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 Abstract: Speckle noise is an inherent artifact appearing in medical images that 
significantly lowers the quality and accuracy of diagnosis and treatment. Therefore, 
speckle reduction is considered as an essential step before processing and analyzing 
the ultrasound images. In this paper, we propose an ultrasound speckle reduction 
method based on speckle noise model estimation using a deep learning architecture 
called “speckle noise-based inception convolutional denoising neural network" 
(SNICDNN). Regarding the complicated nature of speckle noise, an inception module 
is added to the first layer to boost the power of feature extraction. Reconstruction of 
the despeckled image is performed by introducing a mathematical method based on 
solving a quadratic equation and applying an image-based inception convolutional 
denoising autoencoder (IICDAE). The results of various quantitative and qualitative 
evaluations on real ultrasound images demonstrate that SNICDNN outperforms the 
state-of-the-art methods for ultrasound despeckling. SNICDNN achieves 0.4579 dB 
and 0.0100 additional gains on average for PSNR and SSIM, respectively, compared 
to other methods. Denoising ultrasound based on its noise model estimation is not only 
a novel approach in comparison to traditional denoising autoencoder models but also 
due to the fact that it uses mathematical solutions to recover denoised images, 
SNICDNN shows a greater power in ultrasound despeckling.  

 Keywords: Denoising Autoencoder, Inception Convolutional Neural Network, 
Speckle Noise Estimation, Ultrasound Image Denoising. 

 

 

1   Introduction 

LTRASOUND imaging plays a vital role 
in medicine. It is widely used to view 

internal anatomy, including the abdomen, breast, 
liver, kidney, tendons, muscles, joints, and vessels, 
to discover potential lesions or pathology needs.  
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This imaging modality offers several 
advantages over other medical diagnosis methods, 
such as being economical, efficient, non-invasive, 
real-time, and, more importantly, free of harmful 
radiation. Its safety considerably matters when 
observing pregnant women [1, 2]. 

Unfortunately, owing to the nature of the 
acquisition system, ultrasound images are 
contaminated by speckle noise. Speckle is a random 
deterministic interference that significantly 
degrades the contrast and textural features and 
adversely affects diagnosis and treatment [3]. 

Hence, not only does it affect human 
interpretation, but also it reduces the accuracy of 
various post-processing tasks such as feature 
extraction, segmentation, registration, and 
classification [4, 5]. Thus, speckle reduction is a 
crucial step before the processing and analysis of 
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ultrasound images in order to obtain reliable and 
accurate results. Therefore, many researchers have 
focused on this issue, and various methods of 
ultrasound image denoising have been proposed in 
the literature. These methods can be classified into 
two branches: conventional and deep-learning-
based denoisers. 

Lee [6], the non-local mean (NLM) [7], Wiener 
[8], the speckle reducing anisotropic diffusion 
(SRAD) [9], and classical bilateral filters (CBF) 
[10] may be mentioned as the most commonly used 
conventional denoising techniques. Filtering is a set 
of operations in which the image is convolved with 
a smoothing function in the spatial domain. Indeed, 
the filtering of signals is regarded as a fundamental 
algorithm in basic image processing and has long 
been used for smoothing, sharpening, edge 
detection, and contrast enhancement [11]. Lee and 
Wiener filters are adaptive filters based on local 
statistics of the noisy signal [12]. The major 
drawback of adaptive filters is their tendency to 
blur images, leading to unsatisfactory denoised 
results [2]. SRAD is an iterative method that tries to 
preserve the edges while reducing the noise [9]. 

Nonetheless, meaningful structural details are 
removed, and artifacts are produced [1, 3]. NLM 
filter reduces the noise by utilizing the repetitious 
information present in the noisy signal. In other 
words, each pixel of the denoised image is 
reconstructed by a weighted average of all values in 
a noisy image, but unfortunately, NLM fails to keep 
edges or delicate structures [1, 13]. CBF filter 
replaces the central image pixel value with a 
weighted average of its neighbors, where the 
weight computation is dependent on both spatial 
and intensity distances. In conclusion, due to the 
spatial processing nature of these methods, they 
often fail to preserve features such as edges and 
produce artifacts in the denoised image [14, 15].  

