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An Information Gap Decision Theory Approach for 
Optimal Bidding of a Virtual Power Plant under System 
Uncertainties 
A. Ghanuni*, R. Sharifi**(C.A.), and H. Feshki Farahani***  

 Abstract: Operation scheduling of a Virtual Power Plant (VPP) includes several 
challenges for the system according to the uncertain parameters, and security 
requirements, which intensify the need for more efficient models for energy scheduling 
and power trading strategies. Making suitable decisions under uncertainties, related to 
Renewable Energy Resources (RES), loads, and market prices impose extra 
considerations for the problem to make a clearer insight for the system operators to 
participate in local markets. This paper proposes a new risk-based hybrid stochastic 
model to investigate the effects of wind turbine power fluctuations on profit function, 
energy scheduling, and market participating strategies. Also, an incentivized Demand 
Response Program (DRP) is used, to enhance the system’s efficiency. The results of the 
study indicate that the proposed model based on Information Gap Decision Theory 
(IGDT) approach makes a clearer environment for the decision-maker to be aware of 
the effects of risk-taking or a risk-averse strategy on financial profits. The results show 
that a 30% of robustness and opportunity consideration would change the profit function 
from -12.5% up to 14.5%, respectively. A modified IEEE 33 bus test system is used to 
simulate a technical VPP considering the voltage stability and thermal capacity of line 
requirements.   

 Keywords: Virtual Power Plant, Uncertainty, Stochastic Programming, IGDT, 
Scheduling. 

 

1   Introduction 

1.1   Motivation and Aims 

Virtual Power Plant as a single plant in the 
electricity market plays a significant role in the  
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technical and economic management of generation 
facilities in reducing the operating costs and 
maximizing the revenue function of the system. A 
VPP includes a cluster of distributed generation 
units, controllable loads, and Energy Storage 
Systems (ESS), which are integrated to operate as a 
single power plant without any direct physical 
connection or power lines [1]. The hybridization of 
multiple energy sources improves the system 
efficiency and the reliability of the supply in 
comparison to single-source generators [2]. In this 
regard, two different groups of VPPs are formed as 
commercial and technical models, which the 
technical category incorporates the actual location of 
Distributed Energy Resources (DER) in the network 
and considers the network operational constraints in 
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Nomenclature 
Indices  Variables  
t Indices of time periods, hour α/β Robustness/Opportunity 
b, bp Indices of buses 𝑅𝑅𝑠𝑠 Total revenue of the VPP in scenario s ($) 
h Indices of HSS units 𝐶𝐶𝑠𝑠 Total cost of the VPP in scenario s ($) 
g Indices of TG units 𝐶𝐶𝑡𝑡,𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵 Total cost of Buying energy at time t and 
scenario s ($) 

wt Sets of buses that are connected to DG 𝐶𝐶𝑡𝑡,𝑠𝑠
𝐷𝐷𝐷𝐷𝐷𝐷 Total cost of DRP at time t and scenario s ($) 

pv Indices of PV units 𝐶𝐶𝑡𝑡,𝑠𝑠
𝑇𝑇𝑇𝑇 Total cost of TG units at time t and scenario s ($) 

d Indices of DRP 𝐶𝐶𝑡𝑡,𝑠𝑠
𝑊𝑊𝑇𝑇 Total cost of WT units at time t and scenario s ($) 

e Indices of ESS units 𝐶𝐶𝑡𝑡,𝑠𝑠
𝐷𝐷𝑃𝑃 Total cost of PV units at time t and scenario s ($) 

k Indices of Step-wise DRP 𝐶𝐶𝑡𝑡,𝑠𝑠
𝐻𝐻𝐻𝐻𝐻𝐻 Total cost of HSS units at time t and scenario s 

($) 
s Indices of scenario 𝑃𝑃𝑝𝑝𝑝𝑝,𝑡𝑡,𝑠𝑠

𝐷𝐷𝑃𝑃  Output power of PV unit PV, at time t and 
scenario s (MW) 

𝜋𝜋𝑏𝑏 Sets of connection for energy generation units and buses 𝑃𝑃𝑤𝑤𝑡𝑡,𝑡𝑡,𝑠𝑠
𝑊𝑊𝑇𝑇  Output power of WT unit WT, at time t and 

scenario s (MW) 
Scalars  𝑃𝑃𝑔𝑔,𝑡𝑡,𝑠𝑠

𝑇𝑇𝑇𝑇  Output power by TG unit g, at time t and 
scenario s (MW) 

𝜆𝜆𝐵𝐵 Electricity price to sell power to upstream grid ($/MW) 𝑃𝑃𝑏𝑏,𝑡𝑡,𝑠𝑠
𝑑𝑑  Electricity demand of bus b at time t and scenario 

s (MW) 
𝜆𝜆𝐷𝐷𝑃𝑃/𝑊𝑊𝑇𝑇 Operation and maintenance cost of WT/PV unit ($/MW) 𝑃𝑃𝑑𝑑,𝑡𝑡,𝑠𝑠

𝐷𝐷𝐷𝐷𝐷𝐷 Reduced amount of power by DR provider d, at 
time t and scenario s (MW) 

𝑃𝑃𝑟𝑟 Rated power of wind turbines (MW) 𝑃𝑃𝑡𝑡,𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑏𝑏𝐵𝐵𝐵𝐵 Power selling/buying of VPP at time t and 

scenario s (MW) 
𝑣𝑣𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐 Wind speed of cut-in/cut-out for the WT unit (m/s) 𝑃𝑃𝑠𝑠,𝑡𝑡,𝑠𝑠

𝑐𝑐ℎ /𝑃𝑃𝑠𝑠 ,𝑡𝑡,𝑠𝑠
𝑑𝑑𝑐𝑐ℎ Charged/discharge power of the ESS unit e, at 

bus b, time t and scenario s (MW) 
𝑣𝑣𝑟𝑟 Rated wind speed of WT unit (m/s) 𝑃𝑃ℎ,𝑡𝑡,𝑠𝑠

