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Abstract: The rapid growth of photovoltaic (PV) systems has highlighted the need for 
efficient and reliable defect detection to maintain system performance. 
Electroluminescence (EL) imaging has emerged as a promising technique for identifying 
defects in PV cells; however, challenges remain in accurately classifying defects due to 
the variability in image quality and the complex nature of the defects. Existing studies 
often focus on single image enhancement techniques or fail to comprehensively compare 
the performance of various image enhancement methods across different deep learning 
(DL) models. This research addresses these gaps by proposing an in-depth analysis of 
the impact of multiple image enhancement techniques on defect detection performance, 
using various deep learning models of low, medium, and high complexity. The results 
demonstrate that mid-complexity models, especially DarkNet-53, achieve the highest 
performance with an accuracy of 94.55% after MSR2 enhancement. DarkNet-53 
consistently outperformed both lower-complexity models and higher-complexity models 
in terms of accuracy, precision, and F1-score. The findings highlight that medium-depth 
models, enhanced with MSR2, offer the most reliable results for photovoltaic defect 
detection, demonstrating a significant improvement over other models in terms of 
accuracy and efficiency. This research provides valuable insights for optimizing defect 
detection systems in photovoltaic applications, emphasizing the importance of both 
model complexity and image enhancement techniques for robust performance. 
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1  Introduction 

N recent years, solar photovoltaic (PV) energy 
garnered substantial attention due to the growing 
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importance of clean and sustainable energy resources. 
Solar PV systems are widely recognized for their 
potential to address global energy challenges by 
reducing dependence on fossil fuels and minimizing 
greenhouse gas emissions. As the core component of 
solar panels, PV cells play a pivotal role in converting 
sunlight into electrical power, making them essential in 
achieving high-efficiency energy solutions. The rapid 
adoption of solar PV technology underscores its 
significance in fostering energy independence and 
mitigating climate change. 

Defects in PV cells, such as cracks, hotspots, and 
material degradation, can significantly compromise the 
efficiency and reliability of solar panels [1]. These 
defects, whether originating from manufacturing flaws 
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or environmental stresses, necessitate accurate 
identification and classification to ensure optimal solar 
energy system performance. Effective defect detection 
often relies on image-based diagnostic techniques like 
electroluminescence (EL) imaging. However, the quality 
of these images plays a critical role in successful defect 
classification. Challenges such as low contrast, uneven 
illumination, and noise frequently obscure defects, 
complicating the analysis process. To address these 
issues, advanced image enhancement techniques are 
employed to improve the visibility of defect regions, 
enabling more accurate and reliable classification using 
state-of-the-art methods like deep learning models. 

Advanced imaging techniques, combined with 
sophisticated image processing and machine learning 
algorithms, offer solutions for the effective classification 
of PV cell defects. By accurately identifying and 
categorizing these defects, such approaches enable 
timely interventions, ensuring the long-term efficiency 
and reliability of solar energy systems. Fig. (1) 
illustration of common PV cell defects, including finger 
interruptions, dislocations, printing errors, star cracks, 
short circuits, line cracks, and black cores, which disrupt 
electrical pathways and indicate potential structural 
weaknesses. In contrast, non-defective PV cells exhibit 
uniform surface texture, consistent crystalline patterns, 
even illumination, and an absence of visible 
imperfections. 

Fig. 1(a) shows a finger interruption, which disrupts 
electrical pathways and lowers energy efficiency. Fig.  
1(b) and 1(c) illustrate horizontal and vertical 
dislocations, indicating structural weaknesses that can 
lead to mechanical instability. Fig. 1(d) depicts a 
printing error from manufacturing flaws, affecting 
material consistency and cell performance. Fig. 1(e) 
shows a star crack that weakens the cell and makes it 
more susceptible to environmental damage. Fig. 1(f) 
illustrates a short circuit, causing current to bypass parts 
of the cell and reducing efficiency. Fig. 1(g) depicts a 
line crack, which compromises both mechanical and 
electrical performance. Fig. 1(h) shows a black core, 
indicating severe damage or contamination that reduces 
output. Fig. 1(i) and (j) display non-defective PV cells 
with uniform texture and no visible issues. These 
defects, from manufacturing or operational stress, 
critically affect the functionality and durability of PV 
cells. 

EL imaging is an effective diagnostic tool for detecting 
and analyzing defects in PV cells. By applying a forward 
bias, the PV cell emits light, captured by a specialized 
camera, revealing micro-cracks, finger interruptions, and 
other subtle defects invisible to the naked eye or 
conventional methods. EL images offer a detailed view 
of the cell's internal structure and condition, aiding in 
precise defect identification and classification. The high 

contrast and resolution of EL images are crucial for 
quality control in manufacturing and assessing the health 
of operational solar panels. Advanced image processing 
and machine learning algorithms can further utilize EL 
imaging data to improve the reliability and performance 
of PV systems. 

Given its ability to provide detailed views of PV cells' 
internal structures, EL imaging has become a widely 
adopted technique among researchers and practitioners 
for defect detection in solar PV systems. Numerous 
studies have demonstrated the effectiveness of EL 
imaging in identifying defects using conventional 
methods. The high resolution and contrast offered by EL 
images make them invaluable for both manufacturing 
quality control and the assessment of operational solar 
panels. As a result, EL imaging has been extensively 
used as a primary diagnostic tool in combination with 
advanced image processing and machine learning 
algorithms to enhance the accuracy and reliability of 
defect classification, contributing to the overall 
optimization of PV system performance. 
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Fig 1. Examples of various PV cell conditions. 

To ensure accurate detection and classification of 
defects in PV cells, the quality of diagnostic images, 
such as EL images, must be sufficient to reveal subtle 
imperfections. However, raw images often suffer from 
limitations like low contrast, uneven illumination, and 
noise, which can obscure critical details. Addressing 
these challenges requires the application of image 
enhancement techniques, which play a pivotal role in 
improving the visual clarity and informativeness of PV 
images. 
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Image enhancement is the process of improving the 
visual quality of an image, aiming to make it clearer and 
more informative for easier identification and analysis of 
important features. This involves techniques like 
contrast enhancement, noise reduction, image 
sharpening, and illumination normalization. In PV cells, 
image enhancement is crucial because images from PV 
modules, such as EL images, often have low quality due 
to issues like low contrast, uneven illumination, and 
noise. These problems can hide defects like cracks, 
finger interruptions, and dislocations. By improving 
image quality, enhancement techniques make these 
defects more visible and easier to detect and classify. 
Enhanced images help defect detection algorithms work 
more effectively, increasing the accuracy of defect 
detection in PV modules. Early identification and repair 
of defects ensure the efficiency and reliability of PV 
systems, which is vital for their long-term performance. 

