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Enhancing privacy by large mask inpainting and fusion-based 
segmentation in street view imagery 
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Abstract: Protecting privacy in street view imagery is a critical challenge in urban 
analytics, requiring comprehensive and scalable solutions beyond localized obfuscation 
techniques such as face or license plate blurring. To address this, we propose a novel 
framework that automatically detects and removes sensitive objects, such as pedestrians 
and vehicles, ensuring robust privacy preservation while maintaining the visual integrity 
of the images. Our approach integrates semantic segmentation with 2D priors and 
multimodal data from cameras and LiDAR to achieve precise object detection in complex 
urban scenes. Detected regions are seamlessly filled using a large-mask inpainting 
technique based on fast Fourier convolutions (FFC), enabling efficient generalization to 
high-resolution imagery. Evaluated on the SemanticKITTI dataset, our method achieves 
a mean Intersection over Union (mIoU) of 64.9%, surpassing state-of-the-art benchmarks. 
Despite its reliance on accurate sensor calibration and multimodal data availability, the 
proposed framework offers a scalable solution for privacy-sensitive applications such as 
urban mapping, and virtual tourism, delivering high-quality anonymized imagery with 
minimal artifacts. 

Keywords: Privacy Protection, Street View Imagery, Large Mask Inpainting, Semantic 
Segmentation, Multi-modality, Lidar. 

1 Introduction 

treet view images (SVI), which are obtained from 
sources such as Google Street View (GSV), Here Map 

Street View, Baidu Street View, Mapillary Street View, 
Tencent Street View, etc., are vital tools for studying and 
understanding different regions of the world. Among 
these sources, GSV has a wide coverage in 114 countries, 
which broadly displays the different regions of these 
countries. By providing comprehensive images from 
different parts of the world, this street view provides 
unique information for researchers, travelers, and those 
interested in spaces and cities [1]. In recent years, GSV 
has been the largest and perhaps the most well-known 
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collection of street-level images collected. The GSV 
service was first rolled out in 2007 as an experiment in 
some cities in the United States [2]. After that, it was 
developed more widely around the world in the following 
years. This service provides the possibility to view 
panoramic images of different streets and passages and is 
now available in many cities and regions around the 
world. This service enables users to efficiently search for 
and locate their points of interest. Additionally, it 
facilitates virtual tours of the street-level environment, 
facilitating a diverse range of applications such as real 
estate search, virtual tourism, travel planning, driving 
routes, and more [3]. GSV is a useful and highly popular 
service. However, it raises significant privacy concerns. 
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The images captured from the street level contain 
numerous personally identifiable features, such as faces 
and license plates [4]. To tackle this challenge, Google 
has introduced a sliding window-based system aimed at 
automatically blurring faces and license plates in street 
view images [3]. Although this work reduces the concerns 
related to the disclosure of information and the privacy of 
people, still information such as clothing items, colors, 
patterns, body shape, height size, geographic location 
information, and also vehicles in the images that 
information such as reveals the type and color of the 
vehicle, etc. To address this issue, we propose an 
automated method to remove all pedestrians and vehicles 
from street view images. Our proposed method uses 
semantic segmentation to detect vehicles and pedestrians, 
and after detection, it removes them and fills the large-
scale gaps. For semantic segmentation, we suggest 
employing 2D Priors (2DPASS) [5], a method tailored to 
improve 3D LiDAR semantic segmentation by integrating 
insights from 2D priors derived from cameras.  For 
semantic segmentation, 2DPASS combines multi-modal 
information into a single point cloud. Additionally, given 
the presence of significant masks in the images, we 
recommend employing large mask inpainting (LaMa) [6]. 
The method is suggested for image inpainting, 
highlighting its capability to generalize to high-resolution 
images despite being trained solely on low-resolution 
data. 
In sum, we make four key claims, which are supported by 
our experimental findings: (i) Our framework integrates 
multimodal data from LiDAR and cameras, enhanced by 
a knowledge distillation strategy, to achieve state-of-the-
art segmentation accuracy for pedestrians and vehicles in 
challenging urban environments with complex lighting 
and occlusions. (ii) Using an inpainting method based on 
fast Fourier Convolutions, our approach effectively fills 
large-scale gaps created by object removal, achieving 
high-quality reconstructions in high-resolution street 
view images while maintaining computational efficiency. 
(iii) Unlike prior methods that focus on localized 
obfuscation (e.g., face or license plate blurring), our 
method provides a comprehensive solution by removing 
all sensitive objects, ensuring robust privacy protection 
while preserving the visual integrity of the images. (iv) 
The proposed algorithm is scalable to large-scale datasets, 
including street view imagery, and achieves an average 
inference time of less than 600 milliseconds per image. It 
operates efficiently with minimal computational overhead 
on standard hardware, such as an NVIDIA Tesla T4 GPU. 

2 Related work 

2.1 Detection and removal of objects 
To remove unwanted areas, it is necessary to identify 

them first. This operation is known as region of interest 
(ROI) detection [7]. Following the detection of regions of 

