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Abstract:  

Touch, one of the fundamental human senses, is essential for understanding the environment by enabling object 

identification and stable movements. This ability has inspired significant advancements in artificial neural networks for 

object recognition, texture identification, and slip detection applications. However, despite their remarkable capacity to 

simulate tactile perception, artificial neural networks consume considerable energy, limiting their broader adoption. 

Recent developments in electronic skin technology have brought robots closer to achieving human-like tactile perception 

by enabling asynchronous responses to temperature and pressure changes, thereby enhancing robotic precision in tasks 

like object manipulation and grasping. 

This research presents a Spiking Graph Convolutional Network (SGCN) designed for processing tactile data in object 

recognition tasks. The model addresses the redundancy in spiking-format input data by employing two key techniques: 

(1) data compression to reduce the input size and (2) batch normalization to standardize the data. Experimental results

demonstrated a 93.75% accuracy on the EvTouch-Objects dataset, reflecting a 4.31% improvement, and a 78.33%

accuracy on the EvTouch-Containers dataset, representing an 18% improvement. These results underscore the SGCN's

effectiveness in reducing data redundancy, decreasing required time steps, and optimizing tactile data processing to

enhance robotic performance in object recognition.
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Introduction 

 Tactile sensors play a crucial role in object recognition 

and performing many everyday tasks, such as driving and 

food preparation. The tactile pixels in these sensors 

provide robots with remarkable capabilities for better 

object recognition. These tactile sensors can offer vital 

information, such as texture, roughness, and friction, 

which are used in applications like object identification, 

slippage detection, and texture analysis [1]. This study 

addresses the challenges of object recognition using event-

driven tactile sensors. Prior research has predominantly 

utilized conventional tactile sensors and machine learning 

techniques, including convolutional neural networks. [2]. 

However, event-driven sensors differ significantly in 

performance and the type of data they provide,  these 

tactile asynchronously report environmental changes, 

offering data in the form of event-driven "spikes," where 

each taxel operates independently [3]. Compared to frame-
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based traditional sensors, event-driven sensors offer 

advantages such as enhanced energy conservation, 

improved scalability, and reduced latency. However, 

learning from these event-driven systems is still in its 

infancy and demands further investigation and 

development. [4]. 

Despite these advancements, artificial neural networks still 

consume significantly more energy than the human brain, 

especially in robotics applications that require rapid and 

accurate environmental perception. The sense of touch is 

essential for various robotic tasks, including object 

manipulation and grasping. Recent advancements in 

electronic skin technology are bringing robots closer to 

achieving tactile perception comparable to that of humans. 

Electronic skins can respond to various stimuli, including 

temperature and pressure, simultaneously, thereby 

enhancing the precision and efficiency of robotic systems 

[5]. 

The model used in this study utilizes Spiking Graph 

Convolutional Networks (SGCN), which offer unique 
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capabilities for sensing and perceiving objects through 

touch. The input data for this model is received in a spiking 

format, meaning that the information is processed 

dynamically and at high speed. An analysis of the input 

data revealed that a significant portion of this data 

contained redundancy. Addressing this issue requires 

optimization techniques to improve system efficiency and 

ensure optimal resource utilization [4]. 

TactileSGNet [6] is a network based on event-driven 

tactile data that reacts asynchronously to environmental 

changes such as pressure or temperature. This network 

processes data in real-time and is more energy-efficient 

than traditional methods. Due to the irregular arrangement 

of sensors in robotic devices, this network is more suitable 

for tactile learning than conventional convolutional 

methods. It addresses this challenge by organizing tactile 

data into a graph structure, allowing the network to 

effectively leverage local connections between tactile 

sensors. The main ideas of this research are divided into 

two key phases. First, the input data is compressed using 

specialized compression techniques to reduce the data size 

and eliminate redundancy. This step helps decrease the 

data volume and improve processing speed. Next, the data 

is normalized using batch normalization in Spiking Graph 

Convolutional Networks to ensure balanced data 

distribution. This normalization process enhances learning 

quality, reduces training time, and increases prediction 

accuracy [2]. 

This study utilized two different datasets, and the results 

show high accuracy in classifying various household 

objects using the proposed methods. These findings 

suggest that the use of compression and normalization 

techniques can significantly improve classification 

accuracy and reduce the time required for data processing. 

