other and sometimes one may be greater more 
than 1000 times from other(s), therefore, by superposing 
all raw trends, the effect of relatively small quantities 
are vanished from the MDWM. To solve this problem, 
if j , j H, dfI, dfII, CL, AR, MS=M the vector consisting 

of the jM (k)  components with sample standard 

deviation jσ , it can be shown that the new measures
N
j j j j H, dfI, dfII, CL, AR, MSσ= =M M are of unity 

variance, i.e., 

N
j

2
j j j j j j j j

2 2 2 2
j j j j j

E[ ] E[( ) ]

E[ ( ) ] 1.0

σ μ σ σ μ σ

μ σ σ σ

= ⇒ −

= − = =

M

M M

M

14243
 (21) 

Therefore, by application of this simple algebraic 
transformation, the maximum value ratios between all 

N
jM  vectors are mapped into a common interval and 

can be summed with each other. To generate the 
MDWM, all N

jM  vectors are superimposed as indicated 
below 

N
GI j

j
M (k) M (k),

j H, dfI, dfII, CL, AR, MS

=

=

∑
 (22) 
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In Fig. 3, an example of the
N
jM (k), j H, dfI, dfII, CL, AR, MS=  and the calculated 

MDWM obtained from an arbitrary holter data is 
shown. As a summary of all aforementioned parts, the 
MDWM reacts in edges, maximum (minimum) slope 
locations and maximum (minimum) elevation locations 
therefore, this quantity is a suitable decision statistic to 
detect edges and extremums of an excerpted segment in 
the analysis window. In the MDWM, several geometric 
parameters such as maximum value to minimum value 
ratio, area, extent of smoothness or being impulsive and 
distribution asymmetry can be found, (see Fig. 3). The 
capacities of the MDWM -based detection-delineation 
algorithm are shown in the next sections. 
 

2.3   Detection of QRS Complexes via α-Level 
Neyman-Pearson Based Classifier 

2.3.1 Design of False Alarm Probability (FAP) - 
Bounded Classifier 

In this study, in order to detect QRS complexes via 
segmentation of the MDWM, α-Level Neyman-Pearson 
which is of controlled false alarm probability (FAP) is 
designed by implementation of Gaussian (normal) 
stochastic structure. 

In order to cast the detection of QRS complexes into 
a probabilistic framework, suppose that the observation 
set { }10,| ΓΓ=ΩΩ∈= UZzZ  consists of two states 
of nature Hypo. 0 and Hypo. 1, i.e., the samples of 
observation (in this study observation set is MDWM) 
samples Z=z are distributed according to two 
probability density functions (pdf) )(0 zp  and )(1 zp . 
The structure of the hypotheses Hypo. 0 and Hypo. 1 is 
shown in Eq. 23, in which 0A  and 1A  are the parameters 
of the hypothesis test problem and N is a stationary 
stochastic process with the corresponding model and 
parameters.  

0
1 0

1

Hypo.0 : Z N A
, A A

Hypo.1: Z N A
= +⎧

>⎨ = +⎩
 (23) 

In this study, it is supposed that N is a Gaussian zero 
mean stationary process with standard deviation σ . 
 

Fig.3 Obtained normalized MSAR,CL,dfII,dfI,H,j(k),M N
j =  

and the resulted MDWM to illustrate the behavior of each 
measure.
Therefore the pdf of observation under states of nature 
Hypo. 0 and Hypo. 1 ( 0p (z)  and 1p (z)  respectively) is 
according to the following equation 

2
0 02

2
1 12

1 1p (z) exp (z A )
22

1 1p (z) exp (z A )
22

σπσ

σπσ

⎧ ⎡ ⎤−
= −⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

⎡ ⎤−⎪ = −⎢ ⎥⎪ ⎣ ⎦⎩

 (24) 

In order to construct a FAP controlled Neyman-
Pearson classifier, the likelihood ratio (LR) which is the 
ratio between Hypo. 1 and Hypo. 0 pdfs, should be 
obtained as follows 

2
12

1

0 2
02

2 2
1 02 2

1 1exp (z A )
2p (z) 2L(z)

p (z) 1 1exp (z A )
22

1 1exp (z A ) (z A )
2 2

σπσ

σπσ

σ σ

⎡ ⎤−
−⎢ ⎥

⎣ ⎦= =
⎡ ⎤−

−⎢ ⎥
⎣ ⎦

⎡ ⎤− +
= − + −⎢ ⎥

⎣ ⎦

 (25) 

By taking log(.) (natural logarithm) from the 
obtained LR (the resulted ratio is consequently called 
log-LR), and solving the inequality ( )log L(z) τ>  for 
finding the equivalent inequality for z, the following 
result is obtained 

( )

( )

2 2
0 12

2 2
0 12

log L(z)
1 (z A ) (z A )

2
1log L(z) (z A ) (z A )

