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Abstract: This paper presents an application of deep learning in computer graphics, 

utilizing learn-based networks for 3D shape matching. We propose an efficient method 

for shape matching between 3D models with non-isometric deformation. Our method 

organizes intrinsic and directional attributes in a structured manner. For this purpose, we 

use a hybrid feature derived from Diffusion-Net and spectral features. In fact, we 

combine learned-based intrinsic properties with orientation-preserving features and 

demonstrate the effectiveness of our method. We achieve this by first extracting features 

from Diffusion-Net. Then, we compute two maps based on the functional map networks 

to obtain intrinsic and directional features. Finally, we combine them to achieve a 

desired map that can resolve symmetry ambiguities on models with high deformation. 

Quantitative results on the TOSCA dataset indicate that the proposed method achieves 

lowest average geodetic error of 0.0023, outperforming state-of-the-art methods and 

reducing the error by 70.66%. We demonstrate that our method outperforms similar 

approaches by leveraging an accurate feature extractor and effective geometric 

regularizers, allowing for better handling of non-isometric shapes and resulting in 

reduced matching errors. 

Keywords: 3D Shape Correspondence, 3D Shape Matching, Deep learning, Orientation 

Preserving. 

 

  

1 Introduction 

ACHINE learning for shapes matching is a critical 

issue in 3D shape analysis with applications in 

statistical shape analysis [1] and deformation transfer 

[2]. Early methods either concentrated on learning 

informative features to ensure that corresponding points 

have similar descriptors [3] or approached shape 

correspondence as a semantic segmentation problem. 

Approaches such as [4] and [5] aim to predict the vertex 

index on a ground truth template shape for each point on 

the surface. However, these methods offer minimal 

consistency in point correspondence predictions and may 

be sensitive to the underlying shape discretization [6]. 
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Recent techniques have concentrated on predicting and 

applying a training loss across the complete mapping 

between shape pairs. This progress has been 

significantly aided by spectral methods, particularly the 

functional map representation [7], which encodes a 

mapping as a compact matrix utilizing the Laplacian 

Eigen-basis. Various approaches utilizing both 

supervised [8] and unsupervised losses [9] have been 

proposed using functional map representation. Central to 

these methods is the learning of feature functions that 

predict the overall functional map. Recent studies have 

demonstrated that this approach decreases the required 

training data, offers strong regularization for smoother 

maps, enhances the robustness of learned features to 

discretization changes, and removes the need for a fixed 

template shape. While using the compact functional map 

representation introduces a strong bias towards smooth 

approximately isometric correspondences, however, it 

still allows for both orientation-preserving and 

orientation-reversing correspondences. That means that 

the approach being discussed allows for the possibility 

M 
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of matching points in a way that either maintains the 

original orientation (orientation preserving) or reverses it 

(orientation reversing). In other words, it can 

accommodate both types of correspondences between 

shapes or objects. This work permits a nuanced 

exploration of shape relations, enabling the mapping of 

geometric features with diverse properties. The compact 

functional map formulation leverages spectral 

information intrinsic to the manifold, facilitating the 

discovery of correspondences that respect both local and 

global geometric structures. Consequently, it becomes a 

powerful tool for applications such as shape matching, 

deformation analysis, and even shape retrieval, where 

the preservation of intrinsic features remains paramount. 

Although this property of functional maps is beneficial 

for tasks like symmetry detection, most practical 

applications require preserving orientation. However, 

restricting maps to orientation-preserving ones using this 

framework is not straightforward, often resulting in both 

local and global symmetry flips, leading to left/right 

ambiguities in organic shapes. Consequently, current 

state-of-the-art learning networks necessitate either a 

supervised loss [10] and [6] or a rigid pre-alignment [11] 

to resolve these symmetries. 

In this paper, we use the recently proposed functional 

map representation [12] for overcoming ambiguities of 

symmetry that are based on the alignment of tangent 

vector fields. We propose a strategy that utilizes 

functional maps to learn features that align tangent 

bundles on surfaces. This approach aids in creating 

orientation-preserving maps and regularizes the learning 

process. We present loss functions tailored for functional 

maps, showing that our network can be trained entirely 

in an unsupervised manner, independent of rigid pre 

alignments or ground truth correspondences. The 

orientation-preserving features learned from our 

approach offer valuable signals for 3D shape matching 

tasks. 