The application of these methods, particularly in the 

identification and classification of household objects, 

demonstrates significant advancements in the fields of 

image processing and machine learning [5]. This research 

aims to reduce the redundancy in input data and improve 

the efficiency of information processing systems. 

1 Background and Related Work 

This study examines Spiking Graph Convolutional 

Networks (SGCNs) for object recognition, employing 

event-driven tactile data. In this section, we provide a 

concise overview of the background and pertinent 

literature in this area. Given the extensive nature of 

research in this field, we will only present a selection of 

representative works due to space constraints. 

To date, various tactile sensors have been designed and 

developed, including widely used sensors such as PPS, 

BioTac, and Tekscan [7]. In this study, we utilized the 

NeuTouch sensor, an event-based tactile sensor recently 

introduced in research [8]. Research into learning from 

event-based tactile data has been limited so far [9]. Recent 

studies have introduced a multi-faceted spiking neural 

network based on the SLAYER model [10]. However, our 

work differs from these studies; instead of using fully 

connected layers, we employ Spiking Graph Neural 

Networks with LIF neurons [11]. Tactiles, which function 

as tactile sensor units, are similar to image pixels but 

process information such as contact and pressure instead 

of images [12]. The greater the number of tactile on the 

sensor surface, the higher the accuracy of the robot in 

recognizing tactile details [13]. These tactile allow robots 

to sense characteristics like roughness, softness, and 

temperature of objects similar to human touch. This 

capability enables robots to perform tasks including object 

recognition, preventing slippage, and analyzing surface 

textures more effectively. [14]. 

1.1 Graph Convolutional Networks 

 In these networks, convolutions operate not on 

conventional data but on the nodes of a graph [15]. These 

networks can be classified into two main types: spatial 

graph convolutional networks and spectral graph 

convolutional networks [16]. Spatial methods are directly 

applied to graphs, while spectral methods utilize spectral 

decomposition of the Laplacian matrix to better model the 

relationships among nodes [17]. The Laplacian matrix is 

employed in spectral methods for graph analysis and to 

enhance the understanding of node relationships [18]. 

These networks have applications in various fields due to 

their ability to process structured data such as graphs, 

including applications in object detection and 

classification in images and videos [19]. 

1.2 Spiking Graph Convolutional Networks 

  These networks leverage event-based spike processing 

and feature extraction from sparse input data to identify 

important patterns and process event-based tactile sensor 

data [20]. A key feature of this architecture is its ability to 

perform transfer learning and process spatiotemporal data, 

akin to brain computations [21]. However, using these 

networks comes with significant challenges. The diversity 

of data, including dimensions, sizes, textures, and colors of 

objects, can impact accuracy and performance, leading to 

generalization issues [22]. Environmental noise, such as 

low light and vibrations, can reduce detection accuracy 

[23]. Additionally, the non-separable nature of the spike 

function complicates training and necessitates solutions 

like converting deep neural networks to spiking networks 

and approximating spike function derivatives [24]. Despite 

these challenges, the biological similarity of spiking graph 

networks makes them more suitable and biologically 

plausible for real-world applications [25]. Their ability to 

learn from limited training data and effectively process 

tactile information makes them a promising approach for 

event-based tactile object recognition [26]. These 

networks are increasingly recognized for their unique 

ability to model and process complex information, 

especially in object recognition and touch-based learning 

[27]. Numerous studies continue to focus on enhancing the 

performance of spiking neural networks, including the 

creation of spatial and temporal spiking networks. An 

innovative model is a hybrid model that integrates both 

spatial and temporal spiking neurons to accurately capture 

intricate spatiotemporal features. [28]. This model has 

achieved 92% accuracy in object recognition and 89% 

accuracy in container content identification, demonstrating 

its high efficiency in these areas [30]. Furthermore, the use 
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of k-nearest neighbor methods to enhance accuracy has 

