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Abstract: This paper introduces the CTDRCepstrum, a novel feature extraction 

technique designed to differentiate various human activities using Doppler radar 

classification. Real data were collected from a Doppler radar system, capturing nine 

return echoes while monitoring three distinct human activities: walking, fast walking, 

and running. These activities were performed by three subjects, either individually or in 

pairs. We focus on analyzing the Doppler signatures using time-frequency reassignment, 

emphasizing its advantages such as improved component separability. The proposed 

CTDRCepstrum explores different window functions, transforming each echo signal 

into three forms of Short-Time Fourier Transform reassignments (RSTFT): time RSTFT 

(TSTFT), time derivative RSTFT (TDSTFT), and reassigned STFT (RSTFT). A 

convolutional neural network (CNN) model was then trained using the feature vector, 

which is generated by combining the cepstral analysis results of each RSTFT form. 

Experimental results demonstrate the effectiveness of the proposed method, achieving a 

remarkable classification accuracy of 99.83% by using the Bartlett-Hanning window to 

extract key features from real-time Doppler radar data of moving targets. 

Keywords: Doppler signature, STFT reassignment, Barttlet-Hanning window, CNN 

model, Radar target classification. 

 

  

1 Introduction 

HE classification of moving targets through Doppler 

radar signatures of human movement is imperative 

for all applications in the fields of security, civil 

utilization, military intelligence for ground surveillance, 

and police radar detection systems [1], [2], [3].and [4]. 

To understand Doppler signatures, it is necessary to 

return to the fundamentals of electromagnetic waves, 

particularly in the context of radar range returns. The 
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sound signals received by the Doppler radar from the 

target are non-stationary and nonlinear. An effective 

approach to analyzing such signals involves time-

frequency methods [5], [6], [7], and [8]. For instance, the 

widely used Short Time Fourier Transform (STFT) 

decomposes a signal into overlapping segments of equal 

size and applies the Fourier transform independently to 

each segment. However, the STFT presents a low energy 

localization in the time-frequency plane. An effective 

approach to enhance this is by applying the reassignment 

method, introduced in 1976, to sharpen the time-

frequency representation [9]. Although this technique 

was initially little known and rarely used in the 

literature, it re-emerged nineteen years later with the 

reassignment method [10], which introduced a 

generalized approach applicable to any bilinear time-

frequency or time-scale distribution. Over the years, it 

was further refined with algorithmic advancements and 

applied to various fields [11], [12], [13], [14], [15], [16], 
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[17], [18], [19], and [20]. The concept of reassignment 

has recently been introduced under various names, 

including the reassignment method, remapping, time-

frequency reassignment, and modified moving-window 

method [21], [22], [23]. The Time-Frequency 

Reassignment (TFR) method addresses the issue of low 

energy localization [24], [25], [26], [27], [28], enhancing 

the clarity and interpretability of the spectrogram. 

The CTDRCepstrum is an advanced feature extraction 

method introduced in this study. This algorithm 

combines three distinct cepstrums, each derived from 

different variations of the Short-Time Fourier Transform 

reassignments (RSTFT): the standard STFT 

reassignment (RSTFT), the time-ramped RSTFT 

(TSTFT), and the time-derivative RSTFT (TDSTFT). 

The extracted features are then input into the CNN 

classification process. Simulation results demonstrate the 

efficiency of the proposed algorithm, highlighting its 

effectiveness in extracting Doppler signature features. 

This work presents real data acquired from a radar 

Doppler system in Section 2. Section 3 reviews the 

theory of time-frequency reassignment and provides a 

detailed explanation of the proposed method. An 

overview of convolutional neural networks (CNNs) is 

presented in Section 4. Section 5 covers the results, 

discussion, and implementation details, while Section 6 

concludes the work with a summary of the findings. 