2 Related Works 

3D shape matching is a well-established research area. 

Here, we review the most relevant works, emphasizing 

learning-based and unsupervised techniques. For a more 

comprehensive overview, interested readers can refer to 

surveys [13]. Our method builds on the functional map 

representation introduced in [7] and extended in various 

subsequent works, such as [14-18]. This framework's 

key advantage is its ability to represent and optimize 

maps as compact matrices, facilitate robust linear-

algebraic regularization, and adapt to partial settings [19, 

20]. In using this representation, the “descriptor” 

functions are important. They are used to estimate the 

underlying functional maps and must be computed. 

Early methods utilized descriptors like HKS [21] or 

WKS [22], or through optimization techniques [23]. 

Learning-based shape matching has been approached as 

a dense semantic segmentation problem (e.g., [4, 5]) or 

through template alignment [24]. However, these 

methods often demand substantial training data, rely on 

mapping to a template, and may struggle to generalize 

when connectivity changes occur [6]. 

Our approach aligns closely with methods that 

integrate learning with the functional map 

representation, enabling holistic evaluation of the map 

and facilitating direct training and testing on arbitrary 

shape pairs. Descriptor functions like SHOT [25] can be 

refined using a deep neural network to minimize 

supervised loss based on ground truth correspondences, 

as demonstrated in FM-Net [26]. This approach was 

later enhanced [10] to directly extract descriptor 

functions for functional map estimation from shape 

geometry using point-based feature extractors, 

incorporating a regularized map estimation layer. 

Spectral approaches use unsupervised learning while 

exploiting the functional map representation. They 

utilize desirable structural properties in the spectral 

domain [27] or geodesic distance preservation [9] 

instead of the supervised loss used in FM-Net. Other 

attributes, such as unsupervised alignment of heat 

kernels [28] or cycle consistency [29], have also been 

used to improve efficiency and accuracy. 

These methods are intrinsic, enabling them to 

generalize well across pose changes and intrinsic 

symmetries like human shapes. In contrast, previous 

functional map methods typically refine descriptors such 

as SHOT, incorporating extrinsic information [28, 29], 

but they can be unstable with changes in connectivity. 

Recently, weak-supervision through extrinsic alignment 

[30] has been introduced to address symmetry 

ambiguity. Additionally, Deep Shells [31] refines SHOT 

features while utilizing 3D coordinate information to 

guide correspondence and mitigate symmetry issues. 

The symmetry ambiguity is a persistent challenge in 

unsupervised learning for non-isometric shape matching. 

This issue is significant because spectral methods often 

outperform extrinsic methods, like those in [24], in 

generalizing to unseen poses. The symmetry ambiguity 

is inherent in functional maps since their losses cannot 

be orientation-aware. The mixed functional maps 

presented in [12] focus on aligning tangent vector fields, 

extending the functional map framework to conformal 

maps between these fields on surfaces. A key feature of 

this work is its orientation awareness, achieved through 

angle-preserving correspondence across shapes without 

relying on axiomatic descriptors or additional 

regularization.  
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Fig. 1 Outline of the proposed method. 

The proposed method introduces a novel angle-

preserving unsupervised loss by leveraging the 

properties of tangent vector fields. Our method resolves 

symmetry ambiguities by calculating mixed functional 

maps from the gradients of features obtained through a 

machine-learning model, and then adding an extra loss 

function to these maps. This approach is effective when 

different shapes or structures appear similar due to their 

symmetrical properties, leading to inaccuracies. The 

additional loss helps to improve the reliability and 

consistency of the computations. 

3 Proposed Method 

In this section, our method is described in more details. 

The proposed method leverages deep learning by 

integrating diffusion techniques and spatial gradient 

features to reveal directional information. It consists of 

three main components: the feature extraction layer, the 

functional map layer, and the loss layer. Each 

component is detailed in the following subsections (3.1 

to 3.3). An outline of the proposed method is illustrated 

in Figure 1.  

