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Abstract: In recent decades, because of the rapid population growth of the world, 

considerable changes in climate, the reduction of fossil fuel sources to consume the 

traditional power plants and their high depreciation, and the increase in fuel prices.  Due 

to the increased penetration of DG units which have a random nature into the power 

system, the ordinary equations of power flow must be changed. For the power system to 

operate in a stable condition estimating future demand and calculating the important and 

operational indexes such as losses of the power system is an important duty that must be 

done precisely and rapidly. In this paper, the Improved Taguchi method and phasor 

measurement unit are used to model the uncertainties of DGs and estimate the error of 

voltage, respectively. The results show that the magnitude error and the angle error of 

voltage are decreased using PMU. The applied optimal power flow and state estimations 

are analyzed and verified using standard IEEE 30-bus and 14-bus test power systems by 

MATLAB, and MINITAB softwares. The Made Strides Taguchi strategy appears to have 

modeled the DG units precisely and successfully, and using the PMU, the mistake of the 

point and greatness estimation is exceptionally moot. The values that were evaluated are 

very close to the values that were done by the Newton-Raphson stack stream. 

Keywords: Distributed Generation, Taguchi Method, Orthogonal arrays, Optimal Power 

Flow, Uncertainty, State Estimation, Phasor Measurement Unit. 

 

Table of symbols 

Vi 
min , Vi 

max 

The high and low values of voltage  Pi 
min , Pi 

max The high and low values of active and apparent 

power 

𝑇𝑖
𝑚𝑎𝑥 , 𝑇𝑖

𝑚𝑖𝑛 The high and low taps number of 

transformers 

Qi 
min , Qi 

max The high and low values of reactive power 

  

1 Introduction 

N recent decades, conventional power systems could 

not be Responsive to many situations including 

increasing power demands, increasing losses of 

transmission power, voltage drop, instability, etc [1]. 

With the population increase of the world obviously, the 

amount of power consumption, power losses, and voltage 

drop will increase since the source of fossil fuels is 
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decreasing and the traditional power plants' efficiency 

because of their depreciation is reduced [2]. To overcome 

this issue, renewable energies were entered into power 

systems because they do not have the disadvantages of 

conventional power plants and even have many 

advantages rather to traditional power plants such as non-

production of noise and environmental pollution, high 

efficiency, portable, and no need for fossil fuel [3].
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Using the DG units, the number of power system 

uncertainties will increase due to their random nature, 

which changes the normal operation conditions such as 

optimal power flow, unit commitment, state estimation, 

and optimization [4, 5]. So it's necessary to transfer 

uncertainties into certain values using probabilistic 

assessment technic and uncertainties modeling methods 

[6, 7]. Uncertainties modeling methods are summarized 

in six main groups such as probabilistic approaches, 

possibilistic approach, hybrid possibilistic-probabilistic 

approaches, Information gap decision theory, robust 

optimization, and interval analysis, as shown in Figure 1 

[8]. In the probabilistic types, the input parameters have 

a PDF statistical distribution. This types methods are 

summarizes into numerical and analytical groups such as: 

Monte Carlo simulation (MCS) [8-10], sequential MCS 

[11], Markov Chain MCS [12, 13], pseudo sequential 

MCS [14, 15], and inconsequential MCS methods [16, 

17] are a sample from the numerical group and 

linearization, scenario-based, and PDF approximation are 

from the analytical group [18, 19]. Also a-cut, and 

defuzzification methods are categorized in the 

possibilistic type [20-23]. 

In the hybrid type, the input variables have the 

possibilistic and the probabilistic features such as Fuzzy-

scenario and fuzzy-MCS methods [24-27]. In the 

information gap decision type (IGDT), there are two 

main features such as robustness and opportuneness [28-

30]. The robust optimization works according to solving 

problem with the worst-case scenario [31, 32].  