𝐻𝐻2𝐷𝐷 Power consumption of HSS unit h, at time t and 
scenario s (MW) 

𝐹𝐹𝑟𝑟/𝐹𝐹𝑐𝑐 Critical profits of Robustness/Opportunity function ($) 𝑃𝑃ℎ,𝑡𝑡,𝑠𝑠
𝐷𝐷2𝐻𝐻 Power generation of HSS unit h, at time t and 

scenario s (MW) 
Paramete
rs  𝑃𝑃𝑏𝑏,𝑏𝑏𝑝𝑝,𝑡𝑡

𝑠𝑠  Power flowing between branch of bus b and bp at 
time t, kW 

𝑋𝑋𝑏𝑏,𝑏𝑏𝑝𝑝 Reactance between bus b and bp 𝑆𝑆𝑆𝑆𝐶𝐶𝑠𝑠,𝑡𝑡,𝑠𝑠 State-of-charge of the ESS unit e, at time t and 
scenario s (MW) 

𝜌𝜌𝑠𝑠 Probability of each scenario 𝑀𝑀ℎ,𝑡𝑡,𝑠𝑠 Power conversion of HSS unit h, at time t and 
scenario s, as energy loss (MW) 

𝜆𝜆𝑡𝑡,𝑠𝑠, 𝑄𝑄𝑏𝑏,𝑡𝑡 Expected market clearing price at time t and scenario s to 
trade energy with customers ($/MW) 𝐴𝐴ℎ,𝑡𝑡,𝑠𝑠 Stored hydrogen level of HSS unit h, at time t 

and scenario s (MW) 
𝑣𝑣𝑡𝑡,𝑠𝑠 Speed of the WT unit at time t and scenario s (m/s) 𝑋𝑋𝑔𝑔,𝑡𝑡,𝑠𝑠

𝑐𝑐𝑜𝑜𝑜𝑜/𝑋𝑋𝑔𝑔,𝑡𝑡,𝑠𝑠
𝑐𝑐𝑜𝑜  Off/On time of TG unit g at scenario s 

𝜂𝜂𝑠𝑠𝑐𝑐ℎ/𝜂𝜂𝑠𝑠𝑑𝑑𝑐𝑐ℎ Charge/discharge efficiency of the ESS unit e 𝛿𝛿𝑏𝑏,𝑡𝑡 Phase angel of bus b at time t, (Degree) 
𝜂𝜂ℎ𝐷𝐷2𝐻𝐻/𝜂𝜂ℎ𝐻𝐻2𝐷𝐷 P2H/H2P efficiency of the HSS unit h Binary Variables  
𝑃𝑃𝑠𝑠𝑐𝑐ℎ,𝑚𝑚𝑚𝑚𝑚𝑚/𝑃𝑃𝑠𝑠𝑑𝑑𝑐𝑐ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum charge/discharge rate of the ESS unit e 

unit (MW) 𝐼𝐼𝑠𝑠,𝑡𝑡,𝑠𝑠
𝑐𝑐ℎ /𝐼𝐼𝑠𝑠,𝑡𝑡,𝑠𝑠

𝑑𝑑𝑐𝑐ℎ Binary variable for charge/discharge modes of 
the ESS unit e at time t and scenario s 

𝑃𝑃ℎ
𝐷𝐷2𝐻𝐻,𝑚𝑚𝑚𝑚𝑚𝑚/𝑃𝑃ℎ

𝐷𝐷2𝐻𝐻,𝑚𝑚𝑐𝑐𝑜𝑜 Maximum/Minimum hydrogen generation of HSS 
unit h (MW) 𝐼𝐼ℎ,𝑡𝑡,𝑠𝑠

𝐷𝐷2𝐻𝐻/𝐼𝐼ℎ,𝑡𝑡,𝑠𝑠
𝐻𝐻2𝐷𝐷 Binary variable for P2H/H2P modes of the HSS 

unit h,at time t and scenario s 
𝑃𝑃ℎ
𝐻𝐻2𝐷𝐷,𝑚𝑚𝑚𝑚𝑚𝑚/𝑃𝑃ℎ

𝐻𝐻2𝐷𝐷,𝑚𝑚𝑐𝑐𝑜𝑜 Maximum/Minimum hydrogen consumption of 
HSS unit h (MW) 𝐼𝐼𝑔𝑔,𝑡𝑡,𝑠𝑠 Binary variable of TG units g, at time t and 

scenario s 
𝑃𝑃𝑔𝑔𝑇𝑇𝑇𝑇,𝑚𝑚𝑚𝑚𝑚𝑚/𝑃𝑃𝑔𝑔𝑇𝑇𝑇𝑇,𝑚𝑚𝑐𝑐𝑜𝑜 Maximum/Minimum power output of TG unit g 

(MW) Abbreviations  

𝑆𝑆𝑆𝑆𝐶𝐶𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚/𝑆𝑆𝑆𝑆𝐶𝐶𝑠𝑠𝑚𝑚𝑐𝑐𝑜𝑜 Maximum/Minimum state of charge value for the 
ESS unit e (MW) DER Distributed Energy Resources 

𝐴𝐴ℎ𝑚𝑚𝑚𝑚𝑚𝑚/𝐴𝐴ℎ𝑚𝑚𝑐𝑐𝑜𝑜 Minimum/Maximum energy of HSS unit h (MW) DR/DRP Demand Response/Demand Response Program 
𝐴𝐴ℎ,𝑐𝑐𝑜𝑜𝑡𝑡,𝑠𝑠 Stored hydrogen level of HSS unit h in initial state and 

scenario s (MW) ESS Energy Storage System 

𝑀𝑀ℎ
𝑚𝑚𝑚𝑚𝑚𝑚 Maximum energy conversion of hydrogen to other type of 

energy (MW) H2P Hydrogen to Power 

𝑃𝑃𝑏𝑏,𝑏𝑏𝑝𝑝
𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum thermal capacity of line connecting bus b and bp 