2 Doppler Database 

Doppler data were captured from low-resolution 

ground-surveillance radar recordings. The data 

acquisition sensor is an impulse Doppler radar operating 

at limited elevation angles of approximately 270°, with 

an azimuth sweep of 30°, at an emission power of 100 

mW. It operates at a frequency of 9.72 GHz. Echoes 

were collected for nine scenarios involving radar targets 

consisting of one, two, or three individuals. In each 

scenario, one target echo was recorded at a time, 

corresponding to three different human activities: 

walking, fast walking, and running. Each scenario was 

recorded at least twice, with a duration of five seconds 

per recording. Fig. 1 shows the plot of nine echoes 

returned from one, two, and three persons. Each target 

class exhibits distinct time-frequency characteristics, 

which can be exploited for classification purposes. 

3 STFT Reassignment with the New 

CTDRCepstrum Technique 

The short time Fourier transform (STFT) of time 

domain Doppler signal 𝑥(𝑡) is typically defined using an 

analysis window ℎ(𝑡) as follows [29]: 

𝑆𝑇𝐹𝑇ℎ(𝑡, 𝑤) = ∫ 𝑥(𝜏)ℎ∗(𝜏 − 𝑡)𝑒−𝑗𝑤𝜏𝑑𝜏
+∞

−∞
  (1) 

 
Fig. 1 Nine Doppler Echoes from Radar-Detected Human 

Movement Targets.  

Where ∗ signifies the complex conjugate. Squared 

absolute value of the STFT denote 𝑆𝑇𝐹𝑇ℎ transform 

usually referred as a spectrogram: 

𝑆ℎ(𝑡, 𝑤) = |𝑆𝑇𝐹𝑇ℎ(𝑡, 𝑤)|2
   (2) 

The STFTh polar form can be expressed as: 

𝑆𝑇𝐹𝑇ℎ(𝑡, 𝑤) = 𝑀(𝑡, 𝑤)𝑒𝑗∅(𝑡,𝑤)   (3) 

Where 𝑀(𝑡, 𝑤) is magnitude and ∅(𝑡, 𝑤) is the phase 

of  𝑆𝑇𝐹𝑇ℎ defined as a function of continuous time 𝑡 and 

angular frequency 𝑤. The reassigned time-frequency 

coordinates (�̂�, �̂�)  may be calculated from the 

derivatives of the spectral phase as follows: 

�̂�(𝑡, 𝑤) = −
𝜗∅(𝑡,𝑤)

𝜗𝑤
                (4) 

�̂�(𝑡, 𝑤) = 𝑤 +
𝜗∅(𝑡,𝑤)

𝜗𝑡
           (5) 

The time and frequency reassignment operators, as 

defined in equations (2) and (3), cannot be directly 

computed. That is why this representation has not been 

exploited much. According to [10] and [20] the 

reassigned transformation reallocates spectral energy 

from the coordinate (𝑡, 𝑤)  into a new time-frequency 

coordinate (�̂�, �̂�), which reflects the distribution of 

energy in the analyzed signal in a more accurate way. 

The reassignment operations can be carried out when 

two helper windows are utilized, the time and frequency 

reassignment vectors can be formulated as: 

�̂�(𝑡, 𝑤) = 𝑡 − ℜ {
𝑆𝑇𝐹𝑇𝑡ℎ(𝑡,𝑤).𝑆𝑇𝐹𝑇ℎ

∗(𝑡,𝑤)

|𝑆𝑇𝐹𝑇ℎ(𝑡,𝑤)|
2 }  (6) 

�̂�(𝑡, 𝑤) = 𝑤 − 𝔍 {
𝑆𝑇𝐹𝑇𝑑ℎ(𝑡,𝑤).𝑆𝑇𝐹𝑇ℎ

∗(𝑡,𝑤)

|𝑆𝑇𝐹𝑇ℎ(𝑡,𝑤)|
2 }  (7) 

Where STFTh is the complex STFT calculated using an 

analysis window h(t). STFTth is the complex STFT 

calculated using time ramped window th = t. h(t), 

which is a time weighted version of the original window 

h(t) multiplied by the time offset from the window 

center. STFTdh is the complex STFT calculated using 

time derivative window 𝑑ℎ =
𝑑

𝑑𝑡
ℎ(𝑡),  which is 
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equivalent to weighting the Fourier transform of the 

original window with a frequency ramp. The last step of 

the reassignment consists in moving the values of the 

spectrogram to obtain a sharpened representation, 

expressed as: 

𝑅𝑆ℎ(𝑡, 𝑤) = ∬|𝑆𝑇𝐹𝑇ℎ(𝜏, 𝛺)|2
𝛿(𝑡 − �̂�(𝜏, 𝛺))𝛿(𝑤 −

�̂�(𝜏, 𝛺))𝑑𝜏𝑑𝛺                        (8) 

Where 𝛿(𝑡) is the Dirac distribution.  