Lately, deep learning has outperformed other 
methods in various research fields, especially in 
image analysis and computer vision [16]. Deep 
learning algorithms are based on learning to extract 
optimal features from raw data, which has 
traditionally been done by conventional methods 
[17]. Convolutional neural networks (CNNs) are 
the most popular deep architectures that include 
several modules, such as convolutional layers, 
rectified linear unit (ReLU) [18], and batch 
normalization [19]. The main role of the 
convolutional layer is to perform different 
convolution operations on the input image so that 
local features at different positions and scales are 

detected [16]. However, to the best of our 
knowledge, although there have been many 
attempts in the literature to denoise images, 
ultrasound despeckling methods based on deep 
learning have not been sufficiently discussed. Lee 
et al. (2018) [20] applied convolutional denoising 
autoencoder (CDAE) to Gaussian image denoising, 
resulting in performance superiority over 
conventional methods. Feng et al. [21] designed 
US-Net architecture to reduce the ultrasound 
speckle noise by defining a new loss function. Their 
advanced technique was shown to be able to 
compete with filtering techniques. Zhang et al. [22] 
proposed a DnCNN, named residual learning, to 
remove Gaussian noise. In this approach, a noise 
model was predicted from noisy input, and the 
denoised image was then reconstructed by 
subtracting the noise model from the noisy image. 
Zhang et al. [23] applied the same principle as 
DnCNN, in which a dilated residual network tries 
to learn the difference between noisy input and the 
actual image. 

 As shown by He et al. [24], when the noisy 
observation is much more like the clean image than 
the noise model, the residual mapping will be easier 
to optimize. Motivated by [22], we developed an 
innovative method, SNICDNN, to reduce the 
ultrasound speckle noise by using the noise model. 
SNICDNN is a modified version of DnCNN to 
which the inception module is added to boost the 
power of feature extraction [25]. Our experiments 
show that the speckle noise definition meets the 
prerequisite claimed by [24]. Thus, we apply 
SNICDNN to predict the speckle noise model. 

Nevertheless, reconstructing a denoised image 
from speckled observation is not as straightforward 
as reconstructing a Gaussian noisy image. To 
resolve this, we devised an IICDAE assisted 
mathematical solution to obtain the denoised image. 
Finally, the performance of our method is 
comprehensively compared with other state-of-the-
art denoising methods. 

The main contributions of our proposed method 
are as follows: 

i) Ultrasound speckle noise reduction based on 
its noise model estimation. 

ii) Introducing and solving a mathematical 
equation based on the speckle noise model to 
achieve the despeckled image. 

iii) Proposing a solution to handle the limited 
dataset for ultrasound images used in training. 
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The reminder of the paper is organized as 
follows: In Section 2, we present the speckle noise 
model formulation. Section 3 describes our method 
for ultrasound image denoising based on the 
speckle noise model. In Section 4, we provide 
experimental results on real ultrasound images. 
Finally, we conclude our work in Section 5. 

2   Speckle Noise Model 

   The most critical part of developing a method 
for recovering a signal from its noisy observation is 
to opt for a reasonable definition of the speckle 
noise, which can acceptably represent the noise 
formation process. In ultrasound imaging, a 
universally agreed definition of such a model still 
seems to be lacking, but several possible 
formulations whose feasibility and practicality are 
confirmed exist [26]. Based on the experimental 
measurements from the signal processing stages 
occurring inside a scanner, including logarithmic 
compression, low-pass filtering, interpolation, and 
scan conversion, Loupas et al. [27] have shown that 
the observed noisy speckled signal can be modeled 
as follows:  

𝑦𝑦 = √𝑥𝑥𝑛𝑛 + 𝑥𝑥 (1) 

Where 𝑥𝑥 denotes the actual signal and 𝑛𝑛 is a 
zero-mean Gaussian noise. It has been shown that 
the mentioned definition fits the data better than the 
multiplicative model or Rayleigh model. It has also 
been used successfully in many studies [28-30]. 

   To better understand the nature of the noise 
model, we show what was depicted by [31]. Figure 
1 shows a synthetic 1D signal corrupted by speckle 
and additive Gaussian noise with σ=5. This figure 
indicates that the appearance of speckle noise is 
more substantial than additive Gaussian noise. 