interest, the subsequent task involves their removal and 
background filling. Recent strides in deep learning-based 
object detection methods have showcased strong 
performance in ROI detection, affirming their 
effectiveness in this domain.  Multi-layer neural networks 
such as CNN are designed to directly recognize visual 
patterns in pixels, and powerful architectures such as 
ResNet [8] and Xception [9] have been developed. At the 
same time, with the advancement of CNN technology, 
object detection algorithms based on CNN have also been 
developed and models like You Only Look Once (YOLO) 
[10] and DeepLab v3+ [11] have been presented. In these 
methodologies, the initial step involves identifying 
desired objects and areas based on their contours and 
distinctive features through image recognition and 
segmentation algorithms. However, with CNN-based 
object detection for ROI determination, there's no 
requirement to define a specific target object policy for 
the ROI.  Instead, we're dealing with a mask that 
completely covers the desired subject. However, 
acquiring background images devoid of moving obstacles 
presents a challenge in practical projects.  For this 
purpose, efforts are made to obtain accurate and flawless 
background images by using various data and algorithms. 
Also, in the field of segmentation of objects, by using 
several sensors like LiDAR and cameras, efforts are made 
to combine the information and benefit from the 
advantages of each, so that the accuracy and efficiency in 
segmentation are improved [12]. The RGBAL method 
[12] involves converting images from RGB color format 
into a polar grid representation. It then employs fusion 
strategies at both early and mid-level stages to design 
them.  PointPainting [13] utilizes image segmentation 
logits, transferring them to LiDAR space to enhance the 
performance of the LiDAR network, utilizing structures 
such as a spherical view or a bird's eye view (BEV). The 
PMF approach [14] utilizes the joint integration of two 
techniques within the camera coordinates. Nevertheless, 
at both training and inference stages, these techniques rely 
on multi-sensor inputs.  In addition, Multimodal data are 
usually computationally compressed. At the global level, 
[15] has introduced an extensive framework from fine to 
coarse, which includes two networks. This approach 
involves the network initially prioritizing the completion 
of the coarse global structures, while the second network 
uses it as a guide to enhance the finer local details.  In 
recent research, two-step approaches that adhere to the 
concept of structure-texture decomposition [16] have 
gained popularity. Some researches [17, 18] modify the 
framework in such a way that the resulting components 
are generated concurrently instead of sequentially. 
Furthermore, various studies have put forward two-stage 
approaches employing the completion of different types 
of structures as an intermediate step. For instance, in [19], 
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the focus is on salient edges, while [20] tackles semantic 
segmentation maps, [21] deals with object foreground 
contours, [22] addresses gradient maps, and [23] focuses 
on smooth edge-preserved images. Point-based methods 
face a challenge known as overhead, stemming from their 
costly random memory access, particularly noticeable in 
large-scale outdoor scenes. Voxel-based methods offer a 
solution by employing thin convolution techniques. As a 
follow-up, SPVNAS [24] introduces the concept of sparse 
point-voxel complexity. To mitigate the challenge posed 
by imbalanced point distribution, Cylinder3D [25] 
introduces a methodology based on cylindrical 
partitioning and integrates a 3D convolution network for 
structural enhancement. RPVNet exploits three diverse 
point representations and amalgamates them into a 
cohesive network.  To improve the network training 
performance, 2DPASS [5] and PVKD [26] use 
knowledge distillation strategies to enhance the network. 
Knowledge distillation (KD) originates from the 
pioneering work of G. Hinton et al [27]. Its primary aim 
is to transfer hidden insights from a teacher model with 
excessive parameters to a more streamlined student 
model. A plethora of approaches have been proposed, 
encompassing diverse forms of knowledge transfer, 
including intermediate features [28], visual attention 
maps [29], cross-sample similarity scores [30], region-
level affinity scores [31], among others.  Inspired by [5], 
we reach very strong results in semantic segmentation 
using knowledge distillation of 2D and 3D information. 

2.2 Adversarial inpainting 

Inpainting is an image processing process used to be 
utilized for reconstructing images that have suffered from 
loss or damage of information caused by factors like 
occlusion, blurring, or transmission interference. This 
process assimilates information regarding the absent 
segments of the image, grasps the holistic structure of the 
image, and integrates other pertinent details to ensure 
precise reconstruction. Inpainting serves various 
functions and finds applications in numerous image 
processing scenarios, such as removing unwanted objects, 
repairing damage, and eliminating occluded areas on 
objects.  The multi-image fusion technique for occlusion-
free texture was introduced by Böhm et al. [32]. This 
method utilizes a process akin to background subtraction. 
Within a set of captured images, pixels sharing similar 
RGB values are clustered together, and outliers are 
subsequently filtered out.  The background pixel is 
determined by selecting the pixel with the highest number 
of "votes" from the remaining clustered pixels. The early 
methods for performing inpainting operations inside the 
image, it was mainly based on data. These approaches 
included the use of patch-based methods and nearest 
neighbors. In the era of deep learning, an early approach 

in indoor inpainting involved employing a convolutional 
neural network architecture featuring an encoder-decoder 
structure, coupled with adversarial training, to complete 
missing elements [33].  This approach is known as one of 
the common methods for deep inpainting. In the nascent 
phases of deep learning research, Pathak et al [34] 
introduced an encoder-decoder architecture, trained using 
a combination of pixel-based adversarial loss and 
reconstruction loss. For the enhancement of image 
completion stability, Iizuka et al. [35] introduced global 
and local context discriminators into the training of a fully 
convolutional completion network. Their primary focus 
lies in discriminator design, complemented by the 
utilization of a simple encoder-decoder network as the 
generator. Additionally, [36] introduced an improved 
patch-based discrimination approach, which later gained 
traction among researchers. Furthermore, [37] proposed 
an innovative approach involving patch-based 
discrimination. Subsequently, they implemented a Partial 
convolution operation, followed by an automated mask 
update step, aimed at enhancing the filling of irregular 
holes. [38] introduced an encoder network for image 
completion, leveraging a pyramid-context and attention 
transfer. Meanwhile, to simultaneously recover both 
structure and texture, Liu et al. [39] integrated texture 
features and structure features through feature 
equalization. Additionally, [40] proposed mask-aware 
convolution along with point normalization, catering to 
the dynamic concept of image inpainting. Wang et al. [41] 
proposed regional composite normalization and 
migratable convolution modules to improve the 
utilization of valid pixels throughout the inpainting 
procedure. In a similar vein, Zhu et al. [42] utilized a 
semantic segmentation map to guide the inpainting 
process of mixed scenes, requiring supplementary 
semantic segmentation annotations during the training 
phase.  These methods sometimes face significant 
challenges due to the lack of sufficient constraints, 
significant artifacts such as smooth textures, and false 
semantics. Yu et al. [15] refined a generative approach for 
inpainting by integrating both coarse and refined grids. In 
the refinement network, they implemented contextual 
attention mechanisms to capture extensive correlations 
spanning longer distances within the input data.   Nazeri et 
al. [43] introduced a two-step edge-guided approach for 
image inpainting. In their approach, they first 
reconstructed the edge map of the occluded area and then 
combined it with the incomplete image to form the input 
for the subsequent inpainting stage.  Architectures based 
on U-Net [44] are also popular choices in image 
completion. Fruh et al. [45] introduced an automatic 
method for creating textured 3D models of  urban 
environments This method uses a vehicle equipped with 
cameras and laser scanners on city streets and creates 3D 
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Fig. 1 Overall framework of our proposed method. x represents the input image, m denotes the mask produced by the mask generator 

block, x́ signifies the input image with the mask and x� indicates the output inpainted image. 