Since there are different kinds of windows, the choice 

of a windowing function can strongly affect the quality 

of the overall results. The CTDRCepstrum technique 

presented here is computed at any time frequency 

coordinate. Classical windows such as Bartlett, Kaiser 

and Flattop are exploited for constructing both time 

weighted and time derivative windowing functions. 

 
Fig. 2 Spectrograms based original STFT, RSTFT, TSTFT and 

TDSTFT. 

Fig. 2 presents four spectrogram types from different 

STFT reassignment methods. It includes: (a) the original 

STFT using a standard window, and three reassignment 

variations: (b) Reassigned STFT (RSTFT), (c) Time 

STFT (TSTFT), and (d) Time Derivative STFT 

(TDSTFT). All spectrograms are generated using the 

Bartlett-Hanning window. 

 
Fig. 3 Temporal and frequency domain plots of the length 64 

based Bartlett-Hanning, Kaiser and Flattop windows. 

Fig. 3 shows the time-domain and frequency-domain 

magnitude responses for the Bartlett-Hanning, Kaiser, 

and Flattop windows, each with a length of 64. Fig. 4 

illustrates the corresponding auxiliary time windows for 

these same window functions. Fig. 5 presents the 

auxiliary time derivatives for the Bartlett-Hanning, 

Kaiser, and Flattop windows. 

Fig. 3 Detailed comparison of time-domain and 

frequency-domain characteristics for the Bartlett-

Hanning, Kaiser, and Flattop windows (window length = 

64) in the context of their impact on the proposed 

technique. In the time domain, the Bartlett-Hanning 

window demonstrates the broadest shape, followed by 

the Kaiser window, with the Flattop window being the 

narrowest. This influences the temporal resolution of the 

technique, as wider windows allow better averaging but 

may reduce time localization. In the frequency domain, 

the trade-off between main lobe width and side lobes is 

crucial for spectral analysis. The Bartlett-Hanning 

window exhibits the narrowest main lobe, providing 

enhanced frequency resolution, whereas the Flattop 

window has the widest main lobe, which reduces 

frequency resolution but achieves superior side lobes. 

Kaiser balances these trade-offs, featuring a moderately 

narrow main lobe and reduced side lobes, with its first 

side lobe being the lowest among the three. For distant 

side lobes, Kaiser and Flattop outperform Bartlett-

Hanning, making them more effective in suppressing 

spectral leakage in the technique. These properties play a 

pivotal role in optimizing the performance of the 

proposed method by addressing the balance between 

time and frequency localization and mitigating spectral 

artifacts. 

 
Fig. 4 Temporal and frequency domain plots of time ramped 

window based Bartlett-Hanning, Kaiser and Flattop windows. 

Fig. 4 illustrates a comparative plot of Bartlett-

Hanning, Kaiser, and Flattop time-ramped windows, 

highlighting their impact on side lobe behavior. It is 

observed that the side lobe magnitude decreases with 

increasing frequency, demonstrating the effectiveness of 

combining time-ramped functions with classical 

windows. This combination significantly enhances side 

lobe attenuation, reducing spectral leakage and 
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improving the precision of the proposed technique. 

 
Fig. 5 Temporal and frequency plots of time derivative 

window based Bartlett-Hanning, Kaiser and Flattop windows. 

In Fig. 5, the auxiliary time derivative windows of 

Bartlett-Hanning, Kaiser, and Flattop show significantly 

reduced side lobe peaks compared to their standard 

windows. However, their side lobe peaks remain slightly 

higher than those of the time-ramped windows, which 

demonstrate the best overall magnitude response. These 

results highlight the superiority of time-ramped windows 

in achieving enhanced side lobe attenuation while 

maintaining frequency resolution. This balance between 

side lobe and spectral resolution is crucial for 

applications demanding precise spectral analysis. By 

minimizing spectral leakage and improving signal 

clarity, time-ramped windows prove to be the optimal 

choice for the proposed methodology, ensuring robust 

performance in critical analysis tasks. 