Interval types, are assumes that the input parameters are 

from a specific interval [33, 34]. Because the power 

systems are dynamic systems, and the control variables 

and indexes always are changing so it is necessary to 

know the future values of variables, the stat estimation 

technic is useful for this objective [35, 36]. It is necessary 

to collect the phasor values of voltages and currents at 

any second for using at state estimation in order to state 

future values of control variables. Phasor measurement 

units are useful to collect values of voltages and current 

at aby buses and lines of power system due to its high 

speed in transforming real values into phasor values, and 

is portable. Before Phasor measurement units (PMU)s, 

another systems such as the SCADA system was useful 

[37, 38]. In this paper improved Taguchi method, and 

PMUs are used to model uncerties of DGs, collect and 

calculate phasors of voltages and currents, respectively. 

The notable contributions of this study can be 

categorized as follows: 

1) Solving voltage-error problem considering 

uncertainties of DG units and Time-varying load using 

the pmu. 

2) Applying the Improved Taguchi method for modeling 

load, solar irradiance, and wind speed uncertainties. 

 
Fig. 1 Uncertainty Modeling Methods [8] 

 

2 Formulation of the Problem 

2.1 State Estimation theory 

State estimation of the power system means assigning 

a value to a state variable according to limited 

measurements from some power system quantities. In the 

power system, the state variables are (θ, V), and 

introduced methods by state estimation are based on 

measurements of some electrical quantities such as V, I, 

and P. Usual comparative standard aims to be the Sum of 

squares difference between estimated and measured 

values being at least. Weighted least squares (WLS) is 

one of the most common estimation state methods. often, 

the state estimation algorithm is used in order to correct 

online measured unit errors in systems. in fact, the state 

estimation problem is the minimization of a non-linear 

objective function by considering a set of unequal and 

non-linear constraints and also is the minimization of 

measured and real values error from quantities. Assuming 

a set of measurements can calculate a relationship 

between measured and real values of quantities as follows 

(1). 

 

𝑍 = ℎ(𝑥) + 𝑒 (1) 

 

Z is the vector of measured values, which could be 

either real or virtual (initial guess). x is the vector of the 

state variables. h is a vector of non-linear functions that 

relate measured values to state variables, and e is the 

existing error model at every measuring device which has 

a normal distribution with a mean equal to zero. the 

vector of state variables is equal to (2), 

 

𝑥 = (|𝑉1|, |𝑉2|, |𝑉3|, … 𝜃1, 𝜃2, 𝜃3) (2) 
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the aim of this method is the minimization of the Sum of 

squared errors between measured and real values which 

is done according to the weighting of the error of each 

device. So, the optimization objective function In the 

WLS method is equal to (3):  

 

𝑀𝑖𝑛 𝐽(𝑥) =  ∑ 𝑤𝑖  (𝑧𝑖 − (ℎ𝑖))2 =𝑚
𝑖=1     

     [𝑧 − ℎ(𝑥)]𝑇𝑤[𝑧 − ℎ(𝑥)] = 
[𝑧 − ℎ(𝑥)]𝑇[𝑅]−1[𝑧 − ℎ(𝑥)] 

(3) 

 
∆𝑋𝑒𝑠𝑡 =  [[𝐻]𝑇[𝑅]−1 [𝐻]]−1[𝐻]𝑇[𝑅]−1[𝑍 − ℎ(𝑥)]  (4) 

 

R is the diagonal matrix of the covariance of 

measurement errors and its elements are the value of the 

variance of the related measurement errors. By deriving 

from (3) and then by its Taylor expansion and using the 

iteration method, the state variables can be estimated 

using (4), where the matrix H is expressed by (5) and 

where the matrices P Q, I, V represent active and reactive 

power, current and voltage, respectively. 