Therefore, it is necessary to recover the true signal 
before sending it to display [32]. 

3   Materials and Methods 

In this section, we present the details of our 
proposed SNICDNN architecture for ultrasound 
despeckling. We mainly seek to recover the actual 
signal by learning to map a speckled observation to 
a speckle noise model using SNICDNN. In other 
words, the output of the SNICDNN represents the 
predicted speckle noise. Then, the despeckled 
signal is obtained by solving a quadratic equation 
derived by Eq. (1) for given y and predicted speckle 
noise 𝑛𝑛�. To perform this, the following two steps 
are taken: 

i) Training the convolutional neural network 
with an Inception module. 

ii) Denoised image reconstruction, given the 
estimated noise model and the noisy input. 

3.1   Intuition 

 Before proceeding with the method, it is worth 
mentioning the intuition of learning speckle noise 
instead of using the actual signal, which is done by 
denoising autoencoders [33]. The reasons that we 
have found it promising are twofold. First, 
regarding Eq. (1), we notice a nonlinear equation 
with two variables. It can be intuitively understood 
that learning speckle noise would be easier for the 
convolutional neural network since there is a single 
noise variable in Eq. (1). On the other hand, 
choosing the traditional learning policy used by 
denoising autoencoders seems trickier because 
there are two variables of the actual signal with 
different exponents. Second, as He et al. [24] 
mentioned, learning the noise model is preferable 
when encountering identity mapping.  

 
Fig. 1 Illustration of two physical noise models in one dimension [31]. (a) Noise-free 1D signal. (b) Signal contaminated by 

additive Gaussian noise with σ=5. (c) Signal contaminated by speckle noise with σ=5. 
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Fig. 2 Comparisons between actual and speckled signal with different noise variances. (a) An ultrasound image. (b) The 

ultrasound signal representation. (c) Noise with σ2=1. (d) Speckled signal with σ2=1. (e) Noise with σ2=4. (f) Speckled signal 
with σ2=4. (g) Noise with σ2=8. (h) Speckled signal with σ2=8. 

 
Fig. 3 The architecture of the proposed SNICDNN. 

 

To illustrate this, an ultrasound image is used 
and contaminated with three different noise 
variances, including 1, 4, and 8, as shown in Fig. 2. 
This figure reveals that the speckled signals look 
more like the actual signals than their 
corresponding noise signals. Therefore, we 
conclude that using the proposed method, speckle 
reduction can be more efficiently and effectively 
addressed. 

3.2   Network Architecture 

   Training a deep CNN for a specific task 
generally involves two steps: network architecture 
design and model learning from training data. For 
the CNN architecture, DnCNN [22] is modified by 
exploiting an inception module to extract the 
optimum local features with different kernel sizes 

to boost the overall performance [25]. Furthermore, 
since the speckle noise is a random phenomenon, 
looking at the input on different scales gives us a 
more accurate insight into the noise distribution. 
The proposed SNICDNN is shown in Fig. 3. For 
the first layer, the inception module consists of 
three convolutional layers with different kernel 
sizes of 3×3, 5×5, and 7×7, followed by batch 
normalization and ReLU, utilized for nonlinearity, 
producing 64 feature maps separately. The middle 
layers are also the same, except for the kernel size, 
which is only 3×3. A convolutional kernel with a 
size 3×3 is used for the last layer to estimate the 
speckle noise. To ensure that each feature map of 
the layers has the same size as the input, zeros are 
padded before convolution. In summary, 
SNICDNN aims to learn a mapping function R(yi ) 
≈ n using noisy signal and noise model 
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observations as the training data. Since we try to 
minimize the difference between predicted noise 
and actual noise, we use the mean square error loss 
function defined as follows: 

 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 =
1

2𝑁𝑁
�‖𝑅𝑅(𝑦𝑦𝑖𝑖) − 𝑛𝑛𝑖𝑖‖2
𝑁𝑁

𝑖𝑖=1

 (2) 

3.3   Denoised Image Reconstruction 

The previous sections described how to estimate 
the speckle noise. The denoised image should be 
approximated based on the estimated speckle noise 
model and given a noisy signal. However, since Eq. 
(1) is much more complicated than the additive 
Gaussian noise equation and the despeckled signal 
reconstruction is not easy, a method based on 
solving a quadratic equation deriving from Eq. (1) 
is proposed here.  After simplifying Eq. (1), it can 
be rewritten in quadratic form:  