2
z

σ

τ
σ

τ

=

+
⎡ ⎤− − −⎣ ⎦

+
⎡ ⎤> ⇒ − − − >⎣ ⎦

′⇒ >
 

(26) 

According to Eq. 26, if z τ′> , where τ′  is a 
threshold that is determined according to FAP value and 
the other test parameters, then z will belong to class 
Hypo. 1. The FAP of this test is the integration of pdf 

0p (z)  over the 1Γ  ( z τ′> ) region as follows 

0 1 0

2
02

0

FAP P ( ) p (z)d z

1 1exp (z A ) d z
22

A
1

τ

τ

Γ

σπσ

τ
Φ

σ
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+∞

′

= =
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= −⎢ ⎥

⎣ ⎦
′ −⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

∫

∫  (27) 

where ( )xΦ  is the unit variance and zero mean 
Gaussian cumulative probability function with the 
following integral definition 

∫ ∞−

−

=Φ
x t

tdex
2

2
1

2
1)(
π

 (28) 

By equaling the latest term of Eq. 27 to the given 
FAP value α and by solving it to find the threshold τ′  
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as a function of 0A , σ  and α , the following result is 
obtained 

0A
1

τ
Φ α

σ
′ −⎛ ⎞

− =⎜ ⎟
⎝ ⎠

 (29) 

1
0A (1 )τ σΦ α−′ = + −  (30) 

where α  represents the level (false-alarm probability) 
of the binary Neyman-Pearson radius test and is chosen 
as 0.005 0.05α≤ ≤ , [34]. It should be noted that 
although Eqs. 24 to 30 were derived based on 
simplifying assumptions (independent samples, 
identical distribution, etc.); however, similar to 
derivation of Kalman filtering equations, its operation 
depends only on the first and second-order moments of 
the signal. Consequently, it can be easily implemented 
in actual cases and a high performance would be 
resulted from the algorithm in practical applications, 
[34]. The parameters 0A  and σ  are the test parameters 
and should be determined properly to achieve 
acceptable results. In order to find 0A , according to Fig. 
4, first, histogram (discrete probability distribution 
function) of the MDWM is estimated using an existing 
simple method [31] and then the maximum value of the 
obtained histogram is assigned as 0A . In other words, 

0A  is the maximum distribution (or equivalently 0A  is 
the value of the MDWM baseline). As shown in Fig. 4, 
σ  is the distance between 0A  value and the first corner 
of histogram taking place immediately after 0A . It 
should be noted that histogram estimation can be 
fulfilled recursively (on-line) or cumulatively (off-line). 
The accuracy of the second method is higher than the 
on-line methods but in the expense heavier 
computational burden as well as missing real-time 
implementation of the method. More details relating this 
section is omitted and left to be seen in [33-34]. 

A large MCL value of a signal points out a sharp 
ascending or descending regime and consequently, this 
 

Fig. 4 Determination of α-level Neyman-Pearson classifier 
parameters via estimation of the MDWM histogram (discrete 
probability distribution function). The depicted histogram is 
obtained from an arbitrary high-resolution holter data.

quantity make the MDWM sensitive to the high-slope 
parts of the signal in the analysis window, either 
ascending or descending. Generally, the MCL measure 
indicates the extent of flatness (smoothness or impulsive 
peaks) of samples in the analysis window. This measure 
allows detecting sharp ascending/descending regimes 
occurred in the excerpted segment, [31, 32]. 
 
 
3 Databases, Results and Evaluation of the MDWM 
-Based ECG Events Detection-Delineation Algorithm 
 
3.1  Technical Descriptions of Employed Databases 

3.1.1 The MIT-BIH Arrhythmia Database 
The MIT-BIH Arrhythmia Database contains 48 

half-hour excerpts of two-channel ambulatory ECG 
recordings, obtained from 47 subjects studied by the 
BIH Arrhythmia Laboratory. Twenty-three recordings 
were chosen at random from a set of 4000 24-hour 
ambulatory ECG recordings collected from a mixed 
population of inpatients (about 60%) and outpatients 
(about 40%) at Boston Hospital; the remaining 25 
recordings were selected from the same set to include 
less common but clinically significant arrhythmias that 
would not be well-represented in a small random 
sample. The recordings were digitized at 360 samples 
per second per channel with 11-bit resolution over a 10 
mV range. Two or more cardiologists independently 
annotated each record; disagreements were resolved to 
obtain the computer-readable reference annotations for 
each beat (approximately 110,000 annotations in all) 
included with the database, [20]. 
 

3.1.2 The TWA Database 
This database has been assembled for the 

PhysioNet/Computers in Cardiology Challenge 2008. It 
contains 100 multichannel ECG records sampled at 500 
Hz with 16 bit resolution over a ± 32 mV range. The 
subjects include patients with myocardial infarctions, 
transient ischemia, ventricular tachyarrhythmias, and 
other risk factors for sudden cardiac death, as well as 
healthy controls and synthetic cases with calibrated 
amounts of T-wave Alternans, [23]. 
 