 

𝐻 = [

𝜕𝑃𝑖𝑛𝑗

𝜕𝜃
 

𝜕𝑃𝑖𝑛𝑗

𝜕𝑉

 

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝜃
 

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉

𝜕𝑄𝑖𝑛𝑗

𝜕𝜃
 

𝜕𝑄𝑖𝑛𝑗

𝜕𝑉

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝜃
 

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉

𝜕𝐼𝑚𝑎𝑔

𝜕𝜃
 

𝜕𝐼𝑚𝑎𝑔

𝜕𝑉

𝜕𝑉𝑚𝑎𝑔

𝜕𝜃
 

𝜕𝑉𝑚𝑎𝑔

𝜕𝑉

]𝑇 (5) 

 

2.2 Stochastic Assessment 

Objective function in this paper is loss minimization of 

the distribution network as (6). There are many 

constraints including (7)-(14) [25]. 

 

(6) 𝑃𝐿𝑜𝑠𝑠 = ∑ 𝐺𝑖𝑗(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗 )𝑛𝑙
𝑙=1    

(7) 𝑃𝐺𝑖 − 𝑃𝐷𝑖 = 𝑉𝑖 ∑ 𝑉𝑗

𝑛𝑏

𝑗=1

(𝐺𝑖𝑗 cos 𝛿𝑖𝑗  + 𝐵𝑖𝑗  sin 𝛿𝑖𝑗 ) 

(8) 𝑄𝐺𝑖 − 𝑄𝐷𝑖 = −𝑉𝑖 ∑ 𝑉𝑗

𝑛𝑏

𝑗=1

(𝐺𝑖𝑗  sin 𝛿𝑖𝑗 − 𝐵𝑖𝑗 cos 𝛿𝑖𝑗) 

(9) 
𝑄𝐺𝑖

𝑚𝑖𝑛 ≤  𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖
𝑚𝑎𝑥 

 

(10) 
𝑉𝐺𝑖

𝑚𝑖𝑛 ≤  𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖
𝑚𝑎𝑥 

 

(11) 
𝑇𝑖

𝑚𝑖𝑛 ≤  𝑇𝑖 ≤ 𝑇𝑖
𝑚𝑎𝑥 

 

(12) 
𝑄𝐶𝑖

𝑚𝑖𝑛 ≤  𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖
𝑚𝑎𝑥 

 

(13) 
𝑉𝑖

𝑚𝑖𝑛 ≤  𝑉𝑖 ≤ 𝑉𝑖
𝑚𝑎𝑥 

 

 Uncertainty Modeling 

In order to model load, the normal distribution is used 

(14) [39, 40]: 

(14) 
𝑓(𝑃𝑑) =

1

√2πσ
exp (−

(𝑃𝑑 − 𝜇)2

2𝜎2
) 

I) Wind speed modeling: In order to model wind speed, 

the Weibull distribution is used (15), also for modeling 

wind produced power equation (16) is used. 

)15) 
𝑓(𝜔) =

𝜌

𝜒
 (

𝜔

𝜒
)

𝜌−1

exp (− (
𝜔

𝜒
)

𝜌

) 

(16) 𝑝 = {

0         𝜔𝑜𝑢𝑡
𝑐𝑢𝑡 ≤ 𝜔 𝑜𝑟 𝜔 ≤ 𝜔𝑖𝑛

𝑐𝑢𝑡

  
𝐾1𝜔 + 𝐾2              0 ≤ 𝜔 ≤ 𝜔𝑖𝑛

𝑐𝑢𝑡     

     𝑃𝑟𝑎𝑡𝑒𝑑                 𝜔𝑟𝑎𝑡𝑒𝑑 ≤ 𝜔 ≤ 𝜔𝑜𝑢𝑡
𝑐𝑢𝑡  

} 

K1= 
   𝑃𝑟𝑎𝑡𝑒𝑑 

𝜔𝑟𝑎𝑡𝑒𝑑−𝜔𝑖𝑛
𝑐𝑢𝑡 , K2 = - K1𝜔𝑖𝑛

𝑐𝑢𝑡,  𝜒, and 𝜌 are the 

shape, and scale factor. Figure.1 explains the equation 

(16) in details. 

 

  
Fig. 2 Characteristic Curve of turbine 

 

In order to model PV, the Beta distribution is used (17-

a) 

The active produced power from PV is explained using 

(17-21) [43, 44]. 