(kW) HSS Hydrogen Storage System 
𝑅𝑅𝑅𝑅𝑔𝑔/𝑅𝑅𝑅𝑅𝑔𝑔 Ramp-up/ramp-down rate of TG unit g (MW/h) P2H Power to Hydrogen 
𝑇𝑇𝑔𝑔
𝑐𝑐𝑜𝑜/𝑐𝑐𝑜𝑜𝑜𝑜 Minimum up/down time of TG unit g (h) PV Photovoltaic 

𝑆𝑆𝑅𝑅𝑔𝑔 Start-up cost of TG unit g ($) RES Renewable Energy Source 
a/b/c Cost function coefficient of energy generation units 

($/MWh) 
TG/TGU Thermal Generating/Thermal Generating Unit 
VPP Virtual Power Plant 

𝛥𝛥𝛿𝛿𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

/𝛥𝛥𝛿𝛿𝑏𝑏𝑚𝑚𝑐𝑐𝑜𝑜 Maximum/Minimum phase angel deviation of bus b (Degree) WT Wind Turbine 

its decision makings process to avoid infeasibility in 
practical operation [3]. Wind turbine power as the 
most popular form of RESs is vastly utilized for 

clean energy generation [4]. However, uncertainty 
analysis should be properly considered in day-ahead 
unit commitment, optimal power flow, and 
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economic dispatch models to avoid over and 
underestimation [5]. If the related uncertainty would 
not be properly addressed, several operational 
problems likely to occur, and economic energy 
scheduling will not be gained in real-time operation. 
So, a risk-based analysis must be executed for 
bidding and offering of a VPP, to make the operator 
aware of the effects of uncertainties. The risk-based 
IGDT approach is a suitable approach to deal with 
the risk of wind power uncertainty in scheduling 
analysis. According to the ownership concept and 
role of profit in the economic analysis of a VPP, it 
would be essential to consider the effects of 
uncertainty on bidding strategies to release the 
effects of fluctuations on the decision-making 
process and the gaining of financial profits. 

1.2   Literature Review 

Most of governments are currently pushing 
renewable growth policies to establish a secure, 
sustainable, and economical energy system while 
mitigating the consequences of climate changes [6]. 
According to the increasing rate of DER into the 
distribution system, several challenges related to 
technical, commercial, and regulatory requirements 
need to be considered in the scheduling procedure. 
Many researchers try to solve some of the barriers 
each of which study the problem from a specific 
point of view. Finding good strategies that deal with 
the uncertainties of daily operations requires the 
solution of a complex optimization problem to 
consider several uncertain quantities. Ref. [7] 
presents a review of optimization models for DGs 
under uncertainty. Ref. [8] proposes a multi-stage 
stochastic programming approach for the bidding 
strategy of a commercial VPP on the Spanish spot 
electricity market. The uncertain parameters include 
electricity prices and wind energy production 
neglecting the uncertainty of loads of the system. 
Although the proposed models incorporate the role 
of lower-level operators, under the final centralized 
solution approach the privacy of market participants 
would be influenced [9]. Ref. [10] presents the 
optimal bidding strategy of a VPP in the day-ahead 
market for energy, reserve, and regulation markets. 
But the uncertainty of loads is ignored in this paper. 
Ref. [11], proposes bidding strategy and profit 
allocation for energy storage participating in joint 
energy and regulation markets. To investigate the 
effects of load model and demand response 
programs, Ref. [12] proposes a bidding strategy for 
the electricity market considering the exact capacity 

of loads to accurately bid on market transactions. 
Ref. [13] presents a day-ahead and real-time market 
bidding and scheduling strategy for wind power 
participation based on shared energy storage. But 
risk-based analyses are ignored in this study. The 
machine learning models are also an efficient 
instrument for complex uncertainties with large-
scale datasets compared to traditional approaches.  
Artificial intelligence-based methods and, in 
particular, deep learning have been widely applied in 
big data problems to forecast uncertain parameters. 
By predicting the uncertain parameters according to 
the neural networks, the stochastic problem can be 
solved in a deterministic manner. Ref. [14] has 
reviewed the methods of uncertainty forecasting for 
energy systems considering the MG structures. A 
forecasting procedure based on multi-task learning 
to predict the consumption load is proposed in Ref. 
[15]. The power generation uncertainty of a wind 
farm is predicted using machine learning methods in 
Ref. [16]. Deep learning methods have demonstrated 
good performance in different aspects, which can be 
employed in new structures [17]. Ref. [18] considers 
distributed generation units and DRP as VPP units. 
In this reference, the operators can select the best 
DRP in a scheduling procedure, but the scope of the 
paper does not include the technical VPPs. Ref. [19] 
investigates incentive-based DRP for VPP 
connected with wind, photovoltaic, and ESSs with 
uncertainties analysis. According to the risk aversion 
attitude of the problem structure, the objective 
function is defined based on the maximum procedure 
for the revenue function. Ref. [20] maximizes the 
VPP profit to make the best decisions on 
bidding/offering of VPPs to participate in the day-
ahead, real-time, and spinning reserve market. The 
uncertainty lies in the energy and reserve prices, 
RESs production, and load consumption. This paper 
has ignored the risk analysis for uncertain 
parameters. Ref. [21] proposes a bidding strategy for 
VPPs to participate in the day-ahead and real-time 
market according to DRPs. The uncertainties related 
to RES and the DRPs are considered in a robust 
optimization model. Refs. [22], [23], and [24] also 
used robust optimization approaches to face 
uncertainty. Under robust hourly economic bidding 
strategies the optimal energy bids would be 
determined under the pessimistic attitude to cover 
the uncertainty. Ref. [25] uses a novel two-stage 
robust Stackelberg game for energy management 
and reserve scheduling considering the uncertainty 
of intermittent RES output and market prices. The 
proposed two-stage game model is linearized and 



 
 
 

 
4 

 
 