 
point clouds. Then, useful information is extracted by 
analyzing the images and removing the pixels of the 
foreground objects. Finally, textured 3D models are 
created by filling holes using methods such as cut-and-
paste and interpolation. One of the main challenges in this 
field is the proper understanding of the local and global 
context. To improve this issue, [35] proposed an approach 
that uses incorporated dilated convolutions [46] to expand 
the knowledge domain of the network in image 
completion. Additionally, work on maintaining global 
and local consistency led to the introduction of two 
discriminators. In a study by [47], they proposed to 
combine branches in the complement network, each with 
different receiving contexts. The image inpainting model 
leverages stacked generative networks to ensure seamless 
texture and color coherence between the generated 
regions and their surrounding context.  Furthermore, the 
integration of the contextual attention model into the 
networks allows for the borrowing of detailed information 
from distant spatial locations. To address the discrepancy 
between open-source datasets and facade inpainting 
content, this approach emphasizes training on custom 
datasets gathered from street facade images [15]. Another 
method, a new mechanism based on FFC introduced by 
[6]. Additionally, this approach is aligned with the 
utilization of transformers in computer vision [48], while 
also considering the Fourier transform as a lightweight 
substitute for self-attention [49]. 

3 Our method 

Our proposed approach introduces an end-to-end 
method designed to detect and eliminate undesired 
objects from images automatically.  The removal process 
is done by using the most accurate labels and creating 
masks on unwanted objects. To begin with, we used the 

SemanticKITTI dataset and trained the network with 18 
labels for semantic segmentation. This type of semantic 
segmentation is pivotal for understanding vast outdoor 
environments and holds widespread applications in fields 
such as robotics and autonomous driving.   After removing 
the unwanted images, large holes are created in the image, 
to fill them we used the internal inpainting technique of 
the image. We did this using a simple one-step network 
called LAMA (Large Mask Inpainting). The 
implementation steps of our method are illustrated in Fig. 
1. Initially, the input image is processed by the mask 
generator block. Subsequently, the resulting mask is 
passed to the inpainting block along with the input image, 
facilitating the filling of the void created by the mask.   

3.1 Semantic segmentation 
In recent years, the research community has been deeply 

engaged in enhancing the understanding of natural scenes, 
leveraging camera images [50, 51] or LiDAR point clouds 
[24, 25, 52] as input sources.  However, single-sensor 
methods have often faced problems in complex 
environments, these problems are caused by their inherent 
limitations. The input sensors clearly specify that the 
cameras provide accurate texture and fine-texture 
information, but do not perform reliably in detecting 
depth features, which are usually vaguely shaped and in 
low-light conditions. In contrast, extensive depth 
information regardless of light variance and LiDAR 
provide accurate, but only record thin information without 
texture information. Given the complementary nature of 
cameras and LiDAR, utilizing both types of sensors are 
advantageous for understanding the surrounding 
environment. Recently, numerous commercial vehicles 
have been outfitted with both LiDAR and cameras 
systems, enabling them to capture street  effectively. This 
trend has spurred research endeavors aimed at improving 
semantic segmentation by amalgamating insights from  
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Fig. 2 Mask generator block using two-dimensional priors. Leveraging the 2D information from the camera image, a small segment is 

initially extracted from the original image. Subsequently, this extracted segment, along with the LiDAR point cloud, undergoes 
independent processing through 3D and 2D encoders simultaneously to generate multi-scale features in parallel. 

two complementary sensors [12-14]. These approaches 
first create a 3D map between points using sensor 
calibration and then generate. 2D pixels using point 
clouds on image planes.  Through point-to-pixel mapping, 
models merge pertinent features in images with point 
features, computed to derive final semantic metrics. 
However, fusion-based methods exhibit the following 
limitations: 

a. Point-to-pixel mapping is impractical for points 
outside the image due to the differences in field of view 
(FOV) between LiDAR and cameras. Fusion-based 
methods are severely constrained by the fact that the field 
of view of most LiDAR systems and cameras only overlap 
to a small extent. 

   b. Fusion-based methods necessitate greater computing 
resources as they concurrently process both point clouds 
and images during runtime, thereby substantially 
enhancing the performance of real-time applications.  The 
employed network primarily focuses on improving the 
semantic segmentation of the LiDAR point cloud by 
aiming to assign a semantic label to each point. Figure 2 
provides a visual representation of the workflow steps of 
the Mask Generator block, which utilizes 2D Priors. The 
operation of the network is that first, camera images that 
are large in size (for example, 1242 x 512) are impossible 
to send to the multi-modal pipeline due to their large size. 
Therefore, a small patch with the size 480 ×  320 is 
randomly sampled from the original camera image, and 
training processing is performed with this small patch, in 
order to increase the execution speed. Following 
sampling, the LiDAR point cloud and cropped image 

patch undergo independent processing through separate 
2D and 3D encoders. This entails extracting 2D and 3D 
features concurrently from two distinct backbones. Then, 
using multi-scale fusion-to-single KD, the 3D network is 
enhanced using multiple features. This integration 
includes texture information, color-sensitive 2D features, 
and 3D core knowledge preservation. Ultimately, all 2D 
and 3D features at each scale contribute to generating 
semantic segmentation predictions, which are supervised 
by 3D labels. During the inference stage, the 
corresponding two-dimensional branch can be omitted, 
thus effectively circumventing the additional 
computational overhead in real-world applications. This 
structure provides an improvement in actual performance 
speed compared to methods based on information fusion. 