 
Fig. 6 CTDRCepstrum feature extraction technique. 

To improve the accuracy of Doppler target 

classification, the CTDRCepstrum was calculated using 

three distinct Short-Time Fourier Transforms 

Reassignment (RSTFTs): RSTFT, TSTFT and TDSTFT. 

These transforms were derived by applying three 

different types of analysis windows: the original analysis 

window, a time ramped window, and a time derivative 

window, as illustrated in Fig. 6. 

The proposed CTDRCepstrum (Combined Time, Time 

Derivative and Reassigned Cepstrum) is an innovative 

feature extraction method that integrates time-domain 

and frequency-domain reassignment analyses to 

effectively capture complex signal characteristics. The 

process is designed to enhance the accuracy of Doppler 

signal classification and involves the following key 

steps: 

• Signal Preparation: The input Doppler signal is 

analyzed using three distinct time-domain windows: 

1. An analysis window h(t), which serves as the 

baseline for signal evaluation and is used for the 

RSTFT (Reassigned Short Time Fourier Transform) 

computation; 

2.  A time-ramped window th(t), which emphasizes 

the signal's temporal progression and is used for the 

TSTFT (Time-Reassigned Short Time Fourier 

Transform) computation; 

3.  A time-derivative window dh(t), which highlights 

rapid changes in the signal over time, used for the 

TDSTFT (Time Derivative-Reassigned Short Time 

Fourier Transform) computation. 

• Short-Time Fourier Transform Reassignment 

(RSTFT): Each windowed signal undergoes an 

RSTFT, resulting in three distinct representations 

STFTth, STFTh, and STFTdh that capture the signal's 

frequency components over time through reassignment 

transformations; 

• Corrections: 

1. Time Corrections: Applied to STFTth and STFTh to 

enhance temporal precision; 

2. Frequency Corrections: Applied to STFTdh and 

STFTh to improve frequency accuracy. 

• Cepstrum of RSTFT Reassignment: The corrected 

signals and their respective RSTFTs are subsequently 

converted into the cepstral domain, which highlights 

the periodicity of frequency components. This process 

produces Cepstrumth, Cepstrumh, and Cepstrumdh, 

which are calculated by applying inverse RSTFTs to 

the logarithm of the RSTFTs; 

Combining Features: The outputs from each stage are 

integrated into a unified feature set known as the 

CTDRCepstrum. This combined feature set effectively 

captures both the temporal and spectral characteristics of 

the signal through the reassignment technique, making it 
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highly suitable for tasks such as Doppler signal 

classification and pattern recognition. 

4 Convolutional Neural Networks Model 

Convolutional neural networks CNN is a type of deep 

learning algorithm that is widely used in computer vision 

concepts, as well as signal radar classification and object 

detection [30], [31], [32] and [33]. To train the CNN, the 

input Doppler signatures raw has been transformed into 

matrixes via CTDRCepstrum technique. CNN model is a 

mathematical construct that is involves typically 

composed building blocks, including the input layer, 

convolutional layers, pooling layers, and fully connected 

(FC) layers. The first two, convolution and pooling 

layers, perform feature extraction, whereas the third, a 

fully connected layer, maps the extracted features into 

final output, such as classification, as shown in Fig.7. 

 
Fig. 7 1D-CNN architecture based Doppler signature. 

In this research, we developed a two-dimensional CNN 

architecture with two convolutional and pooling layers 

to classify nine distinct classes. The input data consisted 

of nine CTDRCepstrum discriminant matrices, each 

measuring 257 by 60, resulting in a total size of 2313 × 

60. Randomly this dataset was divided into training and 

testing subsets adopting any two of the three ratios: 

70%-30%, 75%-25%, and 80%-20%. After splitting, the 

one-dimensional feature vectors were reshaped into 

image formats with dimensions of (height × width × 

channels × number of samples). For example, in the 

75%-25% split, the reshaped dimensions were (60 × 1 × 

1 × 1735) for training and (60 × 1 × 1 × 578) for testing. 