A. Ghanuni et al. An Information Gap Decision Theory Approach … 

Iranian Journal of Electrical and Electronic Engineering, Vol. 19, No. 3, 2023 

solved by a column-and-constraint generation 
algorithm which makes a high computational burden 
for the problem of generating new variables in each 
iteration. Robust optimization as a general 
methodology includes a concept of robustness 
against optimization [26]. Risk analysis is a good 
complementary approach to fade the rigid and 
pessimistic attitudes of robust optimization. 
Although, the scenarios generation method using 
distribution functions is most widely used to model 
uncertainty in power system problems, using this 
method is not appropriate for short-term studies of 
wind power generation units [27]. IGDT approach 
can be considered along with risk analysis to make a 
Pareto attitude for the uncertain output power of a 
wind generation unit. Ref. [28] uses the IGDT 
approach to deal with wind power uncertainty in unit 
commitment problems. Ref. [29] uses the IGDT for 
optimal allocation of intelligent parking lots in 
distribution systems considering severe 
uncertainties. As the share of a stochastic energy 
generation unit is grown up in a model, the related 
effects need to be studied in more detail. Since the 
strong stochastic uncertainty of wind power brings 
challenges to the economic scheduling of a problem 
[30], the effects of uncertainty need to be considered 
in the model for rational bidding strategies. The 
ignorance of the uncertainty role in scheduling 
would influence the gaining of optimal profit for 
market participants. 

1.3   Contribution and Innovations 

According to the recent studies it can be deduced 
that none of the recent papers have proposed a 
risked-based model for power trading of 
independent operators considering the system 
uncertainties. In this regard, this paper is devoted to 
the role of wind turbine output uncertainty on the 
bidding strategy of VPPs consisting of RES, ESS, 
Hydrogen Storage Systems (HSS), and thermal 
energy generation units. According to the more share 
of wind energy generation units in RES of the 
proposed VPPs, the IGDT approach is employed to 
consider the related uncertainty, and the scenario 
generation method is used to consider the 
uncertainty of Photovoltaic (PV) units, load, and 
price parameters. The prominent features of the 
current paper are summarized as follows: 
i) A new mixed-integer linear formulation for a 

hybrid IGDT-stochastic strategy to consider 
the uncertainty of RES units, loads, and market 
prices 

ii) A risk-based model for optimal bidding and 
offering of a VPP to participate in the day-
ahead market with an uncertain environment 

iii) An operation scheduling model for a technical 
VPP considering demand response programs 
for priced-based load controls under security 
constraints of the system 

1.4   Paper Arrangement 

This article is arranged as follows: Section 2 
presents the system models for a VPP. This section 
includes system components and related constraints 
according to the operating constraints and security 
requirements of the system based on a stochastic 
problem model. To consider the effects of WT 
uncertainty, the IGDT approach is modelled for the 
uncertainty analysis in section3. Obtained results are 
provided and discussed in Section 4. Finally, the 
conclusion part reports the major findings of the 
current study. 

2   Virtual Power Plant Model 

The proposed virtual power plant is comprised of 
RES, Thermal Generating Unit (TGU), EES, and 
HES unit. Also, priced-based demand response 
programs are employed to enhance the system's 
flexibility. The related constraints are described for 
each component. In the proposed hybrid IGDT-
stochastic method, all uncertain parameters for PV 
outputs, loads, and price parameters are modelled 
using normal probability density functions. The area 
below the probability distribution curve in every 
period indicates each scenario's probability, and 
each relevant scenario is considered to be the 
average amount of the period. By dividing the 
normal distribution function into five sections five 
scenarios are generated for each uncertain 
parameter, which creates 125 scenarios for the entire 
problem. To decrease the number of scenarios, the 
scenario reduction method is employed according to 
Ref. [31]. 

2.1   Objective Function 

The objective function of the VPP operator is to 
maximize the expected profit comprised of market 
participation revenue and energy generation costs 
according to Eq. (1). Equation (2) describes the 
revenue formulation. The cost terms are formulated 
in Eq. (3). The first term of revenue function is 
related to the revenue of selling power to customers 
and the second one is related to the selling power to 
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the upstream grid. Total operating cost is calculated 
by summing the cost of buying power from the 
upstream grid, DRP cost, operating cost of TG units, 
and operating and maintenance cost of WTs, PVs, 
and HSS. 

OF = �ρs × (Rs − Cs)
Ns

s=1

 (1) 

Rs = � � λuPb,t,s
d

NBus

b=1

T

t=1

+ �λt,sPt,ssell
T

t=1

 ∀s (2) 

Cs =  �Ct,s
Buy + Ct,sDRP + Ct,sTG + Ct,sWT + Ct,sPV

T

t=1
+ Ct,sHSS    ∀s 

(3) 

2.2   System Components 

2.2.1   Photovoltaic System 

Although most studies omit the operating cost of 
the PVs, the related cost of RES needs to be 
modelled in the problem [27]. Equation (4) describes 
the operation cost of the PV unit. 

Ct,sPV = � λPV
Npv

pv=1

Ppv,t,s
PV    ∀t, s (4) 

2.2.2   Battery Energy Storage 

Energy storage systems act as load and energy 
generation units under the charging and discharging 
process. Equation (5) describes the State-of-charge 
(SOC) of an ES system. Equation (6) indicates the 
minimum and maximum values of SOC. To avoid 
the simultaneous charging and discharging process, 
binary variables are used in Eq. (9), which are 
defined in Eq. (7) and Eq. (8) to restrict the 
maximum values. SOC for the initial state and the 
final status is equalized by Eq. (10). 

SOCe,t,s = SOCe,t−1,s + ηchPe,t,s
ch −

Pe,t,s
dch

ηdch
 (5) 

SOCemin ≤ SOCe,t,s ≤ SOCemax (6) 

0 ≤ Pe,t,s
ch ≤ Pe

ch,maxIe,t,s
ch  (7) 

0 ≤ Pe,t,s
dch ≤ Pe

dch,maxIe,t,s
dch (8) 

Ie,t,s
ch + Ie,t,s

dch ≤ 1 (9) 

SOCe,1,s = SOCe,24,s (10) 

2.2.3   Hydrogen Storage System 

A hydrogen storage system is considered a 
combination of an electrolyzer, hydrogen tank, and 
a fuel cell unit [32], which its figure is depicted in 
Fig. 1.  