3.1.3 The QT Database 
The QT Database includes ECGs which were chosen to 
represent a wide variety of QRS and ST-T 
morphologies, in order to challenge QT detection 
algorithms with real-world variability. The records were 
chosen primarily from among existing ECG databases, 
including the MIT-BIH Arrhythmia Database, the 
European Society of Cardiology ST-T Database, and 
several other ECG databases collected at Boston's 
Medical Center. All records were sampled at 250 Hz, 
[21]. Those which were not originally sampled at that 
rate were converted using the MIT Waveform Database 
Software Package, [24]. 
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3.1.4 High Resolution DAY General Hospital 
Database 

The high-resolution holter database of DAY hospital 
contains 24-hour 3-lead records of about 150 patients 
including diverse ECG arrhythmias such as BBB, PVC, 
PAC, myocardial infarction, heart failure, ischemia and 
T-wave alternans. The sampling frequency of this 
database is 1000 Hz with 32-bits of resolution [16]. The 
electrodes of each holter are attached to the subjects 
chest skin surface at positions 1, 3, 5 via suitable 
vacuum cups. 
 

3.2   Procedure of the Proposed MDWM -Based 
ECG Waves Detection-Delineation Algorithm 

3.2.1 Bandpass FIR Filtering to Remove Noise and 
Motion Artifacts 

General block diagram of multi-lead based ECG 
events detection-delineation algorithm is illustrated in 
Fig. 5. According to this flow-chart, first three lead high 
resolution 24 hour holter ECG signals are extracted and 
using a bandpass FIR filter with (0.40~40) Hz passband 
characteristic, each lead is filtered to remove 
contaminating effects such as baseline wander, motion 
artifacts and high frequency measurement noise. It can 
be stated that the main components of the ECG signal 
relating to the heart electrical activity, have frequency 
specifications with the uttermost concentration on the 
(0.40~40) Hz interval, [16]. 
 

3.2.2 Application of à Trous Discrete Wavelet 
Transform 

In this step, using à trous discrete wavelet transform 
algorithm, appropriate scales 2λ (λ=1,2,…,6) are 
extracted from the resulted norm. In order to amplify the 
effects of important events of the ECG signal such as P-
wave, T-wave and QRS complex and also to weaken 
disturbing effects to the possible extent, for each lead j (

1 2 3j V , V , V= ), a synthetic quantity is extracted from 
scales 2λ (λ=3,…,6) as follows 

2

6
j j

S, j 2 2
3

1 2 3

W [n] W [n]W [n]

n 1, 2, , N, j V , V , V

λ
λ=

=

= =

∑
K

 (31) 

In order to increase the robustness of the MDWM -
based detection-delineation algorithm, after appropriate 
noise and baseline wander removal from each lead, the 
Euclidean norm between samples of

S, j 1 2 3W [n], j V , V , V=  is calculated as 
2 2 2

T S,1 S, 2 S,3W [n] W [n] W [n] W [n]

n 1, 2, , N

= + +

= K
 (32) 

As it will be shown, by application of this norm 
instead of an single individual lead, when a lead 
contains transient or even permanent disturbances, other 
clean leads compensate the lack of information caused 
by the noisy lead and consequently the algorithm shows 
more endurance against probable noise and motion 
artifacts. 

3.2.3 Resampling of the Obtained Synthetic Scale 
into a Target Frequency (Unified Parameters 

Adjustment) 
It should be noted that almost all parameters of the 

proposed detection delineation algorithms [11,13,16,17] 
are highly dependent to the sampling frequency of the 
holter systems. For example, sampling frequencies 128 
Hz, 250 Hz, 500 Hz, 750 Hz, 1 kHz, 2 kHz and 10 kHz 
can be seen among holter based databases [35]. In order 
to introduce a unified ECG individual events detection 
framework which is applicable for all sampling 
frequencies, after calculation of the synthetic scale as 
described previously, the original signal in the core 
sampling frequency is mapped to a new trend with 
target sampling frequency 750 Hz. By this operation, 
once the parameters of the algorithm are properly 
regulated for the target sampling frequency, the 
algorithm can be implemented to the holter data 
sampled with any rate. 
 

3.2.4 MDWM Generation and Normalization 
A window with the length of L ~ (40-50 msec) 

samples is then slid sample to sample on the resampled 
version of signal TW [n]  and the measure MDWM is 
calculated in each window (see section B.2.7).  
In the next step, the obtained trend MDWM is 
normalized. Normalization of the signal MDWM is an 
algebraic linear transformation that maps the signal 
MDWM so as its first and second moments are 
transferred to zero and unity respectively, i.e., 
( )
[ ]

( ) ( )

N

N N

MDWN

MDWN mean(MDWN) std(MDWN)

mean MDWN 0; std MDWN 1.0

=

−

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

 (33) 

where mean ( )⋅  and std ( )⋅  are mean value and standard 
deviation operators, respectively. The aim of 
normalization is to diminish subject dependency of the 
signal MDWM if so, once applied thresholds and 
decision criteria are tuned; their performance is 
preserved during application of the method to any 
subject [13].  
 