F(G)=
1

𝐺𝜎√2𝜋
𝑒𝑥𝑝 [−

ln (𝐺−𝜇)2

2𝜎2 ] (17-a) 

𝑃𝑝𝑣(𝑠𝑟) = Γ ∗ 𝜓 ∗ 𝜁(𝑠𝑟) ∗ 𝐼(𝑠𝑟) (17) 

𝜁(𝑠𝑟) =  𝜁𝑜𝑐 − Κ𝜁 ∗ ∆𝐶 (18) 

𝜍(𝑠𝑟) =  𝑠𝑟 ∗ (𝜍𝑆𝐶 + Κ𝜍 ∗ (Δ𝐶 − 25)) (19) 

∆𝐶=  ∆𝑎 + 𝑠𝑟 ∗ (
Γ𝑂𝑇 − 20

0.8
) 

(20) 

ψ =
𝜁𝑀𝑃𝑃 ∗ 𝜍𝑀𝑃𝑃

𝜁𝑂𝐶 ∗ 𝜍𝑂𝐶

 
(21) 

Table 1 Orthogonal array 𝑂𝐴𝑁𝑒𝑥𝑝  (𝑁𝐿)𝑁 

Experiment 

number 

Level of each variable 

RV1 RV2 … RVN 

1 L11 L12 … L1N 

2 L21 L22 … L2N 

…. …. …. … …. 

𝑁𝑒𝑥𝑝 L𝑁𝑒𝑥𝑝1 L𝑁𝑒𝑥𝑝2 … L𝑁𝑒𝑥𝑝N 
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3 Orthogonal Arrays 

An OA is a simple matrix which its rows shows factor 

levels in each run and its columns shows a specific factor 

whose levels change in each experiment. An OA is 

basically a table whose rows are used for experiments and 

whose columns are used for an RnVr (Table 2) [41, 42]. 

 
Table 2 Orthogonal array OA𝟒𝟐𝟑 

Test N.O Levels 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 

4 Methodology 

The progressed Taguchi method is to extend the 

precision of the TM as shown in Figure 13. In this 

strategy, steps 1 to 5 of the TM, and the Progressed TM 

are exactly rehashed, but within the taking after, other 

steps are too performed. By comparing sets 1 and 2, likely 

a few of the same factors will have the same levels. These 

factors are called certain factors and other factors are 

called questionable factors. The reason for this naming is 

that are being gotten the same levels for these factors 

from two diverse ways, one of the tests and the other of 

averaging the values gotten from the tests. Certain 

variables are prohibited from the optimization handle. 

Within the following area, the 6th step, the arrangement 

handle is clarified [43,44]. 

4.1 Placement of uncertain variables in the experiment 

with the best value 

The experiment that has the best result among the 

experiments performed is one of the possible experiments 

to examine all combinations of different variables. 

Therefore, there may be another combination of variables 

that has a better outcome compared to the current best 

available test. One of these more suitable combinations 

may be the combination corresponding to the best 

experiment, while its uncertain variables are placed 

according to set 2. Because the averaging of the obtained 

results was the basis for choosing set 2, the statistical 

nature of this process increases the probability of 

choosing the optimal values for the variables. The certain 

variables determined by the task are removed from the 

process and only the uncertain variables are re-examined. 

In order to prevent the interaction of variables, the 

process of placing uncertain variables from the second set 

in the best experiment is done individually. If the inserted 

variable causes a better result than the previous variable, 

we call this variable definite and fix it in the best test. 

Other uncertain variables will be placed in the same way. 

4.2 Choosing the orthogonal array for the remaining 

uncertain variables 

In this stage, uncertain variables are optimized by using 

another Taguchi table that is selected for them. If the 

number of remaining variables is small, we test all 

possible combinations. The optimization process 

continues until the optimization completion condition is 

met. 