4 Architectures 

4.1 Modal-specific architectures 
As explained in Fig. 2, in this block, two different 

networks are used to independently encode the multiscale 
features of the 3D point cloud and the 2D image. These 
two networks work as follows:  

2D Encoder: This network uses ResNet34 [8] as a two-
dimensional network to encode two-dimensional image 
features and operates using two-dimensional convolution, 
and its task is to transform the image. It is two-
dimensional with different features and different scales.  

3D Encoder: For the 3D network, the concept of sparse 
convolution [53] is used to build the 3D network. One of 
the features of this type of operation is its inherent 
sparsity, which means that the operation is only applied to 
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voxels that have non-empty values. In other words, in this 
network, calculation operations are performed only on the 
voxels that have data.  

ResNet bottleneck structure: at each scale (2D and 3D), 
a hierarchical encoder with a design similar to that of the 
decoder in [24] is used. Also, ReLU is replaced by Leaky 
ReLU [54]. These two 2D and 3D networks extract 
different features and scales from 3D point clouds and 2D 
images. 

These features are extracted from different scales, 
known L as feature maps, and used to enhance the 3D 
network and use in semantic segmentation predictions. 
Then the two-dimensional and three-dimensional features 
of each scale are obtained and displayed as �Fl2D�l=1

L
  and 

 �Fl3D�l=1
L

. These features are then used to enhance the 3D 
network and used in semantic segmentation predictions. 
This step encompasses multi-scale fusion-to-single 
knowledge distillation, leveraging multi-modal features 
to enhance the performance of the 3D network.  This 
integration involves incorporating texture information 
and color-aware 2D features, while also preserving the 
original 3D knowledge. In the final analysis, these 
features are harnessed across multiple scales to generate 
semantic segmentation predictions. These predictions are 
then overseen by unadulterated 3D labels.  This approach 
allows the network to have different features and different 
scales to interpret and distinguish different components of 
scenes and objects. Within the two-dimensional network, 
the FCN decoder [55] has been implemented to extract 
features from each encoder layer. This indicates that the 
feature map Dl

2D from the lth decoder layer can be 
obtained by sampling the feature map from the encoder 
layer at position (L −  l +  1) − th.  This sampling 
operation is performed sequentially from lower layers to 
higher layers, and the sampled feature maps are combined 
through the merge operation. Finally, for the semantic 
segmentation process in the 2D network, the combined 
feature map is obtained through a linear classification. 
This linear classification contributes to the final image of 
semantic segmentation prediction. In the 3D network, the 
U-Net decoder isn't utilized; In contrast, the approach 
involves sampling features from different scales to match 
the original size, followed by binning them before feeding 
into the classifier. During knowledge distillation, the 
features of point clouds and images are initially merged, 
ensuring that the information conveyed by image features 
is amalgamated with the existing information from point 
clouds. Following this, an alignment process is conducted 
in a unidirectional manner between the fused features and 
those extracted from the point cloud.  This means 
determining the weight that is assigned to image features 
and point  cloud so that each information source 
determines its participation and contribution in producing 

the final output. In this way, finally, by combining image 
features and point  cloud and performing unidirectional 
alignment, a compact and high-quality knowledge model 
is obtained for use in subsequent processes, such as image 
completion or pattern recognition. In this method, the 
fusion accurately preserves the complete information of 
the multivariate data. Furthermore, through unidirectional 
alignment, fusion yields enhanced point cloud features 
while safeguarding modality-specific information 
integrity. Regarding modality fusion, directly fusing the 
raw 3D features F�l3D to their 2D counterparts F�l2D,  for 
each scale is inefficient, given the disparity in 2D and 3D 
feature representations stemming from different 
backbone architectures.  So, First, we convert  F�l3Dto 
F�l
learner through a 2D MLP learner, aiming to mitigate 

the feature gap. Subsequently, F�l
learner not only proceeds 

to the next concatenation with the 2D features F�l2D to 
obtain the combined features F�l

2D3D
 through another MLP 

but also through a skip connection to the original 
dimension features to enhance the three-dimensional 
features of F�l3De.  In addition, similar to the attention 
mechanism, the final augmented composite features 
F�l2D3De with: 
F�l2D3De =  F�l2D + σ �MLP�F�l2D3D �� ⊙  F�l2D3D,             (1) 

it will be obtained; where σ represents the sigmoid 
activation function. 

Using a knowledge distillation scheme in this 
framework has several advantages. Firstly, it combines 
the 2D learner and fused distillation into single, rich 
texture information, which enhances the learning of 3D 
features without losing any modal information. This 
approach furnishes detailed information in three 
dimensions. Moreover, during the training phase, the 
fusion branch operates exclusively, indicating that the 
advanced model can be deployed with minimal additional 
computational overhead during inference. This structure 
allows the network to better learn hierarchical 
information while making predictions more efficiently. 
Ultimately, this structure may provide the best use of the 
information contained in the features and contribute to the 
accuracy of the predictions. 