3.3   Detection and Delineation of Holter ECG Events 

3.3.1 Detection and Delineation of the QRS 
Complexes (Normal, Ectopy) 

According to Eq. 30 of section B.3.1, after 
determination of the test parameters 0A  and σ  using 
histogram estimation and given FAP α, the threshold τ′  
is determined and used to segment the MDWM into 
QRS (hypo. 1) and non-QRS (hypo. 0) regions. The 
decision function (n)δ  is then obtained with the 
following structure 

MDWM

QRS Complex MDWM(n)
(n)

non QRS Complex MDWM(n)
τ

δ
τ

′≥⎧
= ⎨ ′− <⎩

 
(34) 
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Fig. 5 General block diagram of the proposed ECG events (P-
wave, QRS complex and T-wave) detection-delineation 
algorithm based on analysis of multi-lead obtained MDWM.

 
To this end, first all samples of the MDWM signal is 

analyzed via decision rule presented by Eq. 34 and the 
edges of each obtained rectangular pulse is determined 
using appropriate calculations and are assigned as the 
edges of the detected QRS complex, (see Fig. 6). These 
points are then transferred to the 23 scale and the index 
for extremum values are specified between edges. If the 
minimum is occurred before the maximum, a dominant 
local minimum value would exist in the original signal 
and vice versa. In this way, the sign of the QRS 
complex (upward or downward) can be realized. In 
order to detect Q and S waves, the mean value of the 
index corresponding to the number of crossings of zero 
is calculated for movement between R-wave and right 
and left edges. 
 
3.3.2 Detection and Delineation of P and T Waves 

(Normal, Biphasic, Inverted) 
In order to detect P and T waves, a local search for 

two local maxima is conducted between two successive 
extremum values in the MDWM signal. The local 
maximum close to the right R-wave is specified as P-
wave index and the one close to the left R-wave is 

specified as T-wave index of the preceding beat. In the 
next step, in order to determine the onset and offset of P 
and T-waves, a segment of the signal MDWM between 
two consequent QRS complexes is chosen and a local 
search is conducted to find four local minima, as 
follows 

a) A search between the end of the preceding 
QRS complex and T-wave peak (beginning of 
the preceding T-wave) 

b) A search between the T-wave peak and half of 
RR interval (end of the preceding T-wave) 

c) A search between the half of the RR interval 
and the P-wave peak (beginning of P-wave) 

d) A search between the P-wave peak and the 
beginning of the next QRS complex (the end of 
P-wave) 

Generally, detection and delineation of T-wave is 
more difficult than P-wave. Therefore, the most 
significant part of the error corresponding to waves 
detection is related to T-wave. The block diagram of the 
algorithm for the detection and delineation of QRS 
complex, P-wave and T-wave is illustrated in Fig. 6. 
Examples of QRS, P-wave and T-wave detection and 
delineation are depicted in Figs. 7-10. In these figures, 
solid circles represent the wave edges (beginning and 
end), solid triangles show the extremums of the waves 
and solid squares marks the offset of the detected 
events. 

Detection and delineation of P and T-waves are 
described in more detail. First of all, two successive 
QRS complexes are detected and the corresponding 
edges are delineated using the MDWM measure. Next, 
the distance between the MDWM of the corresponding 
wavelet transform of the right edge of the first complex 
and the left edge of the second complex is determined. 
 

Fig. 6 An example of α-level Neyman-Pearson based 
detected-delineated P-wave, QRS complex and T-wave of 
high resolution ambulatory holter ECG via segmentation of 
MDWM measure. (Detection-delineation of normal QRS 
complexes, delineation of a PVC complex, and delineation of 
T and P waves).
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 

 
(d) 

 
 

 
(e) 

 
 

 
(f) 
 

Fig. 7 An excerpted segment from total delineated from lead I (left) of record # 108 MITDB ECG. Delineated (a) P-waves, (b) QRS 
complexes and (c) T-waves. Lead II (right) of record # 108 MITDB ECG. Delineated (d) P-waves, (e) QRS complexes and (f) T-
waves. (Circles: edges of event, Triangles: Peak of events). 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 

 
(d) 

 
 

 
(e) 

 
 

 
(f) 
 

Fig. 8 Two leads detected-delineated trends of a high resolution holter ECG including a PVC with full compensatory pause (FCP). 
An excerpted segment from total delineated from lead V1 (left) of an arbitrary holter ECG. Delineated (a) P-waves, (b) QRS 
complexes and (c) T-waves. Lead V2 (right) delineated (d) P-waves, (e) QRS complexes and (f) T-waves. (Circles: edges of event, 
Triangles: Peak of events). 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 9 Three leads detected-delineated trends obtained from a high resolution ambulatory holter record. (a) Lead V1, (b) Lead V2, and 
(c) Lead V3. Although SNR value in some QRS complexes of the third lead is lower than the corresponding ones in other leads, the 
probable errors is eschewed by compensation of the information lack by the other leads. 
 