3.1 The feature extraction layer 

The proposed method utilizes the 3D shape feature 

extractor from [6] to extract features from both source 

(MS) and target (MT) shapes, producing feature vectors 

for the models. The feature extractor layer is composed 

of several DiffN blocks, as shown in Figure 2. Each 

DiffN block comprises three main components: (1) 

MLPs for modeling point-wise scalar functions of 

feature channels: For a mesh with n vertices, each 

possessing d scalar features, the primary element is a 

pointwise function f: Rd→Rd, which is applied 

independently at each vertex to transform the features. A 

multilayer perceptron (MLP) with shared weights is 

utilized for this purpose, allowing effective fitting of 

arbitrary functions at each vertex. However, these MLPs 

are inadequate for capturing the spatial structure of the 

surface and do not facilitate communication between 

vertices. Therefore, a more sophisticated structure is 

necessary to overcome these limitations and harness the 

spatial relationships present in the data. (2) A learned 

diffusion operation for propagating information across 

the domain: In this work, a learned diffusion layer 

inspired by the heat equation ht: Rn→Rn is defined, 

which diffuses a feature channel u over a learned time t 

∈ R≥0. In these networks, ht (u) is applied independently 

to each feature channel, with a unique learned time t for 

each. Learning the diffusion parameter allows the 

network to continuously optimize for spatial support 

ranging from local to global and selecting different 

receptive fields for each feature. To evaluate the 

diffusion layer ht (u), spectral expansion is utilized, 

which relies solely on efficient dense arithmetic during 

evaluation. (3) Local spatial gradient features that 

broaden the network's filter space beyond radially 

symmetric filters to model directional filters: The 

learned diffusion layer enables information propagation 

across points on a shape but only supports radially 

symmetric filters centered at a point. In contrast, the 

spatial gradient features block expands filter options by 

calculating additional features at the vertices, allowing 

for directional filters. These components are combined 

to construct the DiffN block. 
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Fig. 2 The feature extractor layer consisting of several consecutive identical DiffN blocks. 

For shapes MS and MT, with nS and nT vertices 

respectively, the learned source and target features are 

represented as DiffNMS∈ Rn
S

×d and DiffNMT∈ Rn
T

×d, where d 

is the dimension of the feature vectors. In fact, the 

feature extractor layer is a network that operates on a 

fixed channel width d of scalar values throughout, with 

each DiffN block diffusing the features, constructing 

spatial gradient features, and feeding the result to an 

MLP. This layer presents a simple and effective 

architecture for learning on surfaces. In the feature 

extractor layer, the 4-block DiffN architecture is 

employed for shape matching, configured with a width 

of 32. The shape of the first and last linear layers is 

adapted to the input and output dimension. MLPs utilize 

ReLU activations and may include dropout after 

intermediate linear layers. The DiffN uses a vector of 

scalar values per vertex as input features, specifically the 

heat kernel signatures (HKS) sampled at 16 

logarithmically spaced on [10−2, 1]. The DiffN network is 

trained using the ADAM optimizer with an initial 

learning rate of 10−3, a batch size of 1, over 20 epochs, 

and a learning rate decay of 0.5 every 5 epochs. Cross-

entropy loss is applied for labeling tasks, and spectral 

acceleration is used to assess diffusion, except where 

truncated to a k = 100 Eigen basis. The features 

extracted through diffusion are robust and independent 

of shape triangulation. The outputs from this network, or 

learned features, are intrinsic and capture information 

about shape directionality through gradient blocks, as 

described in [6]. Consequently, the output of this layer 

generates orientation-aware features used later to 

estimate orientation-preserving maps. Using this strategy 

as a feature extractor outperforms recent methods, 

achieving state-of-the-art correspondence results. 

3.2 The functional map layer 

This layer is a non-learnable functional map layer 

based on deep structured prediction, which is introduced 

in [26]. Indeed, it estimates maps using source and target 

features obtained from the previous step. The main goal 

is to learn a mapping Fm: MS → MT for a pair of triangle 

meshes, MS and MT. The spectrum or the set of Laplace-

Beltrami operator eigenvalues serve as a shape signature 

capable of effectively discriminating shapes. 

Furthermore, the eigenfunctions of the Laplace-Beltrami 

operator on a manifold M (MS or MT) form a basis that 

generalizes the Fourier basis to surfaces, which makes 

them widely used for representing functions on 

manifolds. The LBO eigenfunctions form the optimal 

basis for a truncated representation of all gradient-

bounded functions on M in a min-max sense [32]. These 

eigenfunctions have been utilized for truncated 

representations of descriptors and permutation functions 

[7]. However, using an optimized basis for a subset of 

these functions may yield an even better representation. 