4.2 Point-to-Pixel mapping 
Transferring information directly from one mode to 

another poses a challenge due to the representation of 2D 
and 3D features as pixels and points, respectively. The 
primary objective of this section is to generate paired 
features using two distinct methods. The process of 
generating these coupled features in both modes is  
detailed in Fig. 3. For instance, the generation process of 
2D features is depicted in row b of Fig. 3. The process 
entails extracting a small patch I from the original image, 
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Fig. 3 Generation of 2D and 3D features. Part (a) depicts the generation of 3D features, where point-to-voxel (P2V) mapping is easily 
obtained and voxel features are interpolated onto the point cloud. Part (b) showcases the 2D feature generation, where the point cloud 

is initially projected onto the image segment, creating a point-to-pixel (P2P) mapping. Subsequently, the 2D feature map is 
transferred to 2D point features according to the P2P mapping. 

which belongs to ℝH×W×3, and then processing it through 
a 2D grid. As a result, multiscale features with varying 
resolutions are extracted from the hidden layers. As an 
illustration, let's consider the feature map Fl2D from layer 
l, where Fl2D ∈  ℝHl×Wl×Dl  . Initially, a deconvolution 
operation is conducted to enhance the resolution, resulting 
in the original F�l2D. In line with recent advancements in 
multi-sensor methodologies [14], point clouds and images 
are computed utilizing perspective projection and point-
to-pixel mapping techniques. To elaborate, within a 
LiDAR point cloud P = {pi}i=1 

N ∈ ℝN×3, each 3D point 
pi  =  (xi, yi, zi)  ∈  R3 is projected onto a point p�l =
(ui, vi) ∈  R2  on the image plane according to the 
following scheme: 
[ui, vi, 1]T =  1

zi
×  K ×  T ×  [xi, yi, zi, 1]T                  (2)                

where the internal matrices 𝐾𝐾 ∈  𝑅𝑅(3 × 4)  and the external 
matrices 𝑇𝑇 ∈  𝑅𝑅(4 × 4)  represent cameras.  These matrices 
K and T are directly provided in KITTI [56].   Mapping 3D 
features is relatively  straightforward, as  depicted in  Fig. 3 
row A. Specifically, for the point cloud P =
{(xi, yi, zi)}i=1N , a point-to-voxel mapping in the lth layer 
is executed through 

Ml
voxel  = ���

xi
rl
� , �

yi
rl
� , �

zi
rl
� , ��

i=1

N

ϵ ℝN×3,                      (3) 

we get where rl is the resolution of voxelization in layer 
lth. Then, according to the 3-dimensional feature Fl3D ∈
ℝŃl×Dl  of a thin twist layer, we obtain a point. The 3-
dimensional feature F�l3D ∈  ℝN×Dl   through the closest 
interpolation in the original Fl3Dmap feature corresponds  
to Ml

voxel. Finally, points are filtered by discarding those 
that fall outside the field of view of the image: 

 F�l3D   = { fi|fi   ∈  F�l3D, Mi,1
img  ≤  H, Mi,2

img  ≤  W}i=1N ∈

 ℝNimg×Dl ,                                                                              (4) 

According to the provided information, the 2D images 
are on the image screen corresponding to those images. In 
the next step, this predicted 2D ground truth is used as a 
monitoring criterion for 2D branch-related issues [5]. 

4.3 Inpainting image 
We use the LAMA [6] model for inpainting the created 

holes. Our goal is to get the masks created by semantic 
segmentation as input to this data network and the output 
of Inpainting. During the early layers of the network, the 
decision regarding global temporal integration is pivotal, 
as it facilitates complex tasks like filling large masks.  In 
such scenarios, an effective architecture should 
incorporate units with the widest possible receptive field 
in the primary layers. In the early layers, conventional 
models like ResNet may encounter challenges due to the 
slow expansion of the receptive field. This limitation 
arises because, particularly in the network's early layers, 
the receptive field may not grow as rapidly as desired, as 
they typically employ small convolution kernels (e.g., 
3x3).   In other words, since the convolution kernels in the 
initial layers have little spatial information, many of these 
layers will lack the global context, and this leads to a 
waste of computation and parameters. Additionally, for 
wide masks, it is possible for the entire receptive field of 
the generator to be located at a specific position within the 
mask and only observe the missing pixels. To address this 
issue, particularly prominent in high-resolution images, 
an architecture with units possessing a larger receptive 
field and enhanced spatial perception capability is 
required. In recent times, fast Fourier convolution [48] 
has emerged as a solution enabling the incorporation of 
global context in early layers. Utilizing a channel fast 
Fourier transform (FFT), FFC extends its reach to 
encompass a receptive field that spans the entirety of the 
image dimensions.  The two branches divided in parallel 
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in this operator are as follows: 
• The local branch employs regular convolutions 

for processing. 
• The global branch employs the real FFT to 

compute the global field. 
• The key characteristic of the real Fast Fourier 

Transform is its applicability solely to real-
valued signals. 

 Moreover, it utilizes the inverse real FFT to ensure real-
valued output.  The FFC performance involves several 
steps: 

a) Applying real FFT2d on an input tensor 

Real FFT2d: ℝH×W ×C  →  ℂH× W2  ×C,                             (5) 
and connecting the and imaginary real parts together 

ComplexToReal: ℂH× W2  ×C  →  ℝH× W2  ×2C,                   (6)  
b) applying  a convolution block within the frequency 

domain 

ReLU ◦  BN ◦  Conv1 × 1 ∶  ℝH× W2  ×2C  

→  ℝH× W2  ×2C ,                                      (7) 
c) Restoring the spatial structure involves performing an 

inverse transformation. 

RealToComplex: ℝH× W2  ×2C  →  ℂH× W2  ×C,                  (8) 

Inverse Real FFT2d: ℂH× W2  ×C  →  ℝH×W×C,              (9) 
To sum up, integration of the outputs from both the local 

(a) and global (b) branches occurs. Fig. 4 illustrates the 
architecture of the inpainting network.  LaMa integrates 
the subsequent methodologies to boost performance and 
efficiency in large mask inpainting tasks: 

FFC: Recently introduced, this method facilitates the 
integration of global context in primary layers. FFC 
harnesses the channel FFT, resulting in a substantial 
receptive field that encompasses the entirety of the 
image.  Multi-component loss: To enhance the quality of 
inpainting for large masks, this aspect of the approach 
integrates both perceptual and adversarial loss, resulting 
in a broad receptive field. 

Training method - mask enlargement time: Serving as a 
training strategy for mask enlargement, this component 
enables the model to accurately produce large masks. The 
efficacy of FFC is particularly crucial in this aspect. 