 
Fig. 1 Structure of the HSS. 

Available hydrogen at each time step t in the HSS 
is determined by Eq. (11). The minimum and 
maximum capacity of HES is restricted by Eq. (12). 
Equation (13) determines an initial value for the 
SOC after the last charge or discharge process. Eq. 
(14) determines the maximum value of energy 
conversion. Eq. (15) and Eq. (16) indicates the 
maximum capacity of the electrolyzer and fuel cell 
as P2H and H2P value. Equation (17) prevents 
simultaneous P2H and H2P processes for HES. Eq. 
(18) indicates the total cost of HES. Details of 
calculations for the costs of an electrolyzer and fuel 
cell are formulated in Eq. (19) and Eq. (20) [32]. 

Ah,t,s = Ah,t−1,s + ηhP2HPh,t,s
P2H −

Ph,t,s
H2P

ηhH2P

− Mh,t,s 
(11) 

Ah
min ≤ Ah,t,s ≤ Ah

max (12) 

Ah,1,s = Ah,24,s (13) 

0 ≤ Mh,t,s ≤ Mh
max (14) 

Ph
P2H,minIh,t,s

P2H ≤ Ph,t,s
P2H ≤ Ph

P2H,maxIh,t,s
P2H (15) 

Ph
H2P,minIh,t,s

H2P ≤ Ph,t,s
H2P ≤ Ph

H2P,maxIh,t,s
H2P (16) 

Ih,t,s
H2P+Ih,t,s

P2H ≤ 1 (17) 

Ct,sHSS = Ct,sH2P + Ct,sP2H (18) 

Ct,sP2H = � bhP2H
Nh

h=1

(Ph,t,s
P2H) + chP2HIh,t,s

P2H (19) 

Ct,sH2P = � ahH2P�Ph,t,s
H2P�2 + bhH2P

Nh

h=1

(Ph,t,s
H2P)

+ chH2PIh,t,s
H2P 

(20) 
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2.2.4   Demand Response Program 

In incentive-based DRP, the customers adjust 
their electricity consumption in response to the 
incentive payment. Figure 2 depicts the step-wise 
DRP model according to the price and quantity. 
Equation (21) formulates the minimum required 
response for DRP in the first step. Equation (22) 
indicates the related DRPs, which need to meet the 
principles of participating in the energy market 
schedule. Equation (23) calculates the DRP, and Eq. 
(24) indicates the cost of DRP to adjust the energy 
demands of users [33]. 

Omin
d ≤ Ok

d ≤ O1
d              k = 1 (21) 

0 ≤ Ok
d ≤ �Ok+1

d − Ok
d�  ∀k = 2, … , K (22) 

Pd,t,s
DRP = �Ok

d

k

 (23) 

Ct,sDRP = ��λkd

kd

Ok
d (24) 

 
Fig. 2 Step-wise DRP [33]. 

2.2.5   Thermal Generating Units 

Thermal generating units are included in the VPP 
structure as programmable units. Equation (25) 
describes generated power output of each TG unit 
according to the minimum and maximum 
restrictions. Ramp-up and ramp-down limit rates of 
the TGUs are modelled by Eqs. (26)-(27). Equations 
(28)-(29) model minimum up and down time 
constraints of the TGUs, respectively. Equation (30) 
considers the start-up cost value for TGUs. Equation 
(31) indicates the total operating cost of TGU. 

Pg
TG,minIg,t,s ≤ Pg,t,s

TG ≤ Pg
TG,maxIg,t,s (25) 

Pg,t,s
TG − Pg,t−1,s

TG ≤ RUg (26) 

Pg,t−1,s
TG − Pg,t,s

TG ≤ RDg (27) 

(Xg,t−1,s
on − Tgon)(Ig,t−1,s − Ig,t,s) ≥ 0 (28) 

(Xg,t−1,s
off − Tgoff)(Ig,t,s − Ig,t−1,s) ≥ 0 (29) 

SUCg,t,s ≥ SUg(Ig,t,s − Ig,t−1,s) (30) 

Ct,sTG = � ag(Pg,t,s
TG )2 + bgPg,t,s

TG + cgIg,t,s

Ng

g=1
+ SUCg,t,s 

(31) 

2.2.6   Load-flow Model 

According to the technical restrictions of a VPP, 
Eq. (32) determines the power flow of lines under 
the DC power flow model. Equation (33) restricts 
line loading to the thermal capacity of lines. 
Equation (34) indicates maximum voltage angle 
deviation. 

Pb,bp,t
l =

δb,t − δbp,t

Xb,bp
 (32) 

−Pb,bp,t
l,max ≤ Pb,bp,t

l ≤ Pb,bp,t
l,max (33) 

Δδbmin ≤ |δb,t − δbp,t| ≤ Δδbmax (34) 

2.2.7   Power balance 

Equation (35) describes power equality 
constraints for energy generation and power 
demands. 