𝑥𝑥�2 − (2𝑦𝑦 + 𝑛𝑛�2)𝑥𝑥� + 𝑦𝑦2 = 0 (3) 

Where 𝑥𝑥� denotes the denoised variable of 
different pixels in an image that should be derived. 
The delta rule is the most popular approach for 
solving a quadratic equation. Regarding Eq. (3), the 
delta rule can be formulated as:  

∆= (−(2𝑦𝑦 + 𝑛𝑛�2))2 − 4𝑦𝑦2 (4) 

In general, there are three possible conditions 
for the nature and number of roots, depending on 
the delta value. 

o Case 1: Δ > 0 

When delta is bigger than zero, there are two 
distinct real roots. This case occurs when the 
following criterion is met: 

Δ > 0 → 𝑛𝑛�2 > −4𝑦𝑦 (5) 

The two real roots are derived through the 
following formula: 

𝑥𝑥�1, 𝑥𝑥�2 =
(2𝑦𝑦 + 𝑛𝑛�2) ± √𝛥𝛥

2
 (6) 

Equation (6) shows that there are two different 
denoised values for the discussed location, while 
one value should be recovered for each pixel to 

gain a denoised image. In this case, an appropriate 
root should be chosen. The IICDAE network is 
proposed as a referee to assess the quality of roots 
in this study. It is important to keep in mind that the 
quality of the results depends on the referee's 
accuracy. As shown in Fig. 4, IICDAE is a 
convolutional denoising autoencoder [20] modified 
by adding an inception module to the first layer of 
the encoding phase to boost the power of feature 
extraction. Choosing the best root is quite simple. 
Overall, the speckled noisy signal is fed into both 
SNICDNN and the referee architecture. When case 
(1) is satisfied, for every noisy signal location, two 
roots are given to the referee for assessing and 
choosing the best root with a straightforward 
algorithm in which the best root has the closest 
absolute distance to what IICDAE predicts. A 
straightforward way to reduce the reference rate to 
the referee is to substitute the roots in Eq. (1) and 
evaluate which root holds for the equation. It is 
worth mentioning that wherever the value of the 
noisy signal is greater than zero, case (1) takes 
place. 

 
Fig. 4 Referee architecture for denoised reconstruction. 

o Case 2: Δ = 0  

   When delta is zero, then there is precisely one 
repeated root. Case (2) occurs when the following 
condition is met:   

Δ = 0 → n�2 = −4y (7) 

The reconstructed pixel is calculated as: 

𝑥𝑥� =
(2𝑦𝑦 + 𝑛𝑛�2)

2
 (8) 

In case (2), there is no need to assess pixels. 
Moreover, negative noisy signal value is the   
necessary condition for case (2) to happen.  
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o Case 3: Δ < 0 

The biggest challenge is when the delta is less 
than zero, which results in two complex roots. That 
is: 

Δ < 0 → n�2 < −4y →−�−4y < n� < �−4y (8) 

It is well known that complex values in an 
image context are unacceptable. The magnitude of 
the derived numbers (which is the same for both 
complex roots) is calculated to eliminate the 
complex values. 

  To sum up, the fundamental steps needed to 
denoise a speckled signal are shown as a flowchart 
in Fig. 5. 

 
Fig. 5 General flowchart of our proposed despeckling 

method. 

4   Results 

4.1   Dataset 

 Deep learning methods require large datasets to 
be trained well. This can be a severe problem in the 
case of medical images, such as ultrasound, for 
which limited datasets are available [34]. To deal 
with the mentioned issue, we have used two 
datasets for training. The first dataset is named 
STL-10 proposed in [35], including 10000 gray-
level non-medical images. The second includes 84 
ultrasound images of the common carotid artery 
(CCA) (mentioned in [36]). For training, both STL-
10 and authentic ultrasound images are used. One 
hundred sixty-eight images are obtained from 24 
images of CCA through augmentation and added to 
STL-10 for training. The rest of the CCA images 
(i.e., 60 images) are set up for two phases: 20 
images are augmented to 160 images for validation 
in the training process, and 40 images are used for 
the testing phase. All learning-based methods, 
including the present one, share the same training 
dataset.  