These operators are fully differentiable and easily 
replace conventional convolutions in deep networks.  Due 
to the provision of a wide receptive field, algorithms are 
able to access global information through elementary 
layers. This issue is very important for high-resolution 
images, because these types of images require more 
accuracy and variety of information for accurate and high-
quality reconstruction. From the beginning, the FFC 
network is able to provide a wide receiving field and take 

advantage of the global context to achieve the best results 
in tasks such as inpainting high-resolution images. 

4.4 Inpainting loss functions 
The problem of inpainting (filling in missing items in an 

image) is ambiguous in nature, as many valid alternatives 
can be provided for regions where information is missing, 
especially when the "holes" are wider. Adversarial Loss 
is employed to address this issue and ensure the natural 
creation of local details.  Here, a discriminator Dξ(·) is 
defined that operates at the local segment level [57] and 
differentiates between "real" and "fake" segments. "fake" 
segments are labeled "fake" only for pieces of the image 
that intersect with the masked region. This means that the 
discriminator only considers the areas that need to be 
filled. By employing the perceptual loss of HRF (High-
Resolution Features), this approach facilitates rapid 
learning to replicate known sections of the input image. 
Subsequently, these labeled "real" parts are utilized as 
local details in production images. Overall, leveraging 
non-saturating adversarial loss enables the model to excel 
in the inpainting task by producing valid and high-quality 
images to fill in the missing regions. 
LD  = −𝔼𝔼x�logDξ(x)� − 𝔼𝔼x,m�log Dξ(x�) ⊙  m�

− 𝔼𝔼 x,m �log �1 − Dξ(x�)�

⊙  (1 −  m)�                                    (10) 
 LG  =  −𝔼𝔼x,m�log Dξ(x�)�                                                (11) 
 LAdv  =  sgθ(LD) + sgξ(LG) →  minθ,ξ                     (12) 
where in 

x: This variable is an instance of the dataset that is given 
as input to the model. 
m: The m mask indicates the areas of the image that  need 
to be filled. 
x� = fθ(x́): The result of inpainting is the image x́. fθ is  a 
function that transforms the image x� into an image with 
new colors according to the input mask m.  

x́ = stack(x ⊙ m, m): Considered as input to fθ model. 
This input is created using mask m to combine the 
original image x with the mask. 

sgvar: This indicates the gradients (Gradient) relative 
to the var variable. Gradients signify the alterations of the 
loss function concerning the desired variable.   

 LAdv : This value represents the Adversarial Loss 
function. This loss function quantifies the disparity 
between the reconstructed images(x�) and the actual 
images (x).  

This loss function is employed to quantify the disparity 
between the generated images (x�) and the real images (x).  

The purpose of this loss function is to encourage the 
model to produce images closer to real images. 
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Fig. 4 Large mask inpainting. This network is designed to combine multi-component, adversarial, high receptive field perceptual loss 

and mask generation process based on an internal FFC network during training. 

 

4.5 Final loss function 
The ultimate loss function serves as a metric to evaluate 

the quality and efficacy of the model in generating 
inpainted images. Also R1  =  Ex||∇Dξ(x)||2 gradient 
penalty [58], and perceptual loss based on differentiation 
or so-called feature matching loss have been used. This 
final loss function is defined as follows: 
Lfinal  =    αLHRFPL  +  βLDiscPL  +  γR1 +  κLAdv     (13) 

L_HRFPL corresponds to the monitored signal and 
captures the global structure of the image, while 
L_DiscPL, a discriminative loss function, is utilized to 
differentiate between generated and real images. R1 is 
Gradient Penalty, which is used to set the number of 
gradient changes in the optimization process. κ,α, β, γ 
give weight to different values of final loss function.  By 
using the final loss function and proper setting of 
parameters, the model improves the quality of inpainting 
images and has better performance in performing tasks. 
 
 

5 Results 

5.1 Semantic Segmentation settings 

This section delves into exploring the properties of the 
selected segmentation model, examining its suitability for 
evaluation within 360-degree space using the 
SemanticKITTI dataset. SemanticKITTI delivers 
meticulous semantic annotations, ensuring 
comprehensive coverage for scans in sequences 10-00 of 
the KITTI dataset [56].     Formally, sequence 08 serves as 
the validation set, while the remaining sequences are 
utilized for training the model. Furthermore, the test set 
comprises sequences 11–21 from the KITTI dataset. 
SemanticKITTI comprises sequences of 3D scans of 
street environments. These sequences are collected with 
great care and contain spatial shape and semantic 
information of objects in the environment. One of the 
unique features of SemanticKITTI is the detailed 
semantic annotation for each scan in the sequences. This 
annotation means categorizing the objects in each scan 
and assigning semantic labels to three-dimensional points 

In 
Pres

s



   10                                                                     Iranian Journal of Electrical & Electronic Engineering, Vol. XX, No. X, December YYYY 

in the environment. To enhance the accuracy assessment 
of the segmentation model, we utilize the mean 
Intersection over Union metric. This metric calculates the 
average IoU overlap across all classes.  The mIoU 
measure means the average correspondence of objects 
with units of objects in images. To compute this metric, 
we first determine the intersection over union and the 
union size between each class or object in the image and 
the unit of objects. Then the IoU is calculated for each 
object and the average of these IoU values for all objects 
is reported as mIoU. Mathematically, the mIoU measure 
is computed as follows: 

 mIoU =
1
N
�

TPi
TPi + FPi + FNi

N

i=1

                                     (14) 

Where N represents the number of classes or objects in 
the image, TPi denotes the number of actual matching 
points of objects with the unit of objects for class 𝑖𝑖, FPi 
represents the number of points of incorrect matching of 
objects with the unit of objects for class i, and FNi denotes 
the number of points of non-matching of objects with the 
unit of objects for class i. 