𝑃𝑃𝑡𝑡,𝑠𝑠
𝑏𝑏𝐵𝐵𝐵𝐵 + �𝑃𝑃𝑔𝑔,𝑡𝑡,𝑠𝑠

𝑇𝑇𝑇𝑇

𝑔𝑔

+ �𝑃𝑃𝑤𝑤𝑡𝑡,𝑡𝑡,𝑠𝑠
𝑊𝑊𝑇𝑇

𝑤𝑤𝑡𝑡

+ �𝑃𝑃𝑝𝑝𝑝𝑝,𝑡𝑡,𝑠𝑠
𝐷𝐷𝑃𝑃

𝑝𝑝𝑝𝑝

+ 𝑃𝑃𝑠𝑠,𝑡𝑡,𝑠𝑠
𝑐𝑐ℎ + 𝑃𝑃ℎ,𝑡𝑡,𝑠𝑠

𝐻𝐻2𝐷𝐷−𝑃𝑃𝑡𝑡,𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑠𝑠,𝑡𝑡,𝑠𝑠

𝑑𝑑𝑐𝑐ℎ − 𝑃𝑃ℎ,𝑡𝑡,𝑠𝑠
𝐷𝐷2𝐻𝐻

− 𝑃𝑃𝑏𝑏,𝑡𝑡,𝑠𝑠
𝑑𝑑 −�𝑃𝑃𝑑𝑑,𝑡𝑡,𝑠𝑠

𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑

= �𝑃𝑃𝑏𝑏,𝑏𝑏𝑝𝑝,𝑡𝑡
𝑠𝑠

𝑏𝑏𝑝𝑝

       ∀𝑡𝑡,∀𝑠𝑠,∀𝑏𝑏: {𝑔𝑔,𝑤𝑤𝑡𝑡, 𝑝𝑝𝑣𝑣, 𝑒𝑒, ℎ,𝑑𝑑}

∊ 𝜋𝜋𝑏𝑏  

(35) 

2.2.8   Wind Turbine 

The maximum value of power output of wind 
turbines is formulated as a function of wind speed in 
Eq. (36). Equation (37) indicates the output power of 
WT to the maximum valid values. The operating cost 
of WT units is modeled in Eq. (38) [27]. 

𝑃𝑃𝑤𝑤𝑡𝑡,𝑡𝑡
𝑊𝑊𝑇𝑇,𝑚𝑚𝑚𝑚𝑚𝑚

= �
𝑃𝑃𝑟𝑟 ×

(𝑣𝑣𝑡𝑡 − 𝑣𝑣𝑐𝑐𝑐𝑐)
(𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑐𝑐𝑐𝑐)

      𝑣𝑣𝑐𝑐𝑐𝑐 ≤ 𝑣𝑣 ≤ 𝑣𝑣𝑟𝑟       

𝑃𝑃𝑟𝑟                          𝑣𝑣𝑟𝑟 ≤ 𝑣𝑣 ≤ 𝑣𝑣𝑐𝑐𝑐𝑐
0                           𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒       

 
(36) 

𝑃𝑃𝑤𝑤𝑡𝑡,𝑡𝑡
𝑊𝑊𝑇𝑇 ≤ 𝑃𝑃𝑤𝑤𝑡𝑡,𝑡𝑡

𝑊𝑊𝑇𝑇,𝑚𝑚𝑚𝑚𝑚𝑚             ∀𝑤𝑤𝑡𝑡, 𝑡𝑡 (37) 

CtWT = � λWTPwt,tWT

Nwt

wt=1

 (38) 



 
 
 

 
7 

 
 

A. Ghanuni et al. An Information Gap Decision Theory Approach … 

Iranian Journal of Electrical and Electronic Engineering, Vol. 19, No. 3, 2023 

2.2.9   Bidding Offering Curves 

VPPs strategies on market participating is 
modelled in Eq. (39) and Eq. (40). 

Pt,ssell − Pt,s�sell ≥ 0 if λt,s  ≥ λt,s�  (39) 

Pt,s�
buy − Pt,s

buy ≥ 0 if λt,s  ≥ λt,s�  (40) 

2.2.10   Linearization of Model 

According to the HSS and TGUs, the non-linear 
equations need to be linearized to give the optimal 
global solution for the problem. Ref. [34] determines 
the linearization process to achieve linear cost 
function and operating constraints. 

3 Proposed Hybrid IGDT-based Risk-
Constrained Approach  

IGDT does not just analyze the worst strategies 
like robust optimization, which only deals with the 
worst case. This technical analysis of the worst and 
the best strategies. The IGDT works based on error 
adjustment attitudes for actual and forecasted 
parameters to consider the effects of the worst and 
the best case. It addresses both conflicting issues of 
profit reduction under risk-averse behaviors of 
prosumers and probable increases in profit under a 
risk-taking procedure. Using two immunity 
functions of robustness and opportunity, the two 
conflicting issues can be studied in the problem [35]. 
Ref. [36] describes the maximum WT power output 
fluctuation in the scheduling process. The IGDT 
method is composed of three main parts system 
model, operation requirements, and uncertainty 
modeling. The objective function of the problem to 
maximize the total profit of the VPP is formulated as 
𝑆𝑆𝐹𝐹(𝑋𝑋,𝑃𝑃𝑊𝑊𝑇𝑇), which X is related to the decision 
variable and 𝑃𝑃𝑊𝑊𝑇𝑇 , is the uncertain parameter [31]. 
Equation (41) indicates the maximum fluctuation 
interval for the wind turbine power output.  

U�α, P�WT� = �PWT:
|PWT − P�WT|

PWT ≤ α� ,α ≥ 0  (41) 

3.1   Risk-averse Strategy Based on Robustness 
Function of IGDT 

In order to be immune to decreasing the WT 
output power, 𝛼𝛼�(𝐹𝐹𝑟𝑟) determines the maximum 

resistance against any decrease of WT power output. 
The robust optimization of the IGDT technique is 
modeled in Eq. (42). In this equation the parameter 
𝐹𝐹𝑟𝑟 is related to the predetermined amount of 
objective function, which is determined system 
operator. Also, µ is related to the setting parameter 
for the percentage of increasing cost due to the 
uncertain parameter. 