also been explored [31]. However, these models face 

challenges such as high computational complexity and the 

need for fine-tuning, which must be considered in their 

design and implementation [30]. Another innovative 

technique that enhances the stability of training spiking 

neural networks is threshold-dependent batch 

normalization [32]. This method normalizes neuron 

outputs and adjusts their firing thresholds to prevent 

excessive or insufficient firing, helping spiking neural 

networks perform complex tasks like image classification 

with greater accuracy [33]. This technique is particularly 

effective in deep networks that may encounter issues such 

as vanishing or exploding gradients [34]. Hybrid models in 

spiking neural networks, combining graph networks and 

biologically inspired neural models, enable more effective 

processing of spatiotemporal information [35]. These 

models offer high accuracy and flexibility but also face 

challenges such as computational complexity and the need 

for high-quality data [36]. Ultimately, this review 

emphasizes that finding the right balance between 

accuracy and efficiency in selecting and designing spiking 

models is crucial. The choice of the appropriate approach 

should be based on the specific needs of each project, and 

new techniques like threshold-dependent batch 

normalization can play a significant role in enhancing the 

performance of spiking neural networks [37]. 

2.3 One-dimensional Max Pooling Compression 

One-dimensional Max Pooling is a data compression 

technique used to reduce dimensionality and 

computational load. This technique aims to reduce 

redundancy in input data and extract features. In One-

dimensional Max Pooling, a sliding window moves over 

the data, selecting the maximum value from each segment. 

This process reduces the number of time steps or input data 

while preserving important features. 

2.4 tdBN(tdBatchNorm)[38] 

In spiking neural networks, inputs are presented as discrete 

spikes, and neurons activate only when their membrane 

potential exceeds a specific threshold. While this spike-

based mechanism has its advantages, it also presents 

significant challenges, particularly in adjusting neuron 

firing rates and addressing issues like vanishing or 

exploding gradients during training. To mitigate these 

challenges, threshold-dependent batch normalization is 

employed. This method is similar to conventional batch 

normalization in artificial neural networks but with 

specific adaptations for the unique features of Spiking 

Neural Networks (SNNs). A key modification is channel-

wise normalization. In this process, the mean and variance 

of inputs are computed for each channel of pre-synaptic 

activations. The pre-activations are then normalized based 

on the threshold voltage to maintain stability and control 

over input signal variations. 

Channel Normalization Calculation: The channel 

normalization calculation is performed as follows for each 

channel m: 

𝑧𝑚 =
𝛾𝑊𝑡𝑟(𝑧𝑚 − 𝐸|𝑧𝑚|

√𝑉𝑎𝑟[𝑧𝑚] + 𝜎
 

In this formula: 

 𝑊𝑡𝑟 is the neuron firing threshold. 

 𝛾 is a hyperparameter depending on the network 

structure. 

 E[𝑧𝑚] is the mean of the channel mmm inputs.  

 Var[𝑧𝑚]  is the variance of the channel mmm 

inputs. 

 𝜎 is a small value used to prevent division by 

zero. 

This formula adjusts inputs based on neuron firing 

thresholds to prevent vanishing or exploding 

gradients. Consequently, this technique aids in 

optimizing the network and enables more effective 

execution of models on neuromorphic hardware. After 

normalization, the final output is optimized using 

trainable parameters. This process significantly 

improves network firing rate adjustment and training 

stability, leading to more effective and stable learning.  

A new method combining threshold-dependent 

normalization techniques and the aforementioned 

compression techniques has been introduced. This 

approach aims to reduce redundancy in input data and 

enhance overall efficiency. 

3. Methodology 

This section explores a method that utilizes Spiking 

Graph Convolutional Networks (SGCNs), originally 

introduced in [38], These establish the basis for our 

research. Unlike pixel-based networks in vision 

sensors, tactile taxels (sensory units) are analogous to In 
Pres
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human sensory receptors; they are distributed 

unevenly, with each one carrying different neural 

importance [40]. Advances in artificial electronic 

skins have enabled the development of flexible tactile 

sensors that can simulate or even surpass human 

tactile perception [41]. These sensors can be mounted 

on existing robotic limbs or feature irregularly 

arranged taxels [42]. One such example is the 

NeuTouch sensor, biologically inspired and equipped 

with 39 taxels in a radial pattern [43]. Although 

NeuTouch serves as a primary example, the developed 

methods for tactile sensors apply to sensors with 

varying taxel configurations and arrangements, 

enabling a wide range of applications in robotics and 

prosthetics [44]. 

zTo process touch-based graph data effectively, we 

introduce the Neural Spiking Tactile Graph Network 

(TactileSGNet) architecture. This network 

incorporates Leaky Integrate-and-Fire (LIF) neurons 

and features a Topology-Adaptive Graph 

Convolutional (TAGConv) layer, fully connected 

(FC) layers, and a final voting mechanism for 

classification. [45]. 