Several studies have been conducted to apply image 
enhancement techniques to PV images, particularly for 
defect detection in solar cells. For instance, Zotin et al. 
[2] developed a Fast Multiscale Retinex algorithm to 
enhance colour images, which can be applied to PV 
images to improve contrast and illumination. Another 
research, Lee et al. [3] proposed using an Adaptive 
Multiscale Retinex to enhance image contrast, aiding in 
the detection of defects in PV images. Additionally, the 
study in Fan et al. [4] introduced an image enhancement 
algorithm to determine the dust level on PV panels, a 
factor that can affect panel performance. Furthermore, 
Meng et al. [5] reviewed traditional methods for defect 
detection and image enhancement in solar cells, 
illustrating how these techniques can be used to improve 
PV images. These studies demonstrate the critical role of 
image enhancement in ensuring that PV images are of 
sufficient quality for accurate defect detection and 
classification. 

While image classification focuses on identifying and 
categorizing objects within an image, another crucial 
step in the analysis of PV images is image segmentation. 
This process delves deeper by dividing an image into 
distinct regions or segments, enabling more precise 
localization and identification of defects within PV cells. 
Image classification involves identifying and 
categorizing objects within an image into predefined 
classes, utilizing methods like pre-trained models and 
Convolutional Neural Networks (CNN). Pre-trained 
models, trained on large datasets, can recognize various 
patterns and features in images. CNN, designed to 
process grid-like data, use convolutional layers to extract 
important features, pooling layers for down sampling, 
and fully connected layers for making predictions. This 
architecture effectively captures spatial hierarchies and 
local patterns, making it ideal for image classification 
tasks. 

Deep learning has emerged as a powerful tool in defect 
detection across various fields, including solar PV 
systems. Leveraging neural network architectures such 
as CNN and their advanced variants, deep learning 
enables the automated extraction of complex features 
from images, surpassing traditional image processing 
techniques in accuracy and efficiency. In recent years, 
the application of deep learning to EL images have 
gained significant attention due to its ability to analyze 
high-resolution diagnostic data and identify subtle 
defects like micro-cracks, hotspots, and finger 
interruptions. 

This trend is reflective of the broader adoption of deep 
learning in diverse image classification tasks, including 
medical diagnostics, autonomous vehicles, and industrial 
quality control. For solar PV defect detection, the 
integration of deep learning algorithms with EL imaging 
provides an advanced framework for accurate and 
reliable classification, ensuring improved efficiency and 
reliability of PV systems. As a result, many researchers 
have focused on applying deep learning techniques to 
EL images, recognizing its potential in enhancing defect 
detection capabilities and addressing the growing 
demand for sustainable energy solutions. 

In the field of PV solar panel defect detection, the use 
of transfer learning with deep CNN has demonstrated 
considerable potential. Various studies have explored 
this approach, demonstrating its effectiveness in 
identifying surface defects in solar panels. For instance, 
Zyout et al. [6] applied transfer learning with the 
AlexNet model to characterize and detect surface defects 
on PV solar panels. Their analysis focused on standard 
images of solar panel surfaces, rather than EL images. 
The accuracy achieved in the defect detection process 
using the AlexNet model was reported to be 92.0%, 
showcasing the potential of transfer learning and deep 
learning models in advancing surface defect detection 
for solar PV systems. Additionally, Li et al. [7] proposed 
an improved VGG-19 pre-trained model for defect 
detection, outperforming classical VGG19 in accuracy, 
precision, recall rate, and F1 score. The study's emphasis 
on transfer learning and hierarchical feature fusion 
contributed to the enhanced defect detection 
performance, showcasing the effectiveness of the 
improved network architecture. Next, the proposed 
model was tested on two publicly available global 
datasets of PV defective EL images. For comparative 
benchmarking, various CNN including VGG-16, 
MobileNet-V2, Inception-V3, DenseNet-121, ResNet-
152, Xception, and InceptionResNet-V2 were utilized. 
The evaluation demonstrated significant improvements 
in several metrics. The model achieved an accuracy of 
96.17% in the binary classification task of identifying 
the presence or absence of defects, and 92.13% in the 
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multiclass classification task of identifying different 
defect types. 

Next, the categorization of photovoltaic defect 
detection using EL images depends heavily on deep 
learning. Deitsch et al. [8] conducted pioneering 
research by applying CNN models to EL image analysis. 
This researcher trained a CNN model that achieved an 
impressive accuracy of 88.42%, outperforming the SVM 
model used in their study. Subsequently, Akram et al. [9] 
enhanced this work by employing data augmentation 
techniques and developing a lightweight CNN model 
that achieved even higher accuracy, reaching 93.02%. 
However, these models are primarily focused on binary 
classification which is functional or defective and do not 
address specific defect categorization.  

Karimi et al. [10] developed a comprehensive pipeline 
for processing EL images. Initially, raw EL images 
underwent automatic transformation and cropping to 
extract individual cell images. This research 
subsequently trained three models which are Random 
Forest (RF), Support Vector Machine (SVM), and CNN 
to classify cells into categories such as good, cracked, 
and corroded. The CNN model demonstrated superior 
performance, achieving an impressive accuracy of 
99.71% on their test dataset. The automated 
preprocessing tool represents a significant advancement. 
However, it necessitates additional validation using field 
images that may contain more complex backgrounds.  

Mayr et al. [11] utilized ResNet-50 as the backbone 
and a normalized layer for semantic segmentation to 
detect cracks at the pixel level in cell images. In a 
similar vein, Fioresi et al. [12] employed a Deeplabv3 
model with ResNet-50 backbone for crack segmentation, 
achieving an impressive weighted F1-score of 95.00%. 

In summary, this research aims to enhance the 
identification and classification of defective and non-
defective PV cells by leveraging advanced image 
enhancement techniques and deep learning algorithms. 
Previous studies have shown promising results in defect 
detection using deep learning models on EL images; 
however, few have explored the application and 
comparative analysis of different image enhancement 
methods. This study addresses this gap by analyzing the 
impact of various image enhancement techniques on 
deep learning model performance. Specifically, it 
compares models of varying complexities—low, 
medium, and high-depth architectures. Additionally, this 
research utilizes a large number of EL images from 
diverse datasets to evaluate the performance of the 
models in different contexts. The key contributions of 
this study include a comprehensive analysis of image 
enhancement methods, a comparison of deep learning 
models with different depths, and the use of multiple 
datasets to assess model robustness. These efforts 

promise to improve defect detection accuracy and 
efficiency, thus enhancing the reliability and 
performance of PV systems, ultimately contributing to 
more effective solar energy generation. 