Labels were also converted into categorical format, 

which is compatible with the classification layer. The 

CNN architecture starts with an input layer designed for 

data of dimensions 60 × 1 × 1, followed by two 

convolutional layers with 32 and 64 filters, respectively, 

both utilizing ReLU activation functions. Each 

convolutional layer is succeeded by a max-pooling layer 

with a pool size equal to 1 × 1 and a stride equal to 1 that 

keeps spatial dimensions. The convolutional layers are 

followed by a fully connected layer with 128 neurons. 

The initial learning rate was set as 0.001, and the 

training was conducted using the Adam optimizer to 

determine the optimal weights (128 × 3840) and bias for 

the model (Table 1), minimizing the prediction cross-

entropy loss. This is followed by another ReLU 

activation layer and a final fully connected layer with 9 

neurons, corresponding to each class. The softmax 

activation layer with its classification layer finally 

provides the output. 

The training progress plots generated by MATLAB 

R2024a are illustrated in Fig. 8, 9, and 10. The results 

demonstrate that a 75%-25% data split ratio yields 

superior performance compared to other ratios. The blue 

and black curves in the upper plot depict the training 

accuracy and validation accuracy, respectively, while the 

orange and black curves in the lower plot represent the 

training loss and validation loss. As the training 

iterations progressed, the accuracy curves exhibited a  

gradual increase, while the loss curves showed a 

decreasing trend. Analyzing these curves suggests that 

the network model achieved a good fit. Furthermore, the 

75%-25% split dataset achieved an accuracy of 99.83%, 

confirming the model's excellent performance 

capabilities. 

Table 1 Parameters options for training CNN. 

Parameters Value and description 

Solver for training neural 

network 

Adam (Adaptive 

moment estimation) 

Epoch number 10 

Initial Learning rate 0.001 

Size of mini-batch 20 

Option for data shuffling every-epoch 

Option for dropping learning 

rate during training 
Keep learning rate 

constant throughout 

training 

Factor for dropping the learning 

rate 
0.2 

Number of epochs for dropping 

the learning rate 
10 

 

5 Experimental Results 

The aim of this study is to evaluate the effectiveness of 

the proposed CTDRCepstrum based Doppler signatures 

and enhance the classification accuracy. A series of tests 

and simulations using all available windows in 

Matlab.18.a were conducted to identify the optimal one 

for calculating CTDRCepstrum features. Initially, we 

employed the STFT reassignment based classical 

windows to assess the performance of the CNN classifier  

on the Doppler database. The results were disappointing, 

with accuracy rates of 77.5848% for the Rectangular 

window, 78.3737% for the Hanning window, and 

79.5848% for the Blackman window, indicating that 

these windows are not suitable for feature extraction. 

The classification accuracy saw a notable increase with 

the Blackman-Harris window, reaching 84.7751%. 
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Fig. 8 Accuracy and Loss plots to display during CNN training 

progress using 70% training and 30% testing. 

 

 
Fig. 9 Accuracy and Loss plots to display during CNN training 

progress using 75% training and 25% testing. 

 
Fig. 10 Accuracy and Loss plots to display during CNN 

training progress using 80% training and 20% testing. 

The Parzen window followed closely at 87.3702%, 

while the Blackman-Nuttall window achieved 

87.5433%. The Nuttall window improved to 88.4083%, 

and the Tukey window reached 88.5813%. The 

HalfBand window recorded an accuracy of 88.7543%, 

with the Gaussian window topping the list at 90.1384%. 

Further enhancements in classification accuracy were 

observed with the Lanczos window at 91.0035%, the 

Flattop window at 91.8685%, Hamming at 92.3875%, 

and the Kaiser window at 93.2526%. The Cosine 

window achieved an impressive 95.1557%, while the 

Bartlett window reached 98.6159%. The Triangular 

window recorded 98.7889%, and the Bartlett-Hanning 

window came in at 98.9619%. These initial experiments 

showed that all the windows examined except for Tukey, 

Nuttall, Blackman-Nuttall, Parzen, and Blackman-

Harris, yielded satisfactory results. The Bartlett-Hanning 

window is especially favored because it effectively 

reduces the first few side lobes while maintaining a 

relatively narrow main lobe width. A closer look at the 

results indicates that the accuracy rates alone might not 

be very meaningful, pointing to possible issues with 

performance accuracy. Thus, it is essential to apply our 

newly proposed CTDRCepstrum technique, which helps 

identify the best window for achieving the highest 

accuracy rates. 