Here, some theoretical background is necessary to 

understand the Laplace operator on manifolds and its 

computation (See [33, 34] for detailed information). Let 
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𝑓 ∈ ℝ2 be a real-valued function defined on a 

Riemannian manifold M. The Laplace-Beltrami operator 

is defined as Eq. (1): 

∆𝑓 = 𝑑𝑖𝑣(∇𝑓) = 𝑡𝑟𝑎𝑐𝑒(𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓))  (1) 

With ∇𝑓 the gradient of f and div the divergence on the 

manifold. If M is a domain in the Euclidean plane, the 

Laplace-Beltrami operator simplifies to the familiar 

expression as Eq. (2): 

∆𝑓 =
𝜕2𝑓

(𝜕𝑥)2
+

𝜕2𝑓

(𝜕𝑦)2
     (2) 

Thus, from the Helmholtz equation, Eq. (3) is derived: 

∆𝑓 = −𝜆𝑓                                         (3) 

Where λ is a real scalar. This equation is significant 

because the family of eigenvalues 0 ≤ λ0 ≤ λ1 ≤ ··· ≤ +∞ 

constitutes the shape spectrum, which is isometric 

invariant, depending solely on the gradient and 

divergence of the Riemannian structure of the manifold. 

Additionally, the Laplace Beltrami operator is 

Hermitian, ensuring that the eigenvectors vi and vj 

corresponding to distinct eigenvalues λi and λj are 

orthogonal. As a result, Eq. (4) can be expressed as: 

𝐯𝑖 . 𝐯𝑗 = ∫ℳ𝑣𝑖𝑣𝑗 = 0  ;   𝑖 ≠ 𝑗                  (4) 

In addition, the ith eigenvector is defined a coefficient 

over the function f as Eq. (5): 

𝑐𝑖 = 𝑓. 𝐯𝑖 = ∫ℳ𝑓𝐯𝑖                               (5) 

Therefore, the function f can be expanded as Eq. (6): 

𝑓 = 𝑐1. 𝐯1 + 𝑐2. 𝐯2 + 𝑐3. 𝐯3 +⋯                (6) 

The discrete Laplace-Beltrami operator can be 

calculated at each vertex of a 3D mesh using the 

cotangent scheme proposed in [33] as shown in Eq. (7): 

𝐿(𝐩𝑖) =
1

2𝐴𝑖
∑ (cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)(𝐩𝑖 − 𝐩𝑗)𝐩𝑗∈ℕ1(𝐩𝑖)

 (7) 

Ai represents the Voronoi region area around pi, αij and 

βij are the angles opposite to the arc 𝐩𝑖𝐩𝑗̅̅ ̅̅ ̅̅  and N1 (pi) is 

the set of pi’s adjacent vertices. Refer to Figure 3 for 

further details. To numerically compute the Laplace-

Beltrami operator, a matrix L = {Lij} can be calculated as 

shown in Eq. (8): 

𝐿𝑖𝑗 =

{
 

 − 
1

2𝐴𝑖
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)   𝑖𝑓 𝐩𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝐩𝑗

∑  
1

2𝐴𝑖
(cot 𝛼𝑖𝑘 + cot 𝛽𝑘𝑗)                       𝑖𝑓 𝐩𝑖 = 𝐩𝑗𝑘

0                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

Where pk are the adjacent vertices of pi. The 

eigenvalues and eigenvectors of this matrix are 

significant, leading to the problem framed in Eq. (9): 

𝑙𝐯 = −𝜆𝐯                                               (9) 

It is evident that l may not be symmetric, meaning Lij ≠ 

Lji when Ai ≠ Aj, which is often the case. Nevertheless, it 

can be represented as a generalized eigenvalue problem 

where l = S−1M. 

Consequently, Eq. (10) is a modification of the latter 

equation. 

 
Fig. 3 Neighborhood configuration around pi. The dashed lines 

indicate the Voronoi region utilized for calculating the 

Laplace-Beltrami operator. 
 