5 Simulation Results 

In this paper, the firstly losses of both type of powers of 

the network are 22.244 Mvar and 17.59 MW, and also 

two wind farms are in buses 38, 39 and a PV cell in bus 

16, which their nominal capacity is 100 MW [43]. 

Figures 2 and 3 show voltage angle estimation error 

with/without PMU and figures 4 and 5 show voltage 

magnitude estimation error with without PMU in IEEE 

14- bus standard network. Figures 6 and 7 show voltage 

angle estimation error with / without PMU and Figures 8 

and 9 show voltage magnitude estimation error with 

without PMU in IEEE 30- bus standard network. Table 4, 

and 7 show N-R Load flow for 14, and 30 bus networks 

respectively. Table 5, and 6 show state estimation without 

and with PMUs for 14 -bus network. Table 8, and 9 show 

state estimation without and with PMUs for 30 -bus 

network. Figure 10, 11, and 12 show IEEE 30-bus Test 

system, IEEE 14-bus Test system, and Flowchart of 

improved Taguchi method, respectively. Table 3 shows a 

result comparison with other methods. 

Table 3 Result comparison 

losses I TM Scenario  LHS 2PEM 

μ [MW] 30.5 40.8 52.42 36.3 

σ 11.15 26.1 36.22 12.2 

 
 

 
Fig. 3 Voltage Angle Estimation Error without PMU 
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Fig. 4 Voltage Angle Estimation Error without PMU 

 

  
Fig. 5 Voltage Magnitude Estimation Error without PMU 

 

 
Fig. 6 Voltage Magnitude Estimation Error with PMU 

Table 4 N-R Load flow 14 bus network 

Bus Voltage [pu] Angle [˚] 

1 1.0600 0.0000 

2 1.0450 -4.9891 

3 1.0100 -12.7492 

4 1.0132 -10.2420 

5 1.0166 -8.7601 

6 1.0700 -14.4469 

7 1.0457 -13.2368 

8 1.0800 -13.2368 

9 1.0305 -14.8201 

10 1.0299 -15.0360 

11 1.0461 -14.8581 

12 1.0533 -15.2973 

13 1.0466 -15.3313 

14 1.0193 -16.0717 

 

Table. 5 State Estimation without PMUs 

Bus Voltage [pu] Angle [˚] 

1 1.0068 0.0000 

2 0.9899 -5.5265 

3 0.9518 -14.2039 

4 0.9579 -11.4146 

5 0.9615 -9.7583 

6 1.0185 -16.0798 

7 0.9919 -14.7510 

8 1.0287 -14.7510 

9 0.9763 -16.5125 

10 0.9758 -16.7476 

11 0.9932 -16.5397 

12 1.0009 -17.0203 

13 0.9940 -17.0583 

14 0.9647 -17.8967 

Table. 6 State Estimation with PMUs 

Bus Voltage [pu] Angle [˚] 

1 1.0584 0.0000 

2 1.0451 -5.0258 

3 1.0046 -12.7546 

4 1.0083 -10.2142 

5 1.0118 -8.7264 

6 1.0700 -14.4443 

7 1.0457 -13.2372 

8 1.0800 -13.2371 

9 1.0305 -14.8206 

10 1.0299 -15.0364 

11 1.0461 -14.8553 

12 1.0533 -15.2946 

13 1.0466 -15.3285 

14 1.0193 -16.0727 

30 bus: 

 

 
Fig. 7 Voltage Angle Estimation Error without PMU 
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Fig. 8 Voltage Angle Estimation Error with PMU 

  
Fig. 9 Voltage Magnitude Estimation Error without PMU 

 

  
Fig. 10 Voltage Magnitude Estimation Error with PMU 

Table 7 N-R Load flow 30 bus network 

Bus Voltage 

[pu] 

Angle [˚] 