 
The RR interval is then divided into two sections. 
Because the MDWM measure is strictly positive, one 
dominant maximum will be found in each of these two 
intervals. Finally, a local search is conducted to the left 
and right of each of these maxima, and the position 
where MDWM slope is less than 1/15 to 1/20 of the 
maximum slope in the window is identified as wave 
edge. The following conditions are observed; 

• If a T-wave and a P-wave exists in the RR 
interval, they will be detected regardless of 
their sign, i. e., positive, negative or biphasic. 
(Waves sign is determined based on the sign of 
the corresponding wavelet transform) 

• If there is only a T-wave in the RR interval, the 
left edge and the maximum amplitude of this 
wave will be easily detected. However, there 
may be some problems in finding the right 

edge. In this case, a new algorithm is required 
for the determination of the P-wave power. 

• If there is no P or T wave in the RR interval, it 
will be accurately announced by the algorithm. 

As mentioned above, one of the merits of the 
presented algorithm is that the sign of P or T-wave and 
their morphology will not affect the performance of the 
algorithm. 

In Fig. 11, some arrhythmic cases encountered 
during detection-delineation are shown. Fig. 11-a shows 
a PAC complex of delayed sinus node reset type. In Fig. 
11-b, some normal complexes pursued by a PVC of 
retrograde conduction into atrium type. In Fig. 11-c, an 
ECG trend with multi-focal PVCs including BBB 
arrhythmia is shown. In this figure, first PVC complex 
is of retrograde conduction into atrium type while the 
second PVC is a full compensatory pause complex. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 
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Fig. 10 Two leads detected-delineated trends of a high resolution holter ECG including a PVC with retrograde conduction into 
atrium (RCA). An excerpted segment from total delineated from lead V1 (left) of an arbitrary holter ECG. Delineated (a) P-waves, 
(b) QRS complexes and (c) T-waves. Lead V2 (right) delineated (d) P-waves, (e) QRS complexes and (f) T-waves. (Circles: edges of 
event, Triangles: Peak of events). This figure shows qualitatively the robustness of the presented algorithm against low SNR in a 
lead. 
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3.4  Validation of the Presented Algorithm 
Numerous databases with different sampling 

frequencies and signal to noise ratio are used in this 
study to validate the performance of the proposed 
detection algorithm. To validate the QRS detection and 
delineation algorithm, MITDB (Fs=360Hz), TWADB 
(Fs=500Hz), and QTDB (Fs=250Hz) which contain 
annotation files are used (CHECK#0). It should be 
noticed that in challenging cases, results were delivered 
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Fig. 11 A delineated high resolution holter ECG trend 
including normal complexes and (a) a PVC with a retrograde 
conduction into atrium (RCA) (Rk Rk+1 > Rk-2 Rk-1), (b) a 
PAC with delayed sinus node reset (Rk Rk+1 > Rk-2 Rk-1) 
(c) normal complexes and some BBBs beats pursued by a 
PVC with a retrograde conduction into atrium (RCA). The 
second PVC is a full compensatory pause (FCP) complex 
(Rk+1 Rk+3 =2 Rk-2 Rk-1), the unit of these figures are arbitrary. 

to the cardiologist and accordingly the detection 
algorithm was re-validated (CHECK#1). In cases of 
QRS with very abnormal morphologies, the results were 
also checked by some residents (CHECK#2). 

Many approaches have yet been developed in the 
area of wave detection which are all applied only to the 
Lead I. Thus, in order to validate the performance of the 
proposed detection algorithm, it was applied to Lead I. 
If so, it would be possible to compare the presented 
algorithm with other researches. MITDB, QTDB and 
TWADB include 48, 105 and 100 subjects respectively. 
All these data were converted to MAT-files using the 
WFDB Software [24]. 

The presented detection algorithm was validated in a 
sequential order in three steps: 

Detection of QRS Complexes: in order to detect 
QRS complexes, the presented algorithm was applied to 
all MITDB, QTDB, EDB and TWADB signals and the 
results of QRS detection and annotation files were 
compared in a computer program (CHECK#0). These 
results were then delivered to cardiologist in graphical 
format (such as Figs. 6, 7) and accordingly the detection 
algorithm was modified (CHECK#1). Due to the fact 
that a universally accepted gold standard exists in the 
area of QRS detection, validation procedure was 
significantly simplified to the step CHECK#0. The 
results of this study are presented in Tables 1, 2 and 3 to 
be compared to other works. As two instances, record 
#108 includes 1824 annotated complexes which was a 
mixture of normal complexes, PVCs and blocked PACs. 
After applying the presented algorithm to this record, 
the statistical values of FP = 3, FN = 4, and were finally 
achieved which yield to the values of Se = 99.72% and 
P+ = 99.88%, respectively. Record #207 includes 2385 
annotated complexes which are a mixture of normal 
complexes and ventricular Flutter. In the next step, for 
the results of the algorithm to be compared with those 
of Martinez et al, the VF beats were eliminated. The 
presented algorithm was applied to this record and the 
statistical values of FP = 4, FN = 8, and were achieved 
which yield to the values of Se = 99.60% and P+ = 
99.72%, respectively. 