M𝐯 = −𝜆S𝐯                              (10) 

Where, the stiffness matrix M = {Mij} contains the 

cotangent weights as shown in Eq. (11): 

𝑀𝑖𝑗 = 

{

1

2
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)   𝑖𝑓 𝐩𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝐩𝑗

∑  
1

2
(cot 𝛼𝑖𝑘 + cot 𝛽𝑘𝑗)                    𝑖𝑓 𝐩𝑖 = 𝐩𝑗𝑘

0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

Moreover, the mass matrix S = {Sij} is a diagonal 

matrix of vertex area elements as shown in Eq. (12):  

S𝑖𝑗 = {
𝐴𝑖           𝑖𝑓 𝑖 = 𝑗
0     0𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (12) 

This solution ensures that the eigenvalues and 

eigenvectors are real. Furthermore, two eigenvectors vi 

and vj corresponding to different eigenvalues λi and λj 

are orthogonal under the dot product S, as shown in Eq. 

(13): 

𝐯𝑖 . 𝐯𝑗 = 𝐯𝑖
𝑇S 𝐯𝑗       ;  𝑖 ≠ 𝑗                             (13) 

The spectrum of the shape is the set of eigenvalues {λ0, 

λ1, λ2… λn−1}. If the shape is closed, λ0 = 0. 

The proposed method uses the discrete Laplace-

Beltrami operator (LBO), which preserves many 

properties of its continuous counterpart and accurately 

represents the geometric and topological properties of 

the underlying surface. To minimize dependence on the 

mesh effectively, the discrete Laplacian is utilized. 

This study employs the functional map framework, 

which allows correspondences to be effectively 

represented using a compact matrix. Specifically, the 

map Fm: MS → MT is represented by the binary matrix 

ΠMSMT, where ΠMSMT (i, j) = 1 if and only if Fm (i) = j for 

vertices i and j in MS and MT, respectively. The 

functional map CTS is defined as CTS = lMS
† ΠMSMT lMT, with 

lMS and lMT being matrices containing the first k 

eigenfunctions of the Laplace-Beltrami operators of 

shapes MS and MT, respectively. The sign † denotes the 

pseudoinverse of a matrix. Note that CTS is of size k × k 

with k typically between 20−100, and is typically orders 

of magnitude smaller than ΠMSMT. 
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Fig. 4 The functional map layer architecture. 

The basic pipeline for map recovery, introduced in [7], 

assumes the existence of descriptor functions that remain 

consistent under the unknown mapping. Thus, the 

optimal functional map (CTS) opt is computed as shown in 

Eq. (14): 

(𝐶𝑇𝑆)𝑜𝑝𝑡 = argmin
𝐶𝑇𝑆

(‖𝐶𝑇𝑆𝐴𝑇 − 𝐴𝑆‖𝐹
2) + 𝜇𝐸𝑟𝑒𝑔(𝐶𝑇𝑆) (14) 

Where AS and AT are the coefficients of descriptors in 

the spectral basis lMS and lMT and μ is a scalar 

regularization parameter. The first term promotes the 

preservation of descriptor functions, whereas the second 

serves as a regularizer that promotes structural 

properties, for example, Ereg (CTS) = ∥CTS∆T − ∆SCTS∥, 
where ∆S, ∆T are diagonal k × k matrices of Laplacian 

eigenvalues (see more in [10]). The value of k, chosen as 

100 in the proposed method, equals the first k Eigen-

functions of the Laplace-Beltrami operators for shapes 

MS and MT. The final point-to-point map Fm: MS → MT 

can be obtained via nearest neighbor search between the 

rows of lMSCTS and those of lMT [35]. 

The proposed method uses the output of the feature 

extractor layer to estimate functional maps. This layer 

consists of two blocks, as illustrated in Figure 4. 

In the first block, the features of the input shapes 

(DiffN) are projected onto the Laplace-Beltrami 

eigenbasis of the shapes to obtain spectral features AS = 

lMS
†DiffNMS and AT = lMT

†DiffNMT. The functional map CTS is 

then estimated as the solution to the following least-

squares problem as shown in Eq. (15): 

𝐶𝑇𝑆 = argmin
𝐶

(‖𝐶𝐴𝑇 − 𝐴𝑆‖𝐹
2)                            (15) 

Where AS and AT are lx
†.x.DiffNx and lx is the spectral 

basis with x∈ {MS, MT}. It leads to Eq. (16): 

𝐶𝑇𝑆 = 𝐴𝑆𝐴𝑇
†                                                         (16) 

In the second block, the shape features (DiffN) are 

transformed into a tangent vector field using the discrete 

gradient operator, Grad, as has been described in [12]. 