1 1.0600 0.0000 

2 1.0430 -5.3543 

3 1.0196 -7.5308 

4 1.0104 -9.2840 

5 1.0100 -14.1738 

6 1.0096 -11.0581 

7 1.0020 -12.8649 

8 1.0100 -11.8193 

9 1.0392 -14.0644 

10 1.0215 -15.6706 

11 1.0820 -14.0644 

12 1.0496 -15.1245 

13 1.0710 -15.1245 

14 1.0320 -16.0018 

15 1.0251 -16.0084 

16 1.0304 -15.6251 

17 1.0188 -15.8687 

18 1.0114 -16.6067 

19 1.0066 -16.7658 

20 1.0095 -16.5502 

21 1.0082 -16.2178 

22 1.0120 -15.9811 

23 1.0085 -16.2294 

24 0.9991 -16.3007 

25 1.0032 -16.0720 

26 0.9852 -16.5038 

27 1.0145 -15.6559 

28 1.0078 -11.7163 

29 0.9944 -16.9077 

30 0.9828 17.8067 

 

Table 8 State Estimation without PMUs 

Bus Voltage 

[pu] 

Angle 

[˚] 

1 0.9865 0.0000 

2 0.9700 -6.2635 

3 0.9474 -8.8420 

4 0.9384 -10.902 

5 0.9335 -16.494 

6 0.9395 -12.997 

7 0.9287 -15.044 

8 0.9449 -13.960 

9 0.9667 -16.481 

10 0.9472 -18.344 

11 1.0093 -16.481 

12 0.9746 -17.691 

13 0.9954 -17.691 

14 0.9559 -18.713 

15 0.9491 -18.729 

16 0.9555 -18.280 

17 0.9441 -18.571 

18 0.9352 -19.419 

19 0.9306 -19.606 

20 0.9339 -19.358 

21 0.9328 -18.982 

22 0.9372 -18.711 

23 0.9331 -18.995 

24 0.9231 -19.078 

25 0.9270 -18.778 

26 0.9070 -19.259 

27 0.9395 -18.296 

28 0.9398 -13.791 

29 0.9177 -19.760 

30 0.9051 -20.817 

Table 9 State Estimation with PMUs 

Bus Voltage [pu] Angle 

[˚] 

1 1.0574 0.0000 

2 1.0430 -5.3904 

3 1.0234 -7.6313 

4 1.0141 -9.3750 

5 1.0101 -14.179 



Iranian Journal of Electrical & Electronic Engineering, Vol. 20, No. 01, March 2024     7 
 

6 1.0152 -11.170 

7 1.0054 -12.931 

8 1.0201 -11.994 

9 1.0424 -14.144 

10 1.0248 -15.738 

11 1.0821 -14.142 

12 1.0517 -15.164 

13 1.0711 -15.163 

14 1.0344 -16.040 

15 1.0277 -16.053 

16 1.0331 -15.674 

17 1.0219 -15.931 

18 1.0144 -16.657 

19 1.0097 -16.819 

20 1.0127 -16.606 

21 1.0115 -16.280 

22 1.0156 -16.047 

23 1.0118 -16.284 

24 1.0030 -16.360 

25 1.0082 -16.142 

26 0.9904 -16.570 

27 1.0202 -15.736 

28 1.0143 -11.837 

29 1.0003 -16.971 

30 0.9888 -17.859 

 

 

 
Fig. 11 IEEE 30-bus Test system [41] 

 

 

 

 
Fig. 12 IEEE 14-bus Test system [44] 

 

  
Fig. 13 Improved TM [45] 
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6 Conclusion 

State estimation has a key role in power system 

operation and controlling, which estimates the values of 

state variables of power systems, by increasing the DGs 

in power systems, it is necessary to analyze this concept 

in the presence of DG units. In this paper, the improved 

Taguchi method is utilized to model the DG units in state 

estimation problems using PMU for collecting the 

voltage and current phasors. The results show that the 

Improved Taguchi method has modeled the DG units 

accurately and effectively, and using the PMU the error 

of the angle and magnitude estimation is very low. 

Estimated values are very near to real values which were 

done by Newton-Raphson load flow. 
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