1. Delineation of QRS Complexes, P and T-
Waves: In comparison to QRS detection, the 
delineation of QRS complexes and P and T-
waves is a rather complicated approach. QTDB 
includes 105 files with the sampling frequency 
of 250 Hz containing beginning, end and peak 
of P-wave and QRS complex as well as the 
peak and end of the T-wave in the 
corresponding annotation files. Using this 
information, it would be possible to completely 
detect and delineate P-waves and detect the 
beginning and end of QRS complexes 
(CHECK#0, CHECK#1). Also, it is possible to 
detect the peak and end of the T-wave using 
QTDB. Nonetheless, detection of all waves in 
the QRS complex and the beginning of T-wave 
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using these two databases is not possible. To 
meet this end, the CHECK#1 and CHECK#2 
approaches were implemented. The results of 
delineation of P-wave, detection of QRS edges, 
and detection of the end and peak of the P-
wave using the QTDB are presented in Table 
4. In this table, sensitivity percentage, positive 
predictivity percentage and minimum-
maximum location error in milliseconds are 
presented. 

Accordingly, it should be noticed that a higher 
sensitivity and positive predictivity was obtained in 
this study in comparison to other researches due to 
applying multi-lead features analysis. Also, 
developing the MDWM -based measure lead to a 
significant decrease in the error related to edges 
detection. One of the objectives of this study is to 
evaluate the robustness of the presented detection 
algorithm versus the measurement noises and 
artifacts so the method is applied to several 
databases. 

2. As final step in the validation of the proposed 
algorithm, it was applied to 3-lead Holter data 
of 4 subjects (1 hour long) and the results of 
application of the CHECK#1 and CHECK#2 
are presented in Table 5. 

It should be noted that because the proposed 
algorithm accurately detects J-points and the beginning 
of the T-wave, using the CHECK#2 approach it was 
realized that the presented algorithm has acceptable 
performance in the determination of late potentials. In 
Fig. 12, a sample delineated high resolution holter ECG 
with an estimate of late potential is shown. It should be 
noted that during myocytes refractory phase, the 
potential difference between beginning of T-wave and 
J-point of corresponding QRS complex is called late 
potential, [1]. 

As the final step of the accuracy performance 
checking, in each case the trend of RR-tachogram is 
obtained and plotted. It should be noted that if RR-
interval is remarkably less than the mean value, 
probable false positive (FP) error may exist. On the 
other hand, if RR-interval is significantly greater than 
the mean value, the false negative error may probably 
exist. In Fig. 13, two examples of RR-tachogram 
obtained from holter data of two patients of hospital 
including PVC and PAC beats are shown. 

In table 6, some specifications of ECG events 
detection-delineation are shown. According to this 
table, the presented detection-delineation algorithm 
possesses the best performance characteristics namely 
as speed of processing, accuracy and robustness against 
noise and motion artifacts. 

Fig. 12 A delineated high resolution holter ECG trend and 
illustration of the late potential estimation. 
 
 

(a) 
 

(b) 
 

Fig. 13 The detected RR-tachogram to estimate the number of 
FP and FN type errors; (a) this trend shows a FP error during 
the PAC-induced heart rate turbulence, (b) a trend with no FP 
and FN errors during the PVC-BBB induced heart rate 
turbulence.
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Table 1 Performance evaluation of several QRS detection 
algorithms: Application to MITDB. 

Detection Algorithm # of 
Annotations TP FP FN Error (%) Se (%) P+(%) 

This Study 109428 109375 81 53 0.12 99.95 99.93 
Ghaffari et al. [13] 109428 109367 89 61 0.14 99.94 99.91 
Ghaffari et al. [16] 109428 109327 129 101 0.21 99.91 99.88 
Ghaffari et al. [11] 109428 109215 160 213 0.34 99.80 99.85 
Martinez et al. [15] 109428 109208 153 220 0.34 99.80 99.86 

Li et al. [25] 104182 104070 65 112 0.17 99.89* 99.94*

Hamilton et al. [26] 109267 108927 248 340 0.54 99.69 99.77 
Pan et al. [27] 109809 109532 507 277 0.71 99.75 99.54 

Moody et al. [28] 109428 107567 94 1861 1.79 98.30 99.91 

* In this case, a discrepancy is found between the published result and the review paper [10]. 
 
Table 2 Performance evaluation of QRS detection algorithms: 
Application to QTDB. 