LIF Activations[46]: In conventional neural 

networks, activation functions such as ReLU are used 

[47]. However, these functions are not suitable for 

spiking neural networks. Instead, we utilize the Leaky 

Integrate-and-Fire (LIF) model which outlines these 

neural dynamics as follows: 

𝜏
𝑑𝑢(𝑣)

𝑑𝑢
= −𝑢(𝑣) + ∑ 𝑘𝑛𝑦𝑛

 

𝑛

 

Where 𝑢𝑣 represents the membrane potential and τ is the 

time constant. To update this potential, we use the Euler 

method, and its simplified form is as follows: 

𝑢(𝑣 + 1) = 𝛼𝑢(𝑣) + ∑ 𝑛𝑘𝑛
′ 𝑦𝑛

 

𝑛

 

The LIF activation function generates a spike when the 

membrane potential attains a specific threshold, after 

which it resets. 

TAGConv-Layer [48]: This layer adjusts to the topology 

of the input graph, with its convolution operation 

represented as follows: 

𝑦𝑔 = ∑ 𝐻𝑑,𝑒 ∗ 𝑝𝑑 + 𝑞𝑒

𝐷

𝑑=1

 

Where Hd,eis the graph filter, and q is the normalized 

adjacency matrix. 

Fully  ConnectedLayer:  

This layer functions similarly to standard layers in neural 

networks: 

y = Az + c 

Here, z denotes the inputs from the previous layer, A 

represents the weight matrix, c is the bias vector, and y 

signifies the output feature. 

Voting Layer: This layer facilitates the final 

classification, where the neuron that generates the highest 

number of spikes within a designated time window 

determines the predicted class. 

Training: To train the network, a loss function is 

established. This function computes the mean squared 

error between the vector z and the voting results from the 

output layer, averaged over a specified time step. 

𝑛 = ‖𝑟𝑡 −
1

𝑇
∑ 𝑀0

𝑇

𝑡=1

‖

2

 

In this context, M represents the decision matrix, and 𝑦𝑡 

represents the output feature from the final layer at time t. 

In conventional neural networks, the network is trained by 

reducing the error function using standard 

backpropagation methods. However, Spikes are non-

differentiable; however, we can approximate the derivative 

of the spike function, demonstrating effectiveness across a 

range of tasks. In this research, we utilize the box function 

g(n) to estimate the derivative of the spike function, owing 

to its simplicity and demonstrated effectiveness 

𝑔(𝑛) = 𝑠𝑖𝑔𝑛 (|𝑛 − 𝑛𝑇| <
𝜃

2
)

1

𝜃
 

In this formula, θ is recognized as the width parameter. 

4) Result of Expriments: 

The primary aim of our experiments was to assess various 

architectures for event-based tactile object recognition. 

The main objective of this research is to improve the 

Figure 1: Our network is a spiking neural network based on TactileSGNet [6]. A spiking neural network (SNN) processes input spikes 

from tactile sensors (taxels), specifying their connectivity by an input graph. The network consists of a graph convolutional layer 

(TAGConv) with max pooling and a normalization layer, two fully connected (FC) layers, and a voting layer, in addition to the LIF 

layers. 
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efficiency and processing speed of spiking tactile data. To 

showcase the advantages of the proposed method 

compared to existing approaches, we compared our model 

with two similar methods: Hybrid Graph Neural Networks 

and Event-Based Tactile Learning using position-spiking 

neurons. This research was carried out using the PyTorch 

library 

 

a) Datasets 

We compared the methods using two event-driven tactile 

datasets, which were gathered using a Franka Emika Panda 

robotic arm fitted with a NeuTouch sensor: 

 EvTouch -Containers: This dataset includes 

tactile data from four types of containers with five 

different fill levels, resulting in 300 samples.  

 EvTouch - Objects: This dataset consists of 

tactile data from 36 object classes with 720 

samples.  

The input size for EvTouch_Objects is specified as a tensor 

of shape [39, 2, 325]. In this structure, the first dimension, 

39, the Number of taxels, indicates the number of samples 

processed concurrently during training or evaluation. The 

second dimension, 2, corresponds to the compression or 

release of the taxels. The third dimension, 325, indicates 

the time steps involved in the experiment, during which the 

taxels grasp and release the object. 

For EvTouch-Container, the input size is a tensor of shape 

[39, 2, 250]. This structure is similar to the previous one, 

but the number of time steps involved in the experiment, 

during which the taxels grasp and release the object is 250.  

These datasets were used to evaluate object recognition 

performance with tactile sensors. 

b) Methods: 
To reduce redundancy in the input data, we employed 

compression and normalization techniques. Below, we 

outline the proposed methods for compression and 

normalization 

Proposed Compression Method: One-dimensional Max 

Pooling: In our proposed method, we defined window 

sizes ranging from 2 to 5 and step sizes from 2 to 5. The 

window size and step size can be adjusted across different 

dimensions within the specified ranges. The table below 

shows the step sizes and window sizes used. 
Table 1: Window Size and Step Size 

Stride Window-size 

2 2 

3 3 

2 4 

3 4 

4 4 

2 5 

3 5 

5 5 

 

4 tdBN Normalization Method(tdBatchNorm)[38] 

In our proposed method, normalization was carried out 

using the tdBN normalization technique. This method 

improved accuracy and reduced training and testing loss, 

leading to faster processing and more efficient 

computations. In the following sections, the accuracy of 

the proposed method will be compared with other similar 

techniques in the field, along with a detailed 

 comparison of training and testing loss with the original 

paper. 

4-2-1 Comparison of Methods: 

We compared our proposed method with four different 

approaches that utilized the same datasets. Each of these 

methods and their resulting accuracy are described below: 

 Tactile SGNet [6]: In this study, we compared 

the training loss and test loss results obtained with 

those reported in this paper, which forms the basis 

for our work, as our primary objective is to 

enhance the network proposed in this article. 

 Hybrid-SRM-FC [49]: This is a hybrid model 

used for event-based tactile data learning, 

consisting of TSRM and LSRM models. This 

approach is more energy-efficient than traditional 

ANN networks. 

 Hybrid-LIF-GNN [49]: Similar to the previous 

model, this hybrid approach processes event-

based tactile data using a combination of Graph 

Convolutional Networks (GNN) and LIF models. 

LIF is employed to simulate the characteristics of 

spiking neurons and process event-driven spiking 

data. LIF neurons periodically activate or 

deactivate, mimicking the behavior of biological 

neurons. GNNs are used to learn from graph-

structured data and complex relationships. 

 Work [50]: This model employs spiking neurons 

that function similarly to biological neurons. 

These neurons respond asynchronously to stimuli 

by firing spikes, making the network ideal for 

processing event-driven, sparse tactile data. The 

network uses a graph-based structure to organize 

and process data from tactile sensors, effectively 

utilizing local communication between the 

sensors. 
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Table 2:The parameters used in this paper will be detailed 

in the following sections 

 

 

5 Training Preparation and Evaluation 

The parameters used in our model are listed in Table 1. We 

split the data into 80% for training and 20% for testing, 

with equal class distribution. The model is trained for 100 

epochs, and as shown in Figures 2 and 3, our comparison 

metric is the precision on the test set. The study evaluated 

the training and testing process and found that our 

proposed method converged faster compared to the model 

used in TactileSGNet. Additionally, it achieved lower test 

loss and training loss than the reference method. 

 
 

 

Fig.1: Training Losses and Test Losses as Training Progressed on 

EvTouch-Objects 

 

 

 

 
Fig. 2: Training Losses and Test Losses as Training Progressed on 

EvTouch-Containers. 

 

The precision attained by our method on the EVTouch-

OBJECT dataset is 93.75%, obtained using a window size 

of 5 and a step size of 2. This represents an improvement 

of approximately 0.32% compared to the 

HYBRID_LIF_GNN method, which had the highest 

accuracy among the other approaches while requiring 

fewer computations. This outcome highlights the 

remarkable efficiency of our approach, where despite the 

count of time steps being reduced, our model's accuracy 

surpasses that of SOTA. On the EVTouch-CONTAINER 

dataset, our method shows an improvement of about 18% 

Parameter Value 

 

 
 

Description 

Number of Network Layers 3 Number of layers in the neural network 

Gradient Width Approximation (β) 0.5 Parameter for adjusting the approximate 

gradient 

Batch Size 1 Number of samples processed in each batch 

Membrane Potential DecayConstant 0.2 Rate of membrane potential decay over time 

Learning Rate 1×10−3 Learning rate for updating weights in the 

network 

MembranePotentialRecovery(𝒖𝑹) 0 Membrane potential value after neuron 

activation 

MembranePotentialActivationThreshold 0 The membrane potential threshold at which 

the neuron activates 
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over the original paper, with an accuracy of 78.333%, also 

obtained using a window size of 5 and a step size of 2. 

Table 3 presents the best accuracies achieved by various 

methods and our proposed approach. This table shows that 

the precision of the Hybrid_SRM_FC and 

HYBRID_LIF_GNN methods is more than our method for 

the EVTouch-CONTAINER dataset. Notably, these 

networks comprise two sub-networks, each containing a 

spiking graph layer and three spiking FC layers, and 

employ the baseline timing window sizes. Consequently, 

the computational demands of these structures far surpass 

those of our suggested method. 

 
Table 3: Comparison of Methods 

 

Since the studies we compared our results with only report 

the highest accuracy and do not provide variations in 

accuracy values, statistical comparisons, such as ANOVA, 

for metrics like recall are not feasible. To illustrate the 

variability of the proposed method's results for the two 

datasets EvTouch-Objects (using the method with 

window size = 5 and time-step = 3) and EvTouch-

Containers (using the same method) experiments were 

repeated multiple times. The best accuracies obtained from 

these experiments, as reported in Table 4, have been 

included: 

 
Table 4: best results of each of the datasets 

Experiment 

number 

EvTouch-

objects 

EVTouch-

containers 

1 91.667 71.667 

2 92.667 73.33 

3 93.65 73.66 

4 93.75 75.333 

5 93.75 78.333 

 

The mean and variance for the EvTouch-Objects dataset 

are 93.10 and 0.68, respectively, and for the EvTouch-

Containers dataset, they are 74.46 and 5.10, respectively. 

 6Ablation Study:  

 The comparison of accuracy achieved under 

compression conditions without normalization, as shown 

in the table below, indicates that although normalization 

was not applied, the accuracy obtained surpasses that 

reported in the original paper for both datasets. For the 

EVTouch-object dataset with a window size of 5 and 

steps of 2, 3, and 5, the achieved accuracy is 91.666%, 

which represents an improvement of approximately 

2.21% compared to the reference paper. For the 

EVTouch-Container dataset, the accuracy is 73.333%, 

which is consistent with window sizes 4 and step 4, and 

window size of 5 and step 3, reflecting an approximate 

improvement of 13.16% over the reference paper’s 

accuracy. 

 
Table 5: The Accuracy Achieved by Our Method without the 

Use of Normalization. 

 7 Conclusion 

Improving the accuracy and efficiency of neural networks 

used for receiving and processing tactile data remains a 

fundamental challenge. Enhancing the precision and 

performance of these networks not only accelerates 

advancements in deep learning but also represents a 

significant step toward optimizing artificial intelligence 

and automation systems. Additionally, input data often 

consists of long sequences of binary values that can be 

effectively compressed using advanced techniques. Such 

compression reduces the number of time steps and 

significantly decreases computational needs and energy 

consumption. Consequently, data compression enhances 

system efficiency and resource management, leading to 

reduced power consumption. 

The proposed method resulted in an accuracy 

improvement of approximately 0.42% for the EvTouch-

Objects dataset and 18% for the EvTouch-Container 

dataset, compared to the TactileSGNet method, which is 

the basis for our work. To achieve even better results in 

this field, applying new graph-based methods and 

innovative techniques can further enhance the accuracy 

and efficiency of machine learning models and spiking 

convolutional neural networks. This aspect will be 

addressed in future work. 
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