2 Methodology 

In this study, we utilized 10,000 photovoltaic EL 
images from four datasets, equally divided between 5, 
000 defective and 5,000 non-defective cells. The diverse 
range of EL images representing various defect types 
highlights the effectiveness of transfer learning 
techniques in addressing this critical challenge. To 
enhance the images, we compared two image 
enhancement techniques: Multi-Scale Retinex (MSR) 
and MSR2. These enhanced images were then fed into 
ten distinct types of deep learning models: CNN, 
AlexNet, DarkNet-53, DenseNet-201, EfficientNet-b0, 
GoogLeNet, ResNet-101, SqueezeNet, VGG-19 and 
Xception. The models' architectures were developed 
using MATLAB R2023b and executed on a graphical 
processing unit (GPU), specifically the NVIDIA 
GeForce RTX. 

2.1 Dataset Overview of Electroluminescence Images 
This research leverages multiple publicly available 

online datasets to evaluate the performance of deep 
learning models for defect detection and classification in 
PV cells. By utilizing datasets from diverse sources, 
including GitHub and the EMN Data Hub, the study 
aims to measure the generalizability and robustness of 
the models across different defect patterns and imaging 
conditions. Such diversity ensures that the findings are 
applicable to real-world scenarios where variations in 
image quality, lighting conditions, and defect types are 
common. 

Table 1 summarizes the datasets used in this study, 
including their sources, the total number of images 
available, the subset of images utilized, and the 
classification of defective versus non-defective images. 
The ELPV Dataset [8], [13], [14], sourced from GitHub, 
comprises 2,624 photovoltaic EL images, with all 
images being used in this study. This dataset includes 
1,116 defective cells and 1,508 non-defective cells. The 
UCF-EL Defect Dataset [12], also obtained from 
GitHub, originally contains 17,064 EL images. For our 
research, we selected a subset of 4,420 images, 
consisting of 1,310 defective and 3,110 non-defective 
cells. The Crack Segmentation Dataset from the EMN 
Data Hub includes a total of 2,159 images. From this 
dataset, 1,956 images were used, which include 1,574 
defective cells and 382 non-defective cells. Lastly, the 
Photovoltaic Electroluminescence Anomaly Detection 
Dataset [15], [16], [17], [18] from GitHub provides 
36,543 near-infrared images with various internal 
defects and diverse backgrounds. For our study, we 
selected 1,000 defective cells from this dataset. This 



Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 02, June 2025     5 
 

comprehensive overview of the datasets highlights the 
variety and scope of the images used for defect detection 
and classification in photovoltaic cells. 

Table 1. Summary of datasets used in this study.  

Dataset Source 
Total 

Images 
Available 

Total 
Images 
Used 

Defective 
Images 

Non-
Defective 

Images 

ELPV Dataset 
[8], [13], [14] GitHub 2,624 2,624 1,116 1,508 

UCF-EL 
Defect Dataset 

[12] 
GitHub 17,064 4,420 1,310 3,110 

Crack 
Segmentation 

Dataset 

EMN 
Data 
Hub 

2,159 1,956 1,574 382 

Photovoltaic 
Electrolumines

-cence 
Anomaly 
Detection 
Dataset 

[15], [16], 
[17], [18] 

GitHub 36,543 1,000 1,000 - 

2.1.1 Dataset Distribution for Training and 
Validation 

To effectively train and evaluate the performance of 
our models, we organized the total dataset of 10,000 
photovoltaic EL images into training and validation 
subsets. Specifically, 60% of the images were allocated 
for training, while the remaining 40% were reserved for 
validation. Before splitting the dataset, we ensured that 
the images were randomized to avoid any potential bias 
in the selection process. This randomization was crucial 
to ensure that both subsets were representative of the 
overall dataset, promoting unbiased learning. 

Table 2 outlines the distribution of our datasets into 
training and validation sets for the research of defect 
detection in photovoltaic cells using EL images. For the 
training phase, we allocated 6,000 images, with 3,000 
images belonging to the defective class and 3,000 to the 
non-defective class. This balanced distribution ensures 
that the model receives equal exposure to both types of 
images, promoting better learning and reducing the risk 
of bias toward either class. For the validation phase, 
which is crucial for evaluating the model's performance 
and tuning its parameters, we used 4,000 images. This 
set also maintains an even split, with 2,000 defective 
images and 2,000 non-defective images. By keeping the 
validation dataset balanced, we can accurately assess the 

model's ability to generalize and correctly classify new, 
unseen images.  
Table 2. The arrangements of training and validation datasets.  

Dataset / Class Defective Non-Defective Total 

Training 3,000 3,000 6,000 

Validation 2,000 2,000 4,000 

Total 5,000 5,000 10,000 

In summary, the dataset is carefully divided into 
training and validation sets to provide a robust 
framework for developing and evaluating our defect 
detection models. This balanced approach ensures that 
the models are well-trained, and their performance is 
reliably assessed. Moreover, utilizing a large dataset is 
crucial for this study as it enhances the generalizability 
of the models, reducing the risk of overfitting and 
ensuring reliable performance on unseen data. A larger 
dataset captures a broader range of variations and defect 
patterns, which is essential for robust defect detection in 
real-world scenarios. By avoiding the limitations of 
small datasets, the study aims to achieve higher accuracy 
and better reliability in classifying photovoltaic cell 
defects. 

2.2 Image Enhancement for Electroluminescence 
Images 

This research employs and analyzes two advanced 
image enhancement techniques, Multi-Scale Retinex 
(MSR) and Modified Multi-Scale Retinex (MSR2) to 
improve the quality and interpretability of EL images. 
EL images are inherently challenging due to issues such 
as low contrast, uneven illumination, and noise, which 
can obscure critical defect patterns. Image enhancement 
is applied in this study to address these challenges by 
improving contrast, highlighting subtle features, and 
ensuring uniform brightness, thereby enabling accurate 
defect detection and classification. 

Multi-Scale Retinex (MSR) [19] is an advanced image 
enhancement technique designed to improve the visual 
quality of images by addressing issues of dynamic range 
compression, colour constancy, and colour rendition. It 
is particularly effective in enhancing images captured 
under varying lighting conditions. MSR was developed 
to overcome the limitations of the Single Scale Retinex 
(SSR) method, especially in balancing dynamic range 
compression and colour rendition. Retinex theory, which 
is rooted in human visual perception, aims to achieve 
colour constancy and dynamic range compression. MSR 
enhances this concept by combining multiple SSR 
outputs at different scales to provide a more balanced 
enhancement. The MSR algorithm calculates a weighted 
sum of the SSR outputs, which allows for improved 
local dynamic range and colour rendition. This multi-
scale approach ensures that the enhanced image 
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maintains both fine and coarse details, achieving a 
visually pleasing balance between dynamic range and 
colour accuracy. 