𝛼𝛼�(𝐹𝐹𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝛼𝛼
�𝛼𝛼:𝑚𝑚𝑒𝑒𝑚𝑚�𝑆𝑆𝐹𝐹(𝑋𝑋,𝑃𝑃𝑊𝑊𝑇𝑇)�� 

𝑠𝑠. 𝑡𝑡. 
𝑆𝑆𝐹𝐹(𝑋𝑋,𝑃𝑃𝑊𝑊𝑇𝑇) ≥ 𝐹𝐹𝑟𝑟 
𝐹𝐹𝑟𝑟 = 𝑆𝑆𝐹𝐹�𝑋𝑋,𝑃𝑃�𝑊𝑊𝑇𝑇� × (1 + µ) 
0 ≤ µ < 1 

(42) 

3.2   Risk-taker Strategy Based on Robustness 
Function of IGDT 

In contrast to the RO, in opportunity function 
provides the maximum amount of the objective 
function under an optimistic attitude for the energy 
generation of WT units. The opportunity function of 
IGDT is defined in Eq. (43). 𝐹𝐹𝑟𝑟 is the predetermined 
value of the objective function as the least expected 
revenue of market participants. The 𝜔𝜔 is also 
determined by the operator. 

�̂�𝛽(𝐹𝐹𝑐𝑐) = 𝑚𝑚𝑒𝑒𝑚𝑚
𝛽𝛽
�𝛽𝛽:𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝐹𝐹(𝑋𝑋,𝑃𝑃𝑊𝑊𝑇𝑇)��  

𝑠𝑠. 𝑡𝑡. 
𝑆𝑆𝐹𝐹(𝑋𝑋,𝑃𝑃𝑊𝑊𝑇𝑇) ≥ 𝐹𝐹𝑐𝑐 
𝐹𝐹𝑐𝑐 = 𝑆𝑆𝐹𝐹�𝑋𝑋,𝑃𝑃�𝑊𝑊𝑇𝑇� × (1 − 𝜔𝜔) 
0 ≤ 𝜔𝜔 < 1 

(43) 

4   Case Studies 

4.1   Parameters 

IEEE 33-bus test system with four TG units 
located at buses 5, 12, 16, and 24, five PV units at 
buses 6, 20, 24, 26, and 32, three WTs at buses 13, 
15, 30, an ES at bus 20, and finally an HSS located 
at bus 14 is considered for the case studyFig.3 
depicts the related structure.  

Figure 4 shows the predicted values of RES units 
Fig. 5 shows the Electricity demand of buses for 
VPP, which the share of hourly demand is depicted 
in Fig. 6. Fig. 7 reports the predicted market prices 
used for simulation. TG unit specifications are 
reported in Table 1. Wind turbine unit’s 
specifications are reported in Table 2. 
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Fig. 3 A technical virtual power plant. 

Table 1 Information of thermal generating units 
 Pmax 

(MW) 
Pmin 
(MW) 

MUT 
(Hour) 

MDT 
(Hour) 

RU 
(MW) 

RD 
(MW) 

SU 
($) 

a 
($/MW) 

b 
($/MW) 

c 
($/MW) 

G1 3.5 1 2 2 1.8 1.8 15 0.002 87 27 
G2 3 0.75 1 1 1.5 1.5 10 0.003 87 25 
G3 3 0.75 1 1 1.5 1.5 10 0.003 87 25 
G4 4.1 1 2 2 1.8 1.8 15 0.184 81 26 

 
Fig. 4 Predicted values of RES units. 

 
Fig. 5 Electricity demand of VPPs buses. 

 
Fig. 6 Load share of each bus. 

 
Fig. 7 Predicted market prices. 

Table 2 Wind turbine unit’s specifications 
Rated power 

(kW) 
Rated speed 

(m/s) 
Cut-in speed 

(m/s) 
Cut-out speed 

(m/s) 

400 14 2 25 

4.2   Numerical Result  

According to the main scope of the current work 
to determine the effects of decision-maker strategy 
on energy scheduling, power trading, and optimal 
bidding curve to submit to the day-ahead market the 
results are provided in three different cases of risk-
taker, risk-neutral, and risk-averse strategies, which 
are corresponded to opportunity, deterministic, and 
robustness functions of hybrid risk based IGDT 
technique. Also, optimal scheduling of the different 
components of the system is studied considering the 
uncertainty of RES generation, loads, and market 
price. In addition, to show the effectiveness of the 
DRP model, with and without DRP cases are 
considered to make a result comparison. 
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4.2.1   Profit Analysis 

Obtained results for the case studies indicate that 
the behavior of the proposed VPP for output power 
fluctuation of the WTs is approximately linear 
according to the profit gain function, absolutely with 
different sensitivity and ramp rates. Figure 8 depicts 
the obtained results of profit functions against the 
robustness/opportunity parameters. Obtained results 
with zero values of robustness/opportunity 
parameters are considered risk-neutral strategies. 
The results show that, by increasing the robustness 
parameter, the total expected profit is considerably 
reduced, from $2076.19 to $1776.189, which 
indicates a 14.5% reduction in expected profit. 
Despite profit reduction, results show that under this 
circumstance robustness parameter is equal to 0.3, 
which means VPP is robust against a 30% 
fluctuation of WTs energy generation output. In 
contrast, under a risk-taker strategy and opportunity 
parameter of 0.3, the expected profit is increased 
from 2076.19 $ to 2376.189$. This means that a 30% 
increase in the generation output of WTs, will result 
in about a 15% increase in total profit. The results of 
the study show that for the proposed model it is not 
so recommended to have an intensive risk-averse 
strategy, because the target profit levels ramp shows 
that, under a specific robust/opportunity parameter 
the reduction in profit is more than the obtained 
profit of a certain value for opportunity parameter. 
The proposed structure would help the decision 
maker to gain a more clear insight into uncertain 
parameters before deciding on market participation. 

 
Fig. 8 Robustness/opportunity target profits against 

robustness/opportunity parameters. 

4.2.2   Operation Scheduling of TGUs 

Four TG units are considered conventional 
energy-generating sources, and among them, G2 and 
G3 can be considered better cases in comparison to 
the others according to the lower operating cost and 

better specifications. So, two different TG units of 
G1 and G4 from different categories are chosen, for 
results illustrations. Figure 9 shows the generated 
output power of the G1 and G4 under different 
strategies. According to the result analysis, it can be 
deduced that risk-based analysis has more prominent 
effects on expensive TG units, which changes the 
optimal scheduling decision into a less operation of 
expensive units under risk-taking attitudes. In 
contrast, for a cheaper unit such as G4, the 
scheduling process is approximately the same for all 
scenarios. The opportunity for risk-taking would 
cover the high expense of operating for less efficient 
generating units. According to the G4 diagram, it can 
be deduced that the risk-based problem model does 
not influence dramatically the scheduling process of 
this unit under a low operating cost of energy 
generation. 