These vector-valued descriptors are projected onto the 

connection Laplacian basis. The connection Laplacian 

(LQ) behaves like a second derivative on vector fields 

with many of the same basic properties as the ordinary 

Laplacian. It is negative semidefinite, self-adjoint, and 

elliptic [36]. The connection Laplacian is associated 

defined by Eq. (17):  

∆∇𝐯𝐟 = 𝑡𝑟𝑎𝑐𝑒(∇
2𝐯𝐟) =  −∇ ∗ ∇𝐯𝐟              (17) 

This leads to spectral feature vectors Bx with x∈ {MS, 

MT}, and Grad (Mx) the gradient operator on shape Mx. 

In this case, the functional map QST is estimated as 

shown in Eq. (18): 

𝑄𝑆𝑇 = argmin
𝑄

(‖𝑄𝐵𝑆 − 𝐵𝑇‖𝐹
2)                            (18) 

Where BS and BT are LQ_x
†.Grad(x).DiffNx and LQ_x is the 

connection Laplacian with x∈ {MS, MT}, its closed-form 

solution is provided in Eq. (19): 

𝑄𝑆𝑇 = 𝐵𝑆𝐵𝑇
†                                                         (19) 

QST includes local orientation information based on the 

normal orientation derived from feature gradients. As a 

mixed linear representation, QST can only depict 

orientation-preserving maps, as demonstrated in [12]. 

3.3 The Losses layer 

In proposed method losses for the functional map layer 

in two case is estimated. The loss is unnecessary when 

estimating CTS and QST with the Laplacian regularizer 

from [10], as it naturally produces maps with low 

isometric loss. In contrast, FM-Net [27] enforces 

orthogonality on the estimated functional map CTS, so 

only Lort is implemented. It is calculated using Eq. (20): 

𝐿𝑜𝑟𝑡(𝐶𝑇𝑆) = ‖𝐶𝑇𝑆
𝑇𝐶𝑇𝑆 − 𝐼‖𝐹

2
              (20) 
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Fig. 5 The loss layer architecture. 

The loss is referred to do not provide enough 

information or constraints to eliminate or prevent the 

presence of inherent symmetries in the shape matching. 

In other words, just having this loss does not guarantee 

that symmetry ambiguity will be excluded from the 

results. Also, as shown in [13], enforces orthogonality 

on the estimated functional map QST, so only LQ_ort is 

implemented. It is computed using Eq. (21):  

𝐿𝑄_𝑜𝑟𝑡(𝑄𝑆𝑇) = ‖𝑄𝑆𝑇
∗𝑄𝑆𝑇 − 𝐼‖𝐹

2               (21) 

The proposed method uses a weighted combination of 

two losses in the loss layer, ensuring that the learned 

descriptors create an isometric map while preserving 

orientation. This approach addresses symmetry 

ambiguities in 3D shape matching, and the entire 

computation is unsupervised. This layer consists of two 

blocks, as illustrated in Figure 5. 

4 Implementation 

The proposed method is implemented in PyTorch. The 

feature extraction layer follows the standard network 

structure from [6], utilizing 100 eigenfunctions of the 

Laplace-Beltrami operators for shapes MS and MT. Each 

block converts these 100 features into learned features of 

the same dimension, resulting in 100-dimensional vector 

field descriptors for the input shapes. Additionally, μ is 

set to 10−3 in the functional map layer for regularization, 

as noted in [10]. The network is trained with a batch size 

1 for a number of epochs between 5 and 25. A learning 

rate of 10−3 is used with the ADAM optimizer. 