   It is essential that the training data be 
contaminated with speckle noise, according to Eq. 
(1). In this regard, blind denoising [22] is used, in 

which images are contaminated with random noise 
with variances in the discrete range of 1 to 6.  

4.2   Parameter Setting and Network Training 

To train the proposed methods (SNICDNN and 
IICDAE), the adaptive moment estimation 
(ADAM) optimizer with default hyper-parameters 
recommended by [37] is employed. SNICDNN and 
IICDAE are initialized with the same mini-batch 
size of 20 and trained for 60 and 150 epochs, 
respectively. Figure 6 shows the training and 
validation curves for these networks. 

   All experiments were carried out in MATLAB 
R2018b using a deep learning toolbox running on 
an Intel ® Core™  i7-8550U 1.80GHz CPU and an 
NVIDIA GeForce 940MX GPU.  

 
(a) 

 
(b) 

Fig. 6 RMSE according to epoch number. (a) SNICDNN. 
(b) IICDAE. 

4.3   Comparison of the Methods 

   In this section, the proposed SNICDNN is 
compared with several state-of-the-art denoising 
methods, including four conventional methods, i.e., 
Lee [6], NLM [7], Wiener [8], SRAD [9], and CBF 
[10], besides four deep-learning-based methods, 
i.e., CDAE [20], US-Net [21], DRN [23] ,and 
image-based SNICDNN. The latter has the same 
architecture as SNICDNN, but it uses a different 
training policy, attempting to learn a denoised 
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image from a noisy signal with the MSE loss 
function. This evaluation aims to show the 
superiority of SNICDNN over its corresponding 
architecture with the typical training policy adopted 
in autoencoders. For all the compared methods, 
hyperparameters are set as suggested in their 
corresponding papers. 

5   Discussion 

To evaluate the capability of the proposed 
method, we conduct experiments on 40 test images 
contaminated with four different noise variances 
(σ2 = 2, 4, 6, and 8). The quantitative performance 
of denoising methods is calculated through peak 
signal-to-noise ratio (PSNR) [38] and structural 
similarity index (SSIM) [39]. The average and 
standard deviation of PSNR and SSIM of denoising 
methods are summarized in Tables 1 and 2 
forcomparison. The best results are represented in 
bold. Different noise levels. This table shows that 
SNICDNN achieved the best PSNR results at all 
noise variances. As an illustration, SNICDNN 
achieved 0.4597 dB and 0.1736 dB gains (on 
average) compared to the methods of DRN and our 
referee, respectively. The significant difference 
between SNICDNN and image-based SNICDNN 
indicates that learning the speckle noise model 
instead of the clean image can lead to a better 
speckle noise reduction. 

Table 2 compares different methods in terms of 
average SSIM. It is shown that SNICDNN ranks 
first and achieves 0.0100 and 0.0029 gains 
compared to CDAE and IICDAE, respectively. 

Figure 7 presents the average PSNR of different 
methods for all noise variances, where the color bar 
indicates the average SSIM. It is observed that 
SNICDNN has the highest value in terms of quality 
metrics. However, the high number of trainable 
parameters does not cause our proposed method to 
over-fit. It is worth noting that to learn the 
complicated nature of speckle noise, such a 
considerable number of parameters is a necessity. 

To illustrate the effectiveness of the proposed 
method visually, its speckle reduction capability is 
examined on two authentic ultrasound images. Figs. 
8-11 depict the visual results of the different 
methods for two noise variances. It is conspicuous 
that the Wiener filter, NLM filter, and SRAD retain 
much noise, while the Lee filter and US-net tend to 
produce over-smooth edges and textures. The 
image-based SNICDNN produces additional 
artifacts. On the other hand, SNICDNN and its 

referee (IICDAE) not only reduced the speckle 
noise, but also recovered sharp edges and fine 
details. Both quantitative and qualitative 
experiments demonstrate the feasibility of training 
a blind model of SNICDNN for speckle reduction 
of ultrasound images within a wide range of noise 
variances. 