The experimental results demonstrated the 

effectiveness of our newly proposed technique, 

achieving impressive accuracy rates of 98.9619% with 

Parzen, 98.6159% with Tukey, and 98.4429% with both 

Hamming and Blackman-Harris. Additionally, we 

recorded 98.0969% with Blackman-Nuttall, 97.9239% 

with Blackman, 97.4048% with Hanning, 97.0588% 

with HalfBand, 97.0588% with Nuttall, 96.8858% with 

Gaussian, and 94.6367% with Rectangular window. 

Moreover, the CTDRCepstrum method showed a high 

classification accuracy of 99.8270% using the Bartlett-

Hanning window, with 99.6569% for Triangular, 

99.6540% for Bartlett, 99.4810% for Cosine, 99.3080% 

for Kaiser, and 99.1349% for both Flattop and Lanczos 

windows. Based on the comparison results, the 

CTDRCepstrum approach using the Bartlett-Hanning 

window, which achieved 99.8300% correct 

classification, outperformed all other window methods.  

The performance evaluation of the CNN classification 

algorithm relies on the confusion matrix, which 

compares predicted and actual class instances. This 

matrix highlights the model's strengths, weaknesses, and 

error types by displaying predicted classes in columns 

and actual classes in rows. Predicted classes come from 

the model's estimates, while actual classes match the true 

observed labels. The matrix provides a clear view of 

correct predictions and various errors across all classes. 

Figures 11, 12, and 13 show confusion matrices based 

on different training-testing splits of the database: 70%-

30%, 75%-25%, or 80%-20%. 

 
Fig. 11 Confusion matrix of 70% training and 30% testing for 

CNN classification using CTDRcepstrum technique based on 

Barttlet-Hanning window. 
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Fig. 12 Confusion matrix of 75% training and 25% testing for 

CNN classification using CTDRcepstrum technique based on 

Barttlet-Hanning window. 

 
Fig. 13 Confusion matrix of 80% training and 20% testing for 

CNN classification using CTDRcepstrum technique based on 

Barttlet-Hanning window. 

The evaluation of three data split ratios—70%-30%, 

75%-25%, and 80%-20%—revealed distinct differences 

in the model's performance. Among these, the 75%-25% 

ratio achieved the best results, with an impressive 

accuracy of 99.83%. This split ratio provides an optimal 

balance between the amount of data used for training 

and testing, ensuring effective learning and robust 

evaluation. In contrast, the 70%-30% ratio resulted in a 

slightly lower accuracy of 99.42%. While this split 

allocates more data for testing, the reduced training data 

may limit the model's ability to generalize effectively, 

leading to a marginal decline in performance. Similarly, 

the 80%-20% ratio achieved an accuracy of 99.35%, the 

lowest among the three splits. This outcome suggests 

that while more training data can enhance learning, the 

smaller testing subset may affect the precision of 

performance evaluation, resulting in a minor decrease in 

accuracy. Overall, the results indicate that the 75%-25% 

split ratio is the most effective, as it ensures a balance 

between sufficient training data for model development 

and adequate testing data for robust evaluation, leading 

to superior classification performance. 

6 Conclusion 

This study presents the CTDRCepstrum, an innovative 

method for feature extraction designed to classify 

moving radar targets using Doppler signatures. The 

experimental results demonstrate that the 

CTDRCepstrum significantly enhances classification 

accuracy compared to conventional STFT reassignment 

methods. Additionally, the CTDRCepstrum, when paired 

with the Bartlett-Hanning window, outperforms other 

windowing techniques in terms of accuracy. In 

conclusion, the proposed CTDRCepstrum method, 

especially when applied with the Bartlett-Hanning 

window, offers substantial performance improvements 

over traditional windowing functions, highlighting its 

potential for future radar based classification 

applications. 
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