Detection Algorithm # of 
Annotations TP FP FN Error (%) Se (%) P+(%) 

This Study 86892 86869 61 23 0.10 99.97 99.93 
Ghaffari et al. [13] 86892 86854 70 38 0.12 99.96 99.92 
Ghaffari et al. [16] 86892 86845 79 47 0.15 99.94 99.91 
Ghaffari et al. [11] 86892 86819 94 73 0.19 99.92 99.89 
Martinez et al. [15] 86892 86824 107 68 0.20 99.92 99.88 
Moody et al. [28] 86892 84458 459 2434 3.33 97.2 99.46 

 
Table 3 Performance evaluation of QRS detection algorithms: 
Application to TWADB. 

Detection Algorithm # of 
Annotations TP FP FN Error (%) Se (%) P+ (%) 

This Study 11789 11784 7 5 0.11 99.96 99.94 
Ghaffari et al. [13] 11789 11782 11 7 0.15 99.94 99.91 
Ghaffari et al. [16] 11789 11776 18 13 0.26 99.89 99.84 
Ghaffari et al. [11] 11789 11760 24 29 0.45 99.75 99.80 

 
Table 4 Performance evaluation of delineation algorithms on 
QTDB, (NR: Not Reported, NA: Not Applicable, LE: 
Location Error). 

Method Accuracy 
Parameters PON Ppeak POFF QRSON QRSevents QRSOFF TON Tpeak TOFF 

This Study 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

99.69 
99.21 

-1.1±3.4 

99.69 
99.21 

3.4±6.3 

99.69 
99.21 

-0.1±3.1 

99.97 
99.95 

-0.6±3.3 

99.97 
99.95 

0.7±1.9 

99.97 
99.95 

-0.1±5.4 

99.93 
99.92 

-1.0±3.7 

99.93 
99.92 

-0.2±2.6 

99.93 
99.92 

-0.1±5.2 

Ghaffari et al. 
[13] 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

99.64 
99.00 

-1.1±4.7 

99.64 
99.00 

3.6±7.7 

99.64 
99.00 

-0.2±3.4 

99.97 
99.95 

-0.6±4.9 

99.97 
99.95 

0.7±2.4 

99.97 
99.95 

-0.1±5.9 

99.93 
99.92 

-1.1±4.1 

99.93 
99.92 

-0.2±3.1 

99.93 
99.92 

-0.1±6.8 

Ghaffari et al. 
[16] 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

99.46 
98.83 

-1.2±6.3 

99.46 
98.83 

4.1±10.5 

99.46 
98.83 

0.7±6.8 

99.94 
99.91 

-0.6±8.0 

99.94 
99.91 

1.1±2.8 

99.94 
99.91 

0.3±8.8 

99.87 
99.80 

-1.4±5.7 

99.87 
99.80 

0.3±4.1 

99.87 
99.80 

0.8±10.9 

Martinez et al. 
[15] 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

98.87 
91.03 

2.0±14.8 

98.87 
91.03 

3.6±13.2 

98.75 
91.03 

1.9±12.8 

99.97 
NA 

4.6±7.7 

NR 
NR 
NR 

99.97 
NA 

0.8±8.7 

NR 
NR 
NR 

99.77 
97.79 

0.2±13.9 

99.77 
97.79 

-1.6±18.1 

Laguna et al. 
[29] 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

97.7 
91.17 

14.0±13.3 

97.7 
91.17 

4.8±10.6 

97.7 
91.17 

-0.1±12.3 

99.92 
99.91 

-3.6±8.6 

NR 
NR 
NR 

99.92 
NA 

-1.1±8.3 

NR 
NR 
NR 

99.0 
97.74 

-7.2±14.3 

99.0 
97.71 

13.5±27.0 

Vila et al. [30] 

Se (%) 
P+ (%) 

LE (μ±σ) 
(msec) 

NA 
NA 
NA 

NA 
NA 
NA 

NA 
NA 
NA 

NA 
NA 
NA 

NR 
NR 
NR 

NA 
NA 
NA 

NR 
NR 
NR 

92.6 
NR 

-12±23.4 

92.6 
NR 

0.8±30.3 

 
Table 5 Performance evaluation of the proposed algorithm on 
3-lead 24-hour high resolution Holter data (CHECK #1 and 
2)- (LE: Location Error). 

Method Accuracy Parameters PON Ppeak POFF QRSON QRSevents QRSOFF TON Tpeak TOFF 

Lead I 

(#) 
LE (μ±σ) (msec) [16] 

LE (μ±σ) [13] 
LE (μ±σ) [This Study] 

(14310)  
-4.2±8.3 
-2.7±5.9 
-2.3±5.1 

(14310) 
2.3±11.2 
1.1±8.3 
1.0±4.1 

(14310) 
3.1±6.6 
1.7±4.0 
1.1±2.1 

(14340)  
-2.4±8.1 
-2.1±5.4 
-2.1±4.3 

(14340) 
3.8±6.7 
2.1±3.9 
2.1±2.6 

(14340)  
8.3±11.1 
5.1±7.7 
5.1±6.8 

(14310) 
-5.3±9.9 
-2.9±7.1 
-2.4±7.0 

(14310)  
-2.4±7.1 
-1.8±6.6 
-1.7±5.3 

(14310)  
3.8±12.1 
2.8±4.5 
2.0±3.7 

Lead II 

(#) 
LE (μ±σ) (msec) [16] 

LE (μ±σ) [13] 
LE (μ±σ) [This Study] 

(14293)  
-4.3±8.8 
-3.4±6.9 
-2.9±6.1 

(14293) 
2.6±11.1 
1.8±7.1 
1.1±5.9 

(14293) 
3.0±7.1 
2.1±3.9 
1.8±2.7 

(14307)  
-2.6±8.2 
0.9±5.8 
0.9±3.9 

(14307) 
3.6±6.1 
1.0±4.5 
1.0±3.1 

(14307) 
 8.7±11.2 
5.7±9.5 
5.7±8.2 

(14293) 
-5.7±9.1 
-3.6±4.7 
-3.1±3.3 

(14293) 
-2.5±7.0 
-1.0±4.3 
-0.7±3.4 

(14293)  
4.9±14.1 
2.8±9.5 
2.3±8.4 

Lead 
III 

(#) 
LE (μ±σ) (msec) [16] 

LE (μ±σ) [13] 
LE (μ±σ) [This Study] 

(14315)  
-5.6±7.4 
-2.5±4.7 
2.2±3.5 

(14315)  
4.1±9.6 
1.8±5.1 
1.1±4.0 

(14315)  
2.9±5.8 
0.6±3.2 
0.4±2.4 

(14296)  
-3.1±7.8 
-1.4±3.3 
-1.4±2.7 

(14296) 
4.7±7.6 
2.1±5.2 
2.1±3.5 

(14296)  
7.1±12.0 
3.4±4.2 
3.4±3.1 

(14287) 
-5.8±10.8 
-3.4±6.1 
-2.8±5.0 

(14287) 
-1.4±11.1 
-0.6±4.9 
-0.4±3.4 

(14287) 
3.1±10.9 
0.8±4.8 
0.6±4.0 

 
Table 6 Performance characteristics of some proposed 
detection-delineation algorithms to be compared with each 
other, (NA: Not Applicable). 

Detection Algorithm Development 
Environment 

Speed 
Samples/sec 

Detection 
/Delineation 

Dependency 
of Parameters 
to Sampling 
Frequency 

Maximum 
Delineation 

Error 
msec (RMS) 

Se /P+ (%) 

Conventional Hilbert 
Transform [12] Matlab 52,710 Yes/No Yes NA 99.61/99.42 

Modified Hilbert Transform 
[11] Matlab 43,830 Yes/No Yes NA 99.70/99.75 

Conventional Discrete 
Wavelet Transform [15] Matlab 47,934 Yes/Yes Yes 12.33 99.80/99.86 

DWT-based Area Curve 
Length Method [16] 

C++/MEX 
(Matlab) 101,701 Yes/Yes Yes 7.26 99.91/99.88 

DWT-based Multiple Higher 
Order Moments Method [13] 

C++/MEX 
(Matlab) 148,943 Yes/Yes Yes 6.14 99.94/99.91 

MDWM (This Study) C++/MEX 
(Matlab) 163,348 Yes/Yes No 5.29 99.96/99.96 

 

4 Conclusion 
The aim of this study was to address a new long-

duration holter ECG events detection-delineation 
algorithm based on the false-alarm error bounded 
segmentation of a decision statistic. To meet this end, 
first three-lead holter data was pre-processed by 
calculation of the Euclidean norm between 
corresponding samples of three leads. Then, a trous 
discrete wavelet transform (DWT) was applied to the 
resulted norm and an unscented synthetic measure was 
calculated between some obtained dyadic scales. 
Afterwards, a uniform length window was slid sample 
to sample on the synthetic scale and in each slid, 
MDWM of the excerpted segment was calculated. In the 
next step, a α-level Neyman-Pearson classifier was 
designed and implemented to detect and delineate QRS 
complexes. The presented method was applied to 
MITDB, QTDB, and TWADB and as a result, the 
average values of sensitivity and positive predictivity Se 
= 99.96% and P+ = 99.96% were obtained for the 
detection of QRS complexes, with the average 
maximum delineation error of 5.7 msec, 3.8 msec and 
6.1 msec for P-wave, QRS complex and T-wave, 
respectively. Also, the proposed method was applied to 
DAY hospital high resolution holter data and average 
values of Se=99.98% and P+=99.97% were obtained for 
QRS detection. In summary, marginal performance 
improvement of ECG events detection-delineation 
process in a widespread values of signal to noise ratio 
(SNR), reliable robustness against strong noise, artifacts 
and probable severe arrhythmia(s) of high resolution 
holter data and the processing speed 163,000 
samples/sec can be mentioned as important merits and 
capabilities of the proposed algorithm. 
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