6   Conclusion 

This study proposed a deep convolutional 
neural network for ultrasound image denoising 
based on speckle noise model prediction. In order 
to obtain the most accurate noise model estimation, 
we integrated the inception module and batch 
normalization into a convolutional neural network 
for better feature extraction and to speed up the 
training process, respectively. Reconstruction of the 
despeckled image was carried out by solving a 
quadratic equation for the given predicted speckle 
noise and noisy image. In the reconstruction 
process, IICDAE was employed as a referee 
network during the assessment. Extensive 
experimental results confirmed that the proposed 
method produced favorable despeckled images both 
quantitatively and qualitatively. Furthermore, the 
capacity of the proposed method to handle 
unknown noise variances was verified. 
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Fig. 7 PSNR, SSIM vs complexity. 

Table 1 Average and standard deviation of PSNR results for different methods. 
Noise variance 

8 6          4 2  
24.9217 26.0941 27.8211 30.7496 Speckled signal 

28.411±1.8829 28.7325±1.9328 29.068±1.9691 29.4172±1.9905 Lee [6] 
25.9448±1.2726 26.9991±1.3629 28.5514±1.3819 31.2135±1.4761 NLM [7] 
27.8905±1.4125 28.8847±1.5272 30.1953±1.6218 31.8959±1.8170 Wiener [8] 
25.0949±1.6920 26.1984±1.7108 27.8637±1.6737 30.7391±1.6389 SRAD [9] 
25.119±1.5862 26.1937±1.5521 27.6686±1.4083 29.8882±1.1292 CBF [10] 

30.6887±1.6425 31.6431±1.7270 32.8564±1.7390 34.6846±1.7273 CDAE [20] 
28.9374±1.0100 29.5245±0.9823 30.2614±0.8440 31.0951±0.6872 US-Net [21] 
30.9225±1.6527 31.7665±1.7126 32.8444±1.7130 34.6519±1.6686 DRN [23] 
31.235±1.6801 32.0792±1.7577 33.1113±1.7797 34.9044±1.7371 IICDAE 

30.5096±1.5146 31.303±1.5859 32.2637±1.5609 33.7651±1.5083 SNICDNN(image-based) 
31.5006±1.7279 32.1991±1.7788 33.2362±1.7968 35.0885±1.7235 SNICDNN 

Table 2 Average and standard deviation of SSIM results for different methods 
Noise variance 

8 6 4 2  
0.7565 0.7959 0.8475 0.9095 Speckled signal 

0.8596±0.0303 0.8698±0.0291 0.8812±0.0260 0.8920±0.0244 Lee [6] 
0.8299±0.0250 0.8536±0.0237 0.8839±0.0199 0.9238±0.0152 NLM [7] 
0.8663±0.0259 0.8839±0.0248 0.9034±0.0215 0.9220±0.0199 Wiener [8] 
0.7623±0.0513 0.8000±0.0454 0.8479±0.0367 0.9099±0.0234 SRAD [9] 
0.7258±0.0316 0.7527±0.0290 0.7848±0.0305 0.8227±0.0374 CBF [10] 
0.9057±0.0192 0.9204±0.0176 0.9367±0.0147 0.9559±0.0107 CDAE [20] 
0.7298±0.0901 0.7423±0.0930 0.7564±0.0968 0.7705±0.1005 US-Net [21] 
0.9034±0.0171 0.9170±0.0162 0.9333±0.0135 0.9538±0.0093 DRN 
0.9169±0.0185 0.9286±0.0171 0.9418±0.0147 0.9599±0.0105 IICDAE 
0.8902±0.0190 0.9027±0.0171 0.9172±0.0145 0.9338±0.0114 SNICDNN(image -based) 
0.9214±0.0190 0.9307±0.0177 0.9444±0.0144 0.9624±0.0097 SNICDNN 
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Fig. 8 Visual comparison of different methods for ultrasound image Ⅰ speckled with σ2=4. 

 
Fig. 9 Visual comparison of different methods for ultrasound image Ⅱ speckled with σ2=4. 
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Fig. 10 Visual comparison of different methods for ultrasound image Ⅰ speckled with σ2=8. 

 
Fig. 11 Visual comparison of different methods for ultrasound image Ⅱ speckled with σ2=8.
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