This criterion serves as an indicator of the model's 
performance quality in matching with various objects. In 
addition, we report two other measures. First, we 
calculate the overall accuracy for each class. To 
implement the model, we use a ResNet34 encoder with 
2D complexity. In this method, features are generated 
after each down sampling layer in order to extract 2D 
features. Also, to enhance the speed of the network in the 
3D model, we use a modified SPVCNN [24] with a voxel 
size of 0.1 and less parameters. The hidden dimension of 
this network is determined to be 64 for the 
SemanticKITTI dataset. The utilization of L  layers is also 

critical for amalgamating the collective knowledge. In the 
context of the SemanticKITTI dataset, L  is defined as 4. 
Throughout each stage of knowledge transfer, both 3D 
and 2D features undergo adjustment to 64 dimensions via 
recurrent processing or multilayer neural networks.  
Similarly, the hidden size of multi-layer   networks and 2D 
learner in hybrid knowledge fusion is also set to 64. 

5.2 The results of the semantic segmentation training 
Within the context of semantic segmentation section, 

both the cross-entropy error function and the Lovasz error 
function [59] are employed.  Also, for the knowledge 
transfer process, we have set the ratio of detection error 
value to KL deviation as 1 to 0.05. In addition, in the test 
phase, we use the technique of increasing the data of the 
test time. Training of the network was conducted using 
the NVIDIA Tesla T4 GPU equipped with 16 GB 
GDDR6 memory and 2,560 CUDA cores. A batch size of 
6 was employed, and approximately 208 hours were 
invested in model training. 

Table 1 presents the outcomes of our training utilizing 
the 2D pass network, showcasing class accuracy and 
evaluation results.  While results for all classes are 
included to demonstrate the model’s robustness, the 
primary focus of this study is on privacy-sensitive objects, 
particularly persons and vehicles. For the person 
category, which combines person (mIoU: 76.6%), and 
bicyclists (mIoU: 87.9%), the model demonstrates strong 
segmentation performance, effectively detecting 
individuals across diverse scenarios. For vehicles, the 
results span multiple subcategories, including car (mIoU: 
96.5%), truck (mIoU: 75.3%), motorcycle (mIoU: 
63.3%), and bicycle (mIoU: 45.8%). These results 
highlight the model’s robustness in segmenting sensitive 

Table 1. Evaluation results of semantic segmentation in different classes 

Method mIoU                   
RangeNet53++ [17] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 
Meta-RangeSeg [60] 61.0 90.7 74.6 64.3 29.2 91.1 93.9 43.9 53.1 43.8 82.6 65.5 65.5 63.7 53.1 18.7 64.7 56.3 64.2 
CNN-LSTM [61] 56.9 90.7 75.7 23.3 17.6 90.0 92.6 48.6 74.6 49.6 87.1 60.8 75.4 53.8 74.6 9.2 51.3 63.9 41.5 
3D-MiniNet [62] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6 
GAF-NET [63] 58.8 91.0 74.6 61.9 24.2 89.5 94.7 34.2 33.5 33.6 84.2 65.3 68.4 48.8 50.5 - 61.3 52.2 53.3 
TransRVNet [64] 64.8 91.9 76.5 68.5 29.9 91.0 92.7 43.4 51.2 50.3 84.4 67.6 70.2 62.1 55.5 - 67.6 59.2 62.5 

NAPL [65] 61.6 89.6 73.7 67.1 31.2 91.9 96.6 47.3 32.3 43.6 84.8 69.8 68.8 51.1 53.9 36.5 67.4 59.1 59.2 
SqueezeSegV3 [53] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 
CGGC-Net [66] 60.8 86.9 73.7 59.0 15.7 91.3 94.5 50.8 35.2 40.8 83.9 64.9 68.2 58.8 57.6 - 62.8 52.5 53.3 
MASNet [67] 64.6 96.5 80.0 46.6 0.6 88.5 95.3 83.3 46.3 62.9 87.6 70.3 74.1 73.7 78.1 - 63.5 63.4 42.4 
Ours 64.9 92.7 79.6 42.7 2.6 89.9 96.5 75.3 45.8 63.3 89.4 72.1 77.2 76.6 87.9 0.0 57.6 64.2 54.1 
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objects, even under challenging conditions such as 
occlusions and varying object scales. Including other 
classes in the evaluation ensures a holistic assessment of 
the model’s overall performance, demonstrating its 
generalization ability without compromising accuracy for 
key classes 
   Table 2 compares the inference times of various 
segmentation algorithms. All evaluations were conducted 
on an NVIDIA Tesla T4 GPU. Our method outperforms 
several state-of-the-art approaches, demonstrating 
superior efficiency and minimal computational overhead, 
making it highly suitable for fast processing in large-scale 
applications. 
 
Table 2.  Comparison of Inference Time across 
Segmentation Algorithms. 

Method Infrance Time 
RangeNet53++ [17] 83.3s 
SqueezeSegV3 [53] 238ms 
PointNet++ [68] 5900ms 
TransRVNet [64] 38.4ms 
RandLA-Net [69] 880ms 
PolarNet [70] 62ms 
Ours 62ms 

5.3 Inpainting results 
To achieve better results in inpainting images with large 

masks, we suggest using [6], which uses a variety of 
strong baselines at lower resolutions. This difference in 
performance and the ability to reveal more during the 
painting process is evident. For training both the image 
completion and discriminator models, we employed the 
Adam optimizer, utilizing fixed learning rates of 0.001 
and 0.0001, respectively, for the networks.  Furthermore, 