 
Fig. 9 Generated power by G1 and G4. 

4.2.3   Demand Response Program 

Figure 10 illustrates the results of the DRP 
schedule, which allows connected customers to 
buses 26-33 to be incentivized for demand reduction 
under participation in DRPs. Obtained results show 
that in a risk-taking strategy, the participation of 
prosumers between hours 17-22 is increased, which 
makes an opportunity for prosumers to participate in 
the energy trading market during the peak hours of 
demand with higher energy trading prices.  

 
Fig. 10 Scheduling of the demand response program. 
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4.2.4   Operation Scheduling of Energy Storages 

Figure 11 illustrates the SOC of the battery ES, 
which is located on bus 20. According to the 
obtained results of hours 1-8, more energy is stored 
in the battery energy storage in both risk-neutral and 
risk-averse strategies in comparison to the risk-
taking strategy. Under a risk-taking strategy, the 
assumption is that generated power by the WTs 
would be increased in practical operation. So, there 
would be less energy storing need, which can be 
traded in the market to get financial profits. Between 
hours 12-16, when PVs generate power near their 
nominal capacity, the generated power is stored in 
ESS, which has been used between hours 18-24 to 
supply the peak load demand and satisfy the 
operational requirements of the ES. Hourly charged 
and discharged power of the energy storage is 
depicted in Fig.12. As expected, the discharging 
process took place under high market prices, and the 
charging and discharging processes of scheduling 
followed market prices. Figure 13 depicts the SOC 
results of the HSS. As it is shown in the related 
picture, the HSS in both risk-averse and risk-neutral 
strategies have the same behavior, while in the risk-
taker strategy it is charged at hours 4-5, to store the 
excess generated power and discharged in higher 
price durations such as hour 7 to gain financial 
profit. According to the operating requirements, 
which determine the initial SOC of HSS for the final 
duration, another charging and discharging process 
is done at hours 20 and 22. 

 
Fig. 11 SOC of the ES located in bus 20. 

 
Fig. 12 Operation scheduling of battery energy storage 

system. 

 

 
Fig. 13 SOC of the HSS. 

4.2.5   Optimal Offering/bidding Curves 

Figure 14 depicts the optimal offering strategies 
of the VPP for hours 5, and 11. The VPP power offer 
curve at 5 o'clock shows that this unit offers to sell 
the power in the neutral and risk-averse case is 
restricted to prices higher than 61 $/MWh. With 
increasing caution, the amount of offered power for 
sale also has been reduced from 1.275 MW to 1.030 
MW. On the other hand, with the increase in VPP's 
risk-taking, and under a more optimistic attitude, the 
energy selling prices have decreased from 61 
$/MWh in the neutral case to 25$/MWh. 
Considering the low market prices at 5 o'clock, VPP 
has not shown much desire to sell power at this hour 
under a risk-taking strategy, and it has limited its 
offers to less than 0.6MW. At 11 o'clock, when the 
energy market prices increase, the power offer for 
VPP in the risk-taking case takes higher values in 
comparison to the others. This state indicates the role 
of optimistic attitudes in the power offering prices. 
VPP in a risk-neutral case, suggests higher prices for 
selling energy compared to the neutral and optimistic 
ones. The study of power offers shows that VPP has 
not made any power purchase requests in neutral and 
risk-averse states during off-peak hours, such as 1 
o'clock. But in the risk-taking mode, according to the 
lower market prices, the risk-taker operator has 
bought power to benefit from the profit of its sale 
during the peak hours. The bidding strategies for 
hours 1, 12, and 15 are depicted in Fig. 15 at 12 
o'clock, at the risk-taking strategy, the amount of 
energy generation is considered higher, which has 
reduced the request to purchase power from a 1MW 
power bid to a maximum of 0.8MW bid. Due to the 
higher demand at 12 o'clock, under a risk-averse 
strategy, the request for purchasing power has 
increased up to 1.3MW. At hour 15, the wind speed 
increased compared to hour 12, but the power 
demand also increased compared to 12. The results 
of using different risk-based strategies in changes in 
VPP profit are reported in Fig. 8 .
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Fig. 14 Offering curves for hours 5, and 11.

 

 

 
Fig. 15 Bidding curves for hours 1, 12, and 15. 

 As can be deduced under the result analysis, the 
operator's strategy has a great impact on the bid and 
offers strategies for each VPP. 

5   Conclusion 

In this paper, a risk-based hybrid IGDT model to 
consider the effects of WT output power fluctuation 
on the operating scheduling, power trading, and 
bidding strategy of the VPP is proposed. Also, the 
uncertainty of PV energy generation units, loads, and 
market price uncertainty is considered under a 
scenario generation and reduction model. The 
obtained result indicates that it would be so practical 
to use an uncertainty analysis, which makes a clearer 
environment for decision-makers under uncertain 
parameters. Results studies reported that a 
robustness parameter of 0.3, which means VPP is 
robust against a 30% fluctuation of WTs energy 
generation, would decrease the profit function by 
14.5%. In contrast, under a risk-taking strategy, a 0.3 
opportunity parameter would lead to a 12.5% 
increase in the profit function of the proposed model. 
So, the proposed method makes a suitable 
illustration of system behaviour against uncertain 
parameters for a decision-maker. According to the 
cost of a risk-averse strategy, in comparison to the 
profit increase of a risk-taker, it is not recommended 
to choose a rigid risk-averse strategy for the studied 
VPP. The proposed model makes a clearer insight 
for a VPP operator to make decisions under 
uncertainties. As a suggestion for the future, it is 
recommended to consider the effects of air pollution 
cost in analysis and make a multi-objective problem 
for Pareto solutions. 
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