Based on the study conducted by Shaari et.al, [19], Eq. 
(1) presents the MSR formula, where  represented the 
number of scales,  denotes the weight of each scale,  
serves as the normalization factor,  denotes input image 
on the  colour channel and 
𝐹𝐹𝑛𝑛(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶𝑛𝑛𝑒𝑒𝑥𝑥𝑒𝑒 �−

�𝑥𝑥2+𝑦𝑦2�
2𝜎𝜎𝑛𝑛2

�. 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = ∑ 𝑤𝑤𝑛𝑛𝑅𝑅𝑛𝑛 = ∑ 𝑤𝑤𝑛𝑛𝑁𝑁
𝑛𝑛=1

𝑁𝑁
𝑛𝑛=1 �𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼𝑖𝑖(𝑥𝑥, 𝑦𝑦) −

𝑙𝑙𝑙𝑙𝑙𝑙�𝐹𝐹𝑛𝑛(𝑥𝑥, 𝑦𝑦) ∙ 𝐼𝐼𝑖𝑖(𝑥𝑥, 𝑦𝑦)��                                               (1) 

Then, Zhou et.al [20] further refine and improve the 
MSR technique, where MSR2 was developed, which 
accepts different desired scales as input and permits non-
constrained scaling. MSR2 is an extension of the 
original MSR algorithm that incorporates additional 
processing steps to enhance its performance. The key 
improvements in MSR2 include more sophisticated 
noise reduction techniques and adaptive parameter 
tuning, which allows the algorithm to better handle 
different types of images and lighting conditions. 

The enhanced MSR2 algorithm follows a structured 
process to achieve superior image enhancement. First, it 
performs multi-scale decomposition using Gaussian 
filters at different scales to capture fine and coarse 
details effectively. Next, noise reduction is applied, 
utilizing advanced techniques to suppress noise and 
minimize artifacts during the enhancement process. 
Following this, adaptive parameter tuning adjusts the 
algorithm's parameters dynamically based on the input 
image's characteristics, ensuring robust and flexible 
performance across varying conditions. Finally, the 
outputs from different scales are combined and 
reconstructed using a weighted sum approach, followed 
by post-processing steps to further enhance the overall 
visual quality of the image. 

The development of MSR2 addresses some of the 
limitations of the original MSR algorithm, offering 
improved noise management and adaptive capabilities 
tailored for diverse imaging conditions. This makes 
MSR2 particularly effective for enhancing solar cell EL 
images, where high-quality enhancement is critical for 
accurately identifying subtle defects, improving defect 
classification, and ensuring reliable analysis in 
photovoltaic applications. 

2.3 Leveraging CNN and Deep Pre-Trained Networks 
for Electroluminescence Image Classification 

In this section, we detail the model architectures and 
training configurations used for classifying EL images of 
photovoltaic cells. Our approach involved both CNN and 
pre-trained models, each tailored to enhance defect 
detection capabilities. 

2.3.1 Description of CNN and Pre-Trained Models 
In this study, we utilized a baseline CNN and several 

pre-trained models categorized into three groups based 
on network depth: lower-depth models (AlexNet, 
SqueezeNet, EfficientNet-b0), medium-depth models 
(GoogLeNet, DarkNet-53, VGG-19), and higher-depth 
models (DenseNet-201, ResNet-101, Xception). Lower-
depth models, typically consisting of 5 to 20 layers, are 
lightweight and computationally efficient, making them 
well-suited for applications with limited resources or 
small datasets, though their shallower architecture can 
limit their ability to learn complex features. Medium-
depth models, with 20 to 100 layers, offer a balance 
between computational efficiency and representational 
power, making them ideal for tasks requiring moderate 
complexity. Higher-depth models, with over 100 layers, 
excel in tasks requiring the extraction of complex, 
hierarchical features, though they demand significant 
computational resources; they often incorporate residual 
or dense connections to improve training efficiency and 
mitigate issues like vanishing gradients. This 
categorization allows for a systematic comparison of 
classification performance across models with varying 
complexities when applied to EL images of PV cells. 

These pre-trained models were chosen for their 
established effectiveness in image classification tasks, 
making them well-suited for defect detection in 
photovoltaic cells. The study focuses on analyzing their 
performance without modification to provide insights 
into the inherent capabilities of these architectures when 
applied to the unique characteristics of EL images. 

The decision to use a baseline CNN and pre-trained 
models without modifications was driven by the 
objective of establishing a foundational comparison. 
This approach ensures a fair evaluation of existing 
architectures, highlights their strengths and limitations, 
and provides a benchmark for future studies that may 
involve architectural modifications or task-specific 
enhancements. By maintaining this focus, the study aims 
to present a clear and objective analysis of classification 
performance. 

Convolutional Neural Networks (CNNs) [21] are 
widely used for image processing tasks due to their 
ability to efficiently handle spatial data. They employ 
convolutional layers for feature extraction, pooling 
layers for down-sampling, and fully connected layers for 
predictions, making them ideal for tasks like image 
classification, object detection, and segmentation. While 
CNNs excel at capturing local patterns, they often 
struggle with long-range dependencies and semantic 
connections, requiring deeper architectures or additional 
mechanisms to handle such complexities. 

AlexNet [6], one of the earliest deep CNN, made a 
significant impact on image classification tasks by 
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introducing key innovations that are now standard in 
modern deep learning models. It was among the first to 
use Rectified Linear Unit (ReLU) activation functions, 
which accelerated training by alleviating the vanishing 
gradient problem. The model also incorporated dropout 
to prevent overfitting by randomly disabling a subset of 
neurons during training, and it employed data 
augmentation techniques, such as image rotations and 
translations, to increase the diversity of the training data 
and improve generalization. The architecture consists of 
five convolutional layers followed by three fully 
connected layers, where the convolutional layers 
progressively extract features, and the fully connected 
layers combine them for classification. AlexNet’s 
groundbreaking performance in the 2012 ImageNet 
competition established it as a foundational model in 
deep learning, influencing the design of subsequent 
CNNs and advancing the field of computer vision. 

SqueezeNet [22] is designed with a lightweight 
architecture that prioritizes efficiency while maintaining 
strong performance. The model uses "fire modules," 
which combine 1x1 and 3x3 convolutional filters to 
drastically reduce the number of parameters compared to 
traditional architectures, making it more computationally 
efficient. Despite its smaller size, SqueezeNet retains 
competitive accuracy, which makes it particularly well-
suited for resource-constrained environments, such as 
mobile devices or embedded systems, where processing 
power and memory are limited. This combination of 
efficiency and performance allows SqueezeNet to excel 
in applications that require a balance between speed and 
model effectiveness. 