5 Results 

In this section, we show that our network can 

outperform state-of-the-art deep shape matching 

architectures on non-isometric datasets like TOSCA 

[37]. It contains human and animal models in different 

classes. The dataset can be split into two types of shape 

pairs: isometric pairs, which consist of two shapes from 

the same class, and non-isometric pairs, which consist of 

two shapes from different classes. To remove the bias 

present due to identical mesh connectivity within a 

dataset, the LRVD algorithm [38] is used to re-mesh the 

datasets. The proposed method is compared 

quantitatively and qualitatively with existing methods 

such as Zoom-Out [39], FM-Net [26], GeoFmaps [10], 

UFM-Net [9]. The proposed method is tested on non-

isometric TOSCA shapes. The dataset, initially 

consisting of 100 shapes, is divided into 65 training 

shapes and 35 test shapes. Indeed, these include animal 

shapes from various species and poses, which often 

present considerable challenges for existing methods. 

The Averaged Geodesic Errors of the experiment are 

reported in Table 1. Our approach effectively identifies 

correspondences between models undergoing non-

isometric deformation. It outperforms unsupervised 

methods and achieves similar or superior performance 

compared to supervised ones. 

Table 1 Quantitative results comparing the different methods 

with the proposed method on the TOSCA dataset. 

Method 
The type of 

Feature used 

The Averaged 

Geodesic Errors 

Zoom-Out [39] - 0.0618 

Geo-FMaps [10] WKS 0.0042 

FM-Net [26] SHOT 0.0321 

UFM-Net [9] SHOT 0.0058 

Proposed method 
The feature 

extraction layer 
0.0023 
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(a)                                  (b)          (c)               (d)    (e) 

Fig. 6 Comparison of the qualitative results of (a) The proposed method with (b) Geo-Fmaps [10], (c) Zoom-Out [39], (d) UFM-Net 

[9], (e) FM-Net [26] on TOSCA dataset. 

The proposed method demonstrates the lowest 

Averaged Geodesic Distance compared to other 

approaches in predicting the corresponding points 

between the source and target models. In other words, 

the corresponding points identified by our method are 

accurately mapped onto the target model. Figure 6 

displays a qualitative result. The proposed method 

outperforms others, even in challenging case with strong 

non-isometric distortions (Figure 6). Meanwhile, both 

axiomatic method [39] and SHOT-based methods [9, 26] 

fail to predict accurate correspondences. The results 

show that the proposed method is robust to deformations 

that often cause methods in [9, 26, 39] to fail, typically 

due to their misinterpretation of anisotropy as 

meaningful geometric information. The method in [10] 

is a more robust learning-based approach, utilizing 

spectral filters in its feature extractor to reduce high-

frequency overfitting. However, it struggles with non-

isometric datasets, as it fails to learn accurate descriptors 

from intrinsically symmetric signals (like WKS as 

input), leading to poorer correspondence than the 

proposed method. In contrast, the proposed method 

excels by leveraging deep learning to focus on geometric 

features tied to surface orientation and deformation, 

producing orientation-aware maps. The qualitative 

results are showed that the proposed method is the only 

method that produces reasonable correspondence than 

the others, emphasizing the advantages of our accurate 

feature extractor combined with effective geometric 

regularizers, which enable our approach to handle non-

isometric shapes effectively. 

6 Conclusion 

Our method utilizes deep learning and incorporates 

learned diffusion and spatial gradient features to provide 

directional information, consisting of three main 

components: the feature extraction layer, the functional 

map layer, and the losses layer. Results demonstrate that 

our network outperforms state-of-the-art shape matching 

architectures on non-isometric datasets like TOSCA. 

However, limitations include an assumption of relatively 

regular input models and a requirement for similar 

features in both shapes. Additionally, only full 3D 

models are considered. Future work aims to expand the 

framework to accommodate a wider variety of input 

models and address limitations related to partial or 

damaged 3D shapes and models with high deformation. 

Limitations& Future Work: The proposed method 

assumes that the input models should be relatively 

regular, a condition that can be addressed through re-

meshing if necessary. Additionally, our method assumes 

the existence of similar features in both input shapes. In 

fact, one would expect to see at least some similar large-

scale structures between the shapes that are supposed to 

be in correspondence. All shapes are full 3D models and 

partial shapes or damaged models are not considered. 

In the future, we aim to expand the framework of the 

proposed method to encompass a wider variety of input 

models, utilizing it to identify correspondences between 

partial or damaged 3D shapes and highly deformed 

models. 
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