all models undergo training for 1 million iterations with a 
size of 30. Across all experimental stages, 
hyperparameters are meticulously chosen through the 
coordinate beam search strategy. We used the pre-trained 
LaMa model for inpainting. Utilizing the coordinate beam 
search strategy, the following weight settings were 
attained: α = 30, β = 100, γ = 0.001, κ = 10. It's noteworthy 
that the hyperparameter search is consistently executed on 
a distinct subset of the validation data across all cases. For 
model tests, the Places2 [71] dataset have been used as 
input data. In the design of the models, the established 
method presented in the recent image2image literature 
has been followed. To evaluate the performance of the 
models, well-established metrics like the learned 
perceptual image patch similarity (LPIPS) and the initial 
Frechet inception distance (FID) have been employed. 
These metrics are juxtaposed with the L1 and L2 distances 
at the pixel level for comparison. These two criteria, when 
several natural finishes are acceptable, are recognized as 
more suitable criteria for evaluating the performance of 
masks in the inpainting process. We then compare our 
proposed approach with several strong baselines, as 
shown in Table 3. For this evaluation, the performance of 
various inpainting methods is assessed across three 
different mask sizes, with FID and LPIPS as the primary 
metrics. The results demonstrate that LAMA consistently 
outperforms most of the baselines, delivering the best 
performance across all mask sizes. LAMA achieves 
superior results in both FID and LPIPS, particularly in the 
0.01%-20% and 20%-40% ranges, where it maintains a 
clear advantage over other methods .

 
Table 3. We present a quantitative evaluation of inpainting results based on FID and LPIPS metrics across three different 
mask sizes: 0.01%-20%, 20%-40%, and 40%-60%. Our experiments show that LAMA consistently achieves superior 
performance compared to a broad set of baseline methods, delivering more accurate inpainting results that better preserve 
perceptual quality and align with the true distribution of real-world images. 
  

Method 0.01%-20% 20%-40% 40%-60% 
FID LPIPS FID LPIPS FID LPIPS 

Deep Fill v2 [34] 23.6854 0.0446 27.3259 0.1362 36.5458 0.2891 
CTSDG [72] 24.9852 0.0458 29.2158 0.1429 37.4251 02712 
WaveFill [73] 30.4259 0.0519 39.8519 0.1365 56.7527 0.3395 

LDM  [74] - - - - 27.3619 0.2675 
WNet [75] 20.4925 0.0387 24.7436 0.1136 32.6729 0.2416 
MISF [76] 21.7526 0.0357 30.5499 0.1183 44.4778 0.2278 
CMT [77] 22.1841 0.0364 32.0184 0.1184 35.1688 0.2378 
MxT [78] 15.3980 0.0334 23.7109 0.1106 26.9155 0.2372 
LAMA [6] 14.7288 0.0354 22.9381 0.1079 25.9436 0.2124 

Table 4 compares the inference times of eight image 
inpainting algorithms, all evaluated on an NVIDIA Tesla 
T4 GPU. AOT-GAN [80] achieves the fastest 
performance with an inference time of 0.05 seconds, 
while LaMa [6], the method employed in this study, 
provides competitive efficiency at 0.5 seconds. DDRM 

[65] follows with a fast inference time of 1.5 seconds. In 
contrast, Score-SDE [79] takes 25 seconds, RePAINT 
[81] requires 150 seconds, and ICT [82] takes 110 
seconds. DSI [83] has an inference time of 30 seconds. 
IAGAN [84] exhibits the longest inference time at 350 
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seconds. These differences highlight the trade-offs 
between computational efficiency and model complexity. 

 
Table 4. Comparison of Inference Time across 
Inpainting Algorithms. 

Method Infrance Time 
Score-SDE [79] 25S 
AOT-GAN [80] 0.05S 
DDRM [65] 1.5S 
RePAINT [81] 150S 
ICT [82] 110S 
DSI [83] 30S 
IAGAN [84] 350S 
LaMa [6] 0.5S 

 

6  Final results 

We used Google Street View images to evaluate our 
method. GSV images have special challenges for 
segmentation and inpainting due to the wide range of 
imaging angles that provide 360-degree information. The 
features of these images include the following: 

• 360-degree coverage: These images provide 

information from different angles and 
completely in 360 degrees, which challenges 
segmentation and inpainting every part of this 
image. 

• Spatial and temporal changes: Spatial and 
temporal changes in a 360-degree image can 
reduce the stability and accuracy of 
segmentation and inpainting because objects 
and objects may be seen in different positions 
and times. 

• Differences in lighting and shadows: Due to 
differences in lighting during the day and in 
different locations, it may become difficult to 
distinguish boundaries and separate objects in 
the image. 

• Changes in scale and distance: Objects in GSV 
images may be seen at different distances and 
scales, which can complicate their detection, 
segmentation, and inpainting. 

As depicted in Fig. 5, our method effectively overcomes 
these challenges and achieves superior results.

 
Fig. 5 The results obtained from our method. the left column portrays the input image, the middle column illustrates the 

segmented image and the right column showcases the inpainting output. 

7 Conclusion 

This paper introduces a novel approach that yields 
substantial benefits by removing people and vehicles 
from street view images and subsequently employing 
inpainting techniques to fill the resulting holes. One of the 

basic advantages of this method is to increase the privacy 
of people in the images. Due to the fact that street image 
monitoring technologies are becoming more popular day 
by day, people's privacy is at risk. This method allows us 
to remove people and vehicles from images while keeping 
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the images attractive. This research utilizes 2DPASS 
semantic segmentation, providing an extensive training 
framework to enhance LIDAR point cloud semantic 
segmentation performance through the integration of 
prior knowledge. By leveraging semantic modeling, 
2DPASS extracts comprehensive semantic and structural 
insights from multimodal data, thereby enhancing the 
effectiveness of a 3D network. Furthermore, in inpainting 
tasks, a straightforward and single-step approach for 
addressing large masks has been explored. Fast Fourier 
convolutions enable our method to generalize effectively 
to higher resolutions while maintaining more efficient 
parameterization compared to baseline techniques. This 
method creates a significant improvement in the clarity 
and cleanliness of images after removing people and 
vehicles. By removing unwanted objects and applying 
inpainting techniques, images are displayed without 
interference. This helps users to better access the 
important information of the images. In addition, this 
method can be effective in reducing the interference and 
occupation of unwanted objects (from the 18 classes we 
taught) in the images and display the images more 
perfectly. 
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