EfficientNet-b0 [23] uses a compound scaling method 
that uniformly adjusts depth, width, and resolution with 
fixed coefficients, balancing network dimensions for 
better performance and efficiency. It uses depth-wise 
separable convolutions to cut down on parameters and 
computational cost, allowing for high accuracy while 
being more resource-efficient. Neural Architecture 
Search (NAS) and AutoML techniques are used to 
automatically find the best network design, resulting in a 
highly efficient model that delivers top performance 
while using fewer computational resources. 

GoogleNet [24], also known as Inception-v1, 
introduced the innovative Inception module, which 
utilizes multiple convolutional filter sizes in parallel. 
This approach allows the model to capture a wide range 
of features, from fine-grained details to more abstract 
patterns, in a single layer. By doing so, GoogLeNet 
reduces the computational cost typically associated with 
using large, deep networks, all while maintaining high 
classification accuracy. The modular design of the 
network also enables it to scale effectively, making it 
suitable for a variety of image recognition tasks. This 

balance of efficiency and accuracy has made GoogLeNet 
a widely adopted architecture in deep learning. 

DarkNet-53 [25], with 53 convolutional layers, this 
deep network captures complex features from images, 
enabling it to learn detailed patterns and representations 
crucial for precise image classification and object 
detection. The architecture includes residual connections 
that ease the vanishing gradient problem and support the 
training of very deep networks by allowing gradients to 
flow more easily, enhancing learning efficiency and 
performance. Despite its complexity, Darknet-53 is 
designed to be computationally efficient, balancing 
accuracy and speed to suit real-time applications like 
object detection in the You Only Look Once (YOLO) 
framework. 

VGG-19 [19], with 19 layers, including 16 
convolutional layers and 3 fully connected layers, this 
network structure captures detailed and complex image 
features. The network uses 3x3 convolutional filters in 
all its layers to capture detailed spatial features and 
create a hierarchy of increasingly complex features. Uses 
a straightforward design with repeated convolutional and 
max-pooling layers, making it easy to implement and 
effective at learning spatial patterns in the data. 

Similarly, DenseNet-201 [26], in a feed-forward 
manner, each layer is fully connected to every other 
layer, enhancing information flow, feature reuse, and 
gradient propagation, which supports the training of 
deeper networks. Reduces the number of parameters 
compared to traditional convolutional networks by using 
dense connections, which not only avoids the vanishing 
gradient problem but also enhances feature reuse without 
compromising performance. By combining Batch 
Normalization, ReLU activation, and Convolution 
operations in each layer, this approach improves learning 
efficiency and robustness, allowing the network to 
achieve high accuracy with fewer parameters and lower 
computational costs. 

ResNet-101 [27], by using residual learning and skip 
connections, this network can be very deep (101 layers) 
while avoiding the vanishing gradient problem, as the 
skip connections help the network learn identity 
mappings, simplifying the training of deeper models. 
The network employs a bottleneck design with each 
residual block consisting of three layers (1x1, 3x3, and 
1x1 convolutions), which cuts down on parameters and 
computational complexity while maintaining 
performance. With its deep architecture and residual 
learning framework, this model excels in generalization, 
consistently delivering high accuracy across diverse 
image classification tasks and datasets. 

Finally, Xception [28] builds on the Inception 
architecture by incorporating depth-wise separable 
convolutions, a technique that significantly improves 
feature extraction efficiency. This approach separates the 
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process of filtering and combining features, allowing the 
model to focus on learning more meaningful and 
compact features while reducing the computational load. 
By enhancing parameter utilization, Xception not only 
improves performance but also achieves faster training 
times and better generalization. As a result, it 
demonstrates remarkable performance in both image 
classification and object detection tasks, making it 
highly effective for a variety of computer vision 
applications. 

Collectively, these models represent a broad spectrum 
of innovations and design strategies in neural networks, 
each tailored to address specific challenges in image 
analysis. They demonstrate a variety of approaches, 
from lightweight architectures optimized for 
computational efficiency to deep models that excel in 
extracting complex features. These advancements reflect 
the ongoing evolution in the field of computer vision, 
where balancing accuracy, computational cost, and 
efficiency is crucial for practical real-world applications. 
By leveraging different techniques such as residual 
connections, depth-wise separable convolutions, and 
multi-scale processing, these models continue to push 
the boundaries of what is achievable in terms of both 
performance and resource utilization, making them 
invaluable for tasks like image classification, object 
detection, and beyond. 

2.3.2 Training Parameters and Configuration 
In this section, we detail the training parameters and 

configurations used for fine-tuning the various models 
employed in this study. These settings are crucial for 
optimizing the performance of both CNN and the pre-
trained models on the photovoltaic defect detection. The 
choice of parameters, such as input image size, 
activation functions, and optimization methods, plays a 
significant role in how effectively each model learns and 
generalizes from the data. 

Table 3 summarizes the fine-tuning parameters and 
configurations for the CNN and pre-trained models used 
in this study for photovoltaic defect detection from EL 
images. It includes information on input image size, 
activation functions, optimizers, and the number of 
training epochs. This table helps to illustrate how each 
model was tailored to achieve optimal performance for 
detecting defects in photovoltaic EL images. 

For most models, the input image size was set to 
224x224x3 pixels, while DarkNet-53 used a larger size 
of 256x256x3 pixels. This choice ensures compatibility 
with the respective architectures while balancing 
computational efficiency and detail preservation 
essential for accurate defect detection. Activation 
functions are crucial for introducing non-linearity into 
the models. The Rectified Linear Unit (ReLU) was 
predominantly used for its effectiveness in mitigating the 

vanishing gradient problem. DarkNet-53 used Leaky 
ReLU to better handle negative values, and EfficientNet-
b0 employed the Swish activation function, which 
improves performance by allowing smoother gradients. 
Cross-entropy was used as the loss function across all 
models, facilitating effective learning by comparing 
predictions to actual labels. Stochastic Gradient Descent 
with Momentum (SGDM) was chosen as the optimizer 
for its efficiency in speeding up training and finding 
optimal solutions. Each model was trained for 25 
epochs, a duration that strikes a balance between 
achieving high performance and avoiding overfitting. 

Table 3. Fine tuning of the pre-trained models and CNN for 
photovoltaic detection from EL images.  

Models Size Activation 
Function Optimizer Epoch 

CNN 224x224x3 ReLU SGDM 25 

AlexNet 227x227x3 ReLU SGDM 25 

DarkNet-53 256x256x3 Leaky 
ReLU SGDM 25 

DenseNet-201 224x224x3 ReLU SGDM 25 

EfficientNet-
b0 224x224x3 Swish SGDM 25 

GoogLeNet 224x224x3 ReLU SGDM 25 

ResNet-101 224x224x3 ReLU SGDM 25 

SqueezeNet 227x227x3 ReLU SGDM 25 

VGG-19 224x224x3 ReLU SGDM 25 

Xception 299x299x3 ReLU SGDM 25 

In summary, by fine-tuning these CNN and pre-trained 
models, aimed to improve defect detection in 
photovoltaic EL images. This detailed setup and 
optimization are pivotal in advancing the reliability and 
efficiency of photovoltaic systems. 

2.3.3 Performances Evaluations Metrics 
The performance of the classification models was 

assessed using five key metrics: validation accuracy, 
precision, sensitivity, specificity, and F1-score. 

Table 4 provides the formulas used to calculate the 
performance evaluation metrics. These evaluation 
metrics are essential for a comprehensive evaluation of 
the model's performance in detecting defective and non-
defective of photovoltaic EL images, ensuring that both 
the accuracy and reliability of the defect detection 
process are thoroughly assessed. 

In this context, the number of defective photovoltaic 
EL images that were correctly recognized as defective is 
referred to as “true positive” (TP). The total number of 
non-defective photovoltaic EL images that were 
accurately identified as non-defective is represented by 
the term “true negative” (TN). On the other hand, “false 
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positive” (FP) explains conditions in non-defective 
photovoltaic EL images that are non-defective were 
mistakenly classified as defective. Finally, the term 
“false negative” (FN) describes the number of 
photovoltaic EL images that were found to be defective 
but were wrongly categorized as non-defective. 

Table 4. Evaluation metrics.  

Assessments Formula 

Accuracy 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Sensitivity 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Specificity 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

F1-Score (2 ∙ 𝑇𝑇𝑇𝑇)
(2 ∙ 𝑇𝑇𝑇𝑇) + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 

In summary, the use of these performance metrics 
allows for a thorough understanding of how well the 
models distinguish between defective and non-defective 
photovoltaic EL images. By evaluating the models 
across multiple metrics, we ensure a robust analysis of 
their overall effectiveness in defect detection. 

3 Results and Discussions 

This section outlines the used to evaluate and enhance 
the performance of CNN and pre-trained models for 
classifying defective and non-defective photovoltaic EL 
images. The approach integrates image enhancement 
techniques with state-of-the-art deep learning models to 
achieve optimal accuracy in defect detection. 

3.1 Qualitative Analysis of Image Enchancement 
In this study, we assessed the effectiveness of MSR 

and MSR2, in enhancing the detection of defects in 
photovoltaic EL images. The analysis in Fig. 2 
highlights why MSR2 is superior to MSR in this context. 

The original non-defective photovoltaic EL image is 
depicted in Fig. 2(a), while Figs. 2(b) to (d) display 
original defective images showing line cracks, star 
cracks, and soiling, respectively. These images serve as 
the baseline, illustrating the inherent defects and quality 
of the photovoltaic cells before any enhancement is 
applied. 

MSR was used to improve image clarity by enhancing 
details and reducing variations in illumination. Figs. 2(e) 
to (h) demonstrate the results of applying MSR, with the 
enhanced images showing clearer distinctions between 
defective and non-defective areas. The technique 
effectively highlights the features of the defects, 
improving their visibility. However, it also introduces 

some distortions—slight artifacts or exaggerations in 
certain parts of the image. While these distortions are 
noticeable, they do not significantly interfere with defect 
detection, allowing MSR to still be a useful tool in 
analyzing these images. 

    

 (a). Original 
non-defective 
photovoltaic 
EL image 

 (b). Original 
defective 
(line crack) 
photovoltaic 
EL image 

 (c). Original 
defective 
(star crack) 
photovoltaic 
EL image 

 (d). Original 
defective 
(soiling) 
photovoltaic 
EL image 

    

 (e). MSR 
enhancement 
non-defective 
photovoltaic 
EL image 

 (f). MSR 
enhancement 
defective 
(line crack) 
photovoltaic 
EL image 

 (g). MSR 
enhancement 
defective 
(star crack) 
photovoltaic 
EL image 

 (h). MSR 
enhancement 
defective 
(soiling) 
photovoltaic 
EL image 

    

 (i). MSR2 
enhancement 
non-defective 
photovoltaic 
EL image 

 (j). MSR2 
enhancement 
defective 
(line crack) 
photovoltaic 
EL image 

 (k). MSR2 
enhancement 
defective 
(star crack) 
photovoltaic 
EL image 

 (l). MSR2 
enhancement 
defective 
(soiling) 
photovoltaic 
EL image 

Fig 2. Comparison of original and enhanced photovoltaic 
EL images using MSR and MSR2. 

On the other hand, MSR2 provided even better contrast 
and brought out finer details, making defects more 
prominent and easier to detect. Figs. 2(i) to (l) illustrate 
the impact of MSR2, where the defects, such as line 
cracks, star cracks, and soiling, are displayed with 
greater clarity. MSR2 effectively preserved critical 
image features and addressed illumination challenges 
more efficiently than MSR, ensuring that even subtle 
details were captured. Although MSR2 also introduced 
minor distortions, they were less pronounced and had a 
minimal effect on the overall image quality, ensuring 
that defect detection was not compromised. 

Overall, both MSR and MSR2 significantly enhance 
defect detection in photovoltaic EL images, but MSR2 
stands out as the more effective technique. It provides 
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better contrast, preserves finer details, and handles 
illumination variations more effectively, all while 
introducing fewer distortions. This makes MSR2 a more 
reliable choice for improving the visibility of defects and 
ensuring accurate analysis of photovoltaic cells. 

Table 5. Performance of original on CNN and nine pre-
trained models for photovoltaic EL images.  

Evalution 
Metric / 

Enhancement 
Method 

Accuracy Precision Sensitivity Specificity F1-
Score 

CNN 84.73 83.60 86.40 83.05 84.98 

AlexNet 90.90 89.06 93.25 88.55 91.11 

DarkNet-53 92.55 90.37 95.25 89.85 92.75 

DensetNet-201 93.08 91.64 94.80 91.35 93.19 

EfficientNet-
b0 92.45 90.05 95.45 89.45 92.67 

GoogLeNet 92.30 90.56 94.45 90.15 92.46 

ResNet-101 93.50 93.12 94.00 93.05 93.56 

SqueezeNet 88.45 84.80 93.70 83.20 89.03 

VGG-19 91.62 96.48 86.40 96.85 91.16 

Xception 92.47 93.14 91.70 93.25 92.42 

3.1.2 Comparative Analysis of Image Enchancement 
Techniques with CNN and Deep Pre-Trained Models 

This section evaluates the influence of MSR and 
MSR2 image enhancement techniques on the 
performance of CNN and nine various deep pre-trained 
models for detecting defects in photovoltaic EL images. 
The objective is to determine the most effective 
combination of enhancement techniques with deep 
learning models for achieving superior accuracy and 
reliability in distinguishing defective from non-defective 
cells. The results are presented in Tables 5, 6, and 7, 
which detail performance metrics across different 
scenarios. 

In Table 6, based on the performance metrics, 
DarkNet-53 emerges as the overall best-performing 
model across the majority of evaluation metrics, 
achieving the highest accuracy, sensitivity and F1-Score. 
AlexNet performs excellently in precision and 
specificity. Based on these results, DarkNet-53 is the 
most consistent and reliable model for photovoltaic EL 
image classification when using the MSR enhancement 
method. 

Table 6. Performance of MSR on CNN and nine pre-trained 
models for photovoltaic EL images.  

Evalution 
Metric / 

Enhancement 
Method 

Accuracy Precision Sensitivity Specificity F1-
Score 

CNN 85.45 84.32 87.10 83.80 85.69 

AlexNet 91.53 95.71 86.95 96.10 91.12 

DarkNet-53 93.65 93.43 93.90 93.40 93.67 

DensetNet-201 93.30 93.39 93.20 93.40 93.29 

EfficientNet-
b0 92.90 94.36 91.20 94.55 92.75 

GoogLeNet 92.83 93.46 92.10 93.55 92.77 

ResNet-101 93.60 94.54 92.55 94.65 93.53 

SqueezeNet 89.15 87.39 91.50 86.80 89.40 

VGG-19 93.25 94.00 92.40 94.10 93.19 

Xception 92.47 93.10 91.75 93.20 92.42 

In Table 7, based on the performance metrics, 
DarkNet-53 stands out with the highest accuracy 
(94.55%) and F1-score (94.43%). However, AlexNet 
demonstrated the highest precision (97.20%) and 
specificity (97.50%), while VGG-19 achieved the 
highest sensitivity (94.45%). Although DarkNet-53 
performed consistently well across most metrics, each 
model had strengths in different areas, with AlexNet 
excelling in precision and specificity and VGG-19 in 
sensitivity. Overall, DarkNet-53 appears to be the most 
balanced and effective model for defect detection in 
photovoltaic EL images. 

Lower-depth models, such as AlexNet, SqueezeNet, 
and EfficientNet-b0, generally exhibit good performance 
with lower computational demands, making them 
suitable for real-time applications. However, these 
models have limitations in capturing complex features in 
photovoltaic EL images. For example, AlexNet 
demonstrates a high precision and specificity with 
MSR2 (97.20% and 97.50%, respectively), but its 
overall accuracy (92.08%) and sensitivity (86.65%) are 
lower compared to the more complex models. 
SqueezeNet and EfficientNet-b0 also perform 
reasonably well but struggle to match the accuracy of 
deeper models, as seen in Table 7, where their accuracy 
is 89.67% and 93.22%, respectively. While these models 
are computationally efficient, they are outperformed by 
deeper models in terms of overall classification 
performance. 
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Table 7. Performance of MSR2 on CNN and nine pre-trained 
models for photovoltaic EL images.  

Evalution 
Metric / 

Enhancement 
Method 

Accuracy Precision Sensitivity Specificity F1-
Score 

CNN 86.67 84.81 89.35 84.00 87.02 

AlexNet 92.08 97.20 86.65 97.50 91.62 

DarkNet-53 94.55 96.60 92.35 96.75 94.43 

DensetNet-201 93.40 94.20 92.50 94.30 93.34 

EfficientNet-b0 93.22 94.96 91.35 95.15 93.12 

GoogLeNet 93.03 93.00 93.05 93.00 93.03 

ResNet-101 93.70 95.86 91.35 96.05 93.55 

SqueezeNet 89.67 88.28 91.50 87.85 89.86 

VGG-19 93.67 93.01 94.45 92.90 93.72 

Xception 93.05 93.26 92.75 93.30 93.01 

Medium-depth models, including GoogLeNet, 
DarkNet-53, and VGG-19, offer a balance between 
computational efficiency and performance. Among 
these, DarkNet-53 stands out with the highest accuracy 
(94.55%) and F1-score (94.43%) in Table 7, when 
enhanced with MSR2. It also performs exceptionally 
well in terms of specificity (96.75%) and precision 
(96.60%). This model captures complex defect patterns 
more effectively than the lower-depth models while 
maintaining computational efficiency. VGG-19, while 
slightly lower in overall accuracy (93.67%), excels in 
sensitivity (94.45%) and specificity (92.90%) with 
MSR2, highlighting its ability to correctly identify 
defective areas. GoogLeNet shows balanced 
performance across metrics, achieving an accuracy of 
93.03%, but it does not outperform DarkNet-53 in terms 
of overall performance. 

Higher-depth models, such as DenseNet-201, ResNet-
101, and Xception, excel in learning detailed features 
and hierarchical representations, providing the best 
performance for defect detection. ResNet-101 achieves 
the highest accuracy (93.50%) and F1-score (93.56%) in 
the original dataset (Table 5), making it highly effective 
at detecting complex defects. DenseNet-201 and 
Xception also perform very well, with DenseNet-201 
achieving a strong F1-score of 93.34% and Xception 
reaching an accuracy of 93.05%. These models are able 
to handle more intricate patterns in the images, 
providing superior defect detection compared to the 
lower and medium-depth models. 

In conclusion, while lower-depth models like AlexNet 
and EfficientNet-b0 provide good results with efficient 
computation, they are outperformed by medium-depth 
and higher-depth models. Among these, DarkNet-53 is 
the most well-rounded performer, consistently achieving 
the highest overall accuracy, precision, and F1-score. 
ResNet-101 and DenseNet-201 also offer excellent 
performance but with slightly lower precision and 
specificity than DarkNet-53. Thus, for optimal defect 
detection in photovoltaic EL images, medium-depth 
models like DarkNet-53 provide the best results, 
especially when enhanced with MSR2. 

3.1.3 Confusion Matrix Analysis of Image 
Enhancement Techniques with CNN and Deep Pre-
Trained Models 

This section presents a detailed analysis of the 
confusion matrix results for the performance of CNN 
and various pre-trained models using the MSR2 image 
enhancement technique. The confusion matrix provides 
essential information regarding the number of TP, TN, 
FP, and FN, which are crucial for evaluating the model's 
classification performance in detecting defects in 
photovoltaic EL images. 

Fig. 3(a) shows the CNN performance with MSR2 
enhancement. The CNN achieves an accuracy of 
86.67%, with 1,787 true positives, 1,680 true negatives, 
213 false positives, and 320 false negatives. Despite 
having moderate accuracy, CNN experiences a higher 
number of false positives, leading to a slightly less 
reliable performance compared to other models. 

Fig. 3(b) presents AlexNet performance with MSR2 
enhancement. AlexNet achieves an accuracy of 92.08%, 
with 1,733 true positives, 1,950 true negatives, 267 false 
positives, and 50 false negatives. This model 
demonstrates a significant improvement in accuracy 
compared to CNN, with fewer false negatives and a 
well-balanced performance in detecting both defective 
and non-defective photovoltaic cells. 

Fig. 3(c) presents DarkNet-53 performance with MSR2 
enhancement. DarkNet-53 achieves an accuracy of 
94.55%, with 1,847 true positives, 1,935 true negatives, 
153 false positives, and 65 false negatives. This model 
demonstrates exceptional performance, significantly 
improving accuracy while maintaining a low number of 
false positives and false negatives. DarkNet-53 stands 
out for its ability to accurately detect defects in 
photovoltaic cells with minimal misclassification, 
making it one of the top performers among the pre-
trained models tested. 

Fig. 3(d) presents DenseNet-201 performance with 
MSR2 enhancement. DenseNet-201 achieves an 
accuracy of 93.40%, with 1,850 true positives, 1,886 
true negatives, 150 false positives, and 14 false 
negatives. The model demonstrates a strong ability to 
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detect defects, with a very low number of false 
negatives, indicating its effectiveness in identifying 
defective photovoltaic cells. Despite a slightly higher 
number of false positives, DenseNet-201 performs well, 
highlighting its reliability and high accuracy in the 
defect detection task when using the MSR2 
enhancement method. 

Fig. 3(e) presents EfficientNet-b0 performance with 
MSR2 enhancement. EfficientNet-b0 achieves an 
accuracy of 93.22%, with 1,827 true positives, 1,903 
true negatives, 173 false positives, and 97 false 
negatives. The model shows strong performance, 
particularly in its ability to correctly classify non-
defective cells, as evidenced by the high number of true 
negatives. While it has a moderate number of false 
positives, its overall accuracy and the relatively low 
number of false negatives indicate that EfficientNet-b0 
effectively detects defects in photovoltaic cells when 
using the MSR2 enhancement technique. 

Fig. 3(f) presents GoogLeNet performance with MSR2 
enhancement. GoogLeNet achieves an accuracy of 
93.03%, with 1,861 true positives, 1,860 true negatives, 
140 false positives, and 139 false negatives. This model 
demonstrates a high level of performance in defect 
detection, maintaining a well-balanced number of true 
positives and true negatives. The relatively low number 
of false positives and false negatives suggests that 
GoogLeNet, when enhanced with MSR2, delivers 
reliable and accurate classification of photovoltaic 
defects, while maintaining a good balance between 
sensitivity and specificity. 

Fig. 3(g) presents ResNet-101 performance with 
MSR2 enhancement. ResNet-101 achieves an accuracy 
of 93.70%, with 1,827 true positives, 1,921 true 
negatives, 173 false positives, and 79 false negatives. 
This model demonstrates strong performance, with a 
high number of true positives and true negatives, 
indicating its reliability in distinguishing between 
defective and non-defective photovoltaic cells. The 
relatively low false positive and false negative counts 
highlight the model's efficiency in defect detection, 
making it a robust choice for classification tasks with the 
MSR2 enhancement method. 

Fig, 3(h) presents SqueezeNet performance with 
MSR2 enhancement. SqueezeNet achieves an accuracy 
of 89.67%, with 1,830 true positives, 1,757 true 
negatives, 170 false positives, and 243 false negatives. 
Although the model demonstrates a decent accuracy, the 
higher number of false negatives indicates that it may be 
less sensitive to detecting defective photovoltaic cells 
compared to other models. This suggests that while 
SqueezeNet performs reasonably well, it may require 
further optimization to reduce misclassification rates, 

particularly false negatives, for improved reliability in 
defect detection. 

Fig. 3(i) presents VGG-19 performance with MSR2 
enhancement. VGG-19 achieves an accuracy of 93.67%, 
with 1,895 true positives, 1,899 true negatives, 105 false 
positives, and 101 false negatives. This model exhibits 
strong performance, particularly with a high number of 
true positives and true negatives, reflecting its ability to 
accurately classify both defective and non-defective 
photovoltaic cells. The relatively low number of false 
positives and false negatives highlights VGG-19's 
effectiveness in defect detection, making it one of the 
top-performing models in terms of classification 
accuracy and reliability. 

Fig. 3(j) presents Xception performance with MSR2 
enhancement. Xception achieves an accuracy of 93.67%, 
with 1,855 true positives, 1,866 true negatives, 145 false 
positives, and 134 false negatives. The model 
demonstrates a balanced performance with a relatively 
low number of false positives and false negatives, 
reflecting its ability to effectively differentiate between 
defective and non-defective photovoltaic cells. While its 
accuracy is slightly lower than that of VGG-19, 
Xception still performs well, with high reliability in both 
classification categories. 
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(g). ResNet-101 performance 
with MSR2 enhancement 
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(h). SqueezeNet performance 
with MSR2 enhancement 
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(i). VGG-19 performance with 
MSR2 enhancement 
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Fig 3. Confusion matrix analysis of CNN and nine pre-
trained models with MSR2 enhancement. 

Based on the results, the performance of various 
models with and without the MSR2 enhancement 
technique provides valuable insights into the influence 
of model complexity on photovoltaic defect detection. 

4 Conclusions 

This study evaluated the performance of CNN and a 
range of pre-trained models, categorized into lower, mid, 
and higher-complexity architectures, for defect detection 
in photovoltaic EL images. The proposed image 
enhancement technique, MSR2, was applied to improve 
detection accuracy across all models. The confusion 
matrix analysis confirmed that MSR2 effectively 
reduced false positives and false negatives, with the 

most significant improvements observed in the mid- and 
higher-complexity models. 

Among the models tested, DarkNet-53 emerged as the 
top performer, achieving the highest accuracy and 
overall performance across all evaluation metrics. It 
consistently outperformed other models, including 
VGG-19, which was the second-best performer. This 
indicates that mid-complexity models, such as DarkNet-
53, benefit most from the MSR2 enhancement, 
providing the most accurate and reliable defect detection 
for photovoltaic images. VGG-19, although performing 
exceptionally well, was outperformed by DarkNet-53 in 
terms of overall accuracy and other key metrics. 

In conclusion, this paper demonstrates that MSR2 is an 
effective image enhancement technique, significantly 
improving the performance of mid- and higher-
complexity deep learning models. Among the models 
tested, DarkNet-53 emerged as the most suitable for 
accurate and reliable photovoltaic cell defect detection, 
making it the preferred model for this task. 
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