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Abstract: The activation function has gained popularity in the research community 
since it is the most crucial component of the artificial neural network (ANN) algorithm. 
However, the existing activation function is unable to accurately capture the value of 
several parameters that are affected by the fault, especially in wind turbines (WT). 
Therefore, a new activation function is suggested in this paper, which is called the 
double sigmoid activation function to capture the value of certain parameters that are 
affected by the fault. The fault detection in WT with a doubly fed induction generator 
(DFIG) is the basis for the ANN algorithm model that is presented in this study. The 
ANN model was developed in different activation functions, namely linear and double 
sigmoid activation functions to evaluate the effectiveness of the proposed activation 
function. The findings indicate that the model with a double sigmoid activation function 
has greater accuracy than the model with a linear activation function. Moreover, the 
double sigmoid activation function provides an accuracy of more than 82% in the ANN 
algorithm. In conclusion, the simulated response demonstrates that the proposed double 
sigmoid activation function in the ANN model can effectively be applied in fault 
detection for DFIG based WT model. 

Keywords: Activation Function, Fault Detection, Artificial Neural Network, Machine 
Learning, Doubly Fed Induction Generator, Wind Turbine. 

 

1  Introduction 

OWADAYS, activation function in learning 
algorithm has witnessed the remarkable studies in 

various applications such as facial expression 
recognition [1, 2], brain tumor image classification [3] 
and classification of Alzheimer disease [4]. The 
activation function in artificial neural network (ANN) 
aids in learning and understanding complex and non-
linear mappings between inputs and outputs [5]. There 
are many activation functions available namely binary 
step function, linear, sigmoid, tanh, ReLU, Leakly 
ReLU, swish and SoftMax. Each of this activation 
function has its own equation in producing the output of 
the ANN algorithm. ANNs without activation functions 
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typically have limited performance and power, similar to 
linear regression models [5]. 

One of the components that contribute to accuracy in 
prediction is the activation function in ANNs. Thus, the 
activation function is a major area of focus for many 
researchers. As can be seen, Liang et al., [6] suggested 
recreating activation functions to increase deep learning 
accuracy for a variety of applications, including 
scientific computing and computer vision. The highest 
accuracy is produced by an ANN with the ideal 
activation function. Random weight ANN was 
introduced by Ertugrul, [7] to obtain the optimal 
activation function in linear regression. Samatin et al., 
[8] introduced a straightforward, novel type of activation 
function that can handle real-world challenges like 
recognition and categorization in multilayer feed-
forward systems. Therefore, this proves that choosing an 
activation function is crucial for the ANN algorithm. 
Typically, trials or tuning are used to identify the ideal 
activation function [7]. 

N 
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The most common activation function used in ANN 
is ReLU [9]. It was shown by Varshney and Singh [10], 
the ReLU activation function was generalized using a 
number of learnable slope parameters. Similar to 
Agarwal et al., [11], they modified the ReLU activation 
function to improve the model’s ability to recognize the 
type and severity of disease in cucumber plants. ReLU 
activation function has higher accuracy than other 
activation functions, according to the results by Anadkat 
and Diwanji, [12]. This study analyzed the data to show 
how different activation functions affect the model’s 
overall accuracy. 

Another study examined the activation function was 
by Gao et al., [13]. An efficient convolutional neural 
network (CNN) for deep learning has been developed by 
Gao et al., [13]. It is used to detect and diagnose the 
multiple coexisting faults of the operating wind turbine 
(WT) gearbox. The developed machine learning model 
uses SoftMax function to classify the different 
conditions of faults using vibration signal. The 
mathematical operation known as SoftMax transforms 
an array of numbers into an array of probabilities, where 
the likelihood of each value in the vector is inversely 
proportional to its relative size. 

Majority of studies in the subject of fault detection 
established fault detection by classifying the type of 
fault. As by Heo and Lee, [14], fault detection was 
developed using ANN with SoftMax activation function 
by classifying the type of fault into categories. 
Moreover, Leh et al., Tayeb and Asghar et al., [15 - 17] 
used binary classification using ANN for fault detection. 
Based on previous research, it is unknown which 
specific parameter is affected by the fault. Therefore, 
there is a need for a new activation function in ANN 
algorithm to classify the type of fault by capturing 
variable output value of certain parameters are that 
affected by the fault in ANN algorithm. 

The main contributions of this work are described as 
follows: 

(1) Double sigmoid activation function is proposed 
in ANN algorithm for fault detection in doubly fed 
induction generator (DFIG) WT. 

(2) Provides accuracy of more than 82% in ANN 
algorithm. 

The ANN algorithm model developed in this work is 
based on fault detection in DFIG WT. The fault 
detection cases are classified under internal and external 
stator fault of the DFIG model in the WT system. The 
ANN model was developed in two different activation 
functions (linear and double sigmoid activation 
function) to compare their performance. The outcome 
was presented based on the accuracy and RMSE value 
of each network in the model. Additionally, the model 

was developed in six distinct network configurations 
based on various hyperparameter values, such as the 
number of layers and neurons. 

2 Methodology 

Two models were developed in this study. The first 
model was created to identify a DFIG WT internal stator 
problem, while the other model was developed to 
investigate external stator defect in the DFIG WT. Both 
models were developed in python using Keras tool 
based on ANN algorithm. To determine whether the 
suggested activation function is effective, different 
activation functions were used namely linear and double 
sigmoid activation functions in the output layer of the 
model. 

2.1 ANN algorithm 
Fig. 1 illustrates an ANN model developed in this 

work consisting of the input, hidden, and output layers 
that make up this structure. Each neuron has a weight, 
bias, and activation function that characterise it. 
Activation function is one of the building blocks in 
ANN. Each layer contains their own activation function.  
An ANN without activation function is essentially a 
linear regression model. In this model, the hidden layers 
1 and 2 are set as ReLU activation function [9, 11-12, 
18], while the output layers; two different activation 
functions were used (linear and double sigmoid 
activation function). 

 

 
Fig 1. ANN model. 

In this model, the ANN output was compared to the 
target value until the RMSE value was close to zero. At 
the same time, the model will adjust the parameter to 
obtain the best model. Fig. 2 depicts the procedure for 
obtaining the best model outcome. Non-parametric 
ANN models have many neurons, and more parameters 
are typically added as more connections are made. 
Parameters and hyperparameters make up an ANN. The 
difference between these two is that hyperparameters are 
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fixed beforehand (for instance, the predetermined 
number of hidden layers), while parameters are changed 
during training [19]. 

 

 
 

Fig 2.  ANN algorithm model procedure. 

 
Layer number and number of neurons in each hidden 

layer are the two primary hyperparameters that control 
the network's structure or architecture in this model. 
This hyperparameter configuration is most effectively 
implemented for a specific predictive modelling 
problem through systematic experimentation with a 
robust test harness. A rule of thumb suggests that a 
minimum of 2 layers should be used, though there are 
no rules that specify the minimum or maximum number 
of layers required to improve the performance and 
accuracy of neural networks [5]. Therefore, different 
configurations of layer and neuron numbers were used 
in this model, as shown in Table 1. 

 

Table 1.  Different configurations of hyperparameter value. 

Networks Number of 
neurons at layer 1 

Number of 
neurons at layer 

2 
10 100 100 

10 100 200 

11 200 100 

18 200 200 

9 250 250 

8 300 300 

 

2.2 Double sigmoid activation function 
In this work, a double sigmoid activation function was 

proposed in the output layer of the ANN algorithm. It is 
known as double sigmoid due to the double-S-shaped 
function. A double sigmoid is a continuous real function 
that has been smoothed and is differentiable [20]. Each 

function argument as well as each point in the domain 
are subject to differentiability [20]. Combining two 
logits in their sum or product, yields the double sigmoid 
function [20]. The graph for the double sigmoid 
activation function is illustrated in Fig. 3.  

 

 
Fig 3.  A graph of double sigmoid activation function [20]. 

The curve of the double sigmoid function as in Fig. 3 
is determined by seven parameters (qmin, qmid, qmax, a1, 
a2, c1, c2). An initial value, qmin and a final value, qmax 
correspond to the horizontal asymptotes, as well as a 
middle value, qmid corresponds to the point at which the 
first increasing or decreasing phase ends and the second 
one begins. In addition, the last few variables relate to 
the two slopes, a1 and a2 and the two matching middle 
points, c1 and c2 have the same meaning as the logit 
function [20]. The double sigmoid function’s equation is 
expressed in Eq. (1). 

1 1 2 2

mid min max mid
min (-a (Δt-c )) (-a (Δt-c ))

q - q q - qDS = q + +
1+e 1+e  

(1) 

 

where DS is a double sigmoid, qmin< qmid<qmax, a1>0, 
a2>0, and c1< c2 [20]. 

2.3 Internal stator fault 
The ANN model needs to be trained and tested in 

order to obtain the best model. The training and testing 
data for internal stator fault cases emerged from the 
MATLAB Simulink model of the WT system with the 
DFIG model as described by Gagnon [21]. Internal 
stator fault covers inter-turn short circuit and open 
circuit fault. According to Wang et al., Wang et al., 
Zhao et al., Liu et al., Li et al., Chen et al., and Qi et al., 
[22-28], the current increases when there is an inter-turn 
short circuit fault and decreases when there is an open 
circuit fault. Therefore, the values of stator resistance 
and stator inductance are set to specific values as shown 
in Table 2, to achieve these characteristics. Impedance is 
set at 0.1 times the value of the normal condition for 
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inter-turn short circuit faults and at 10 times the value of 
the normal condition for open circuit faults [24, 29]. 

Table 2.  Parameters of the impedance value with its 
conditions.  

Condi�ons Rs  (pu) Ls (pu) 
Normal 0.023 3.08 

Inter-turn short circuit fault 0.0023 0.308 

Open circuit fault 0.23 30.8 

The simulated response of stator and rotor current of 
dq axis (Iqs, Ids, Iqr and Idr) were used as inputs in 
developing the ANN model. The outputs are impedance 
values, which include stator resistance, Rs, and stator 
inductance, Ls. The output of the model represents the 
condition of the DFIG WT. The model was developed in 
linear and double sigmoid activation function. The 
parameters of double sigmoid activation function are 
qmin=0.0023, qmid=3.08, qmax=30.8, a1=a2=2, c1=3 and 
c2=9. These parameters are based on the impedance 
value of DFIG model in Table 2. Based on the 
parameters, Eq. (1) for this case becomes Eq. (2): 

 

(-2(x-3)) (-2(x-9))

3.0777 27.72DS = 0.0023+ +
1+e 1+e  

(2) 

2.4 External stator fault 
In external stator fault, the model of WT based DFIG 

by Gagnon [21] was simulated for three conditions i.e. 
normal condition, loss of excitation (LOE) and external 
short circuit (ESC) fault. All the simulated responses 
were used as training and testing data. 

In LOE fault, two 30 km parallel lines were connected 
to the DFIG trough a transformer [30]. The LOE fault 
caused DFIG to absorb reactive power, resulting in a 
drop in terminal voltage [30-35]. To achieve these 
characteristics, the DFIG model was simulated using the 
parameters listed in Table 3. 

Table 3.  Parameters for load model.  

Parameter Value 
Nominal phase-to-phase voltage, Vn 575 Vrms 

Nominal frequency, fn 60 Hz 

Ac�ve power, P 120k*6/50 W 

Induc�ve reac�ve power, QL (posi�ve var) 0 var 

Capaci�ve reac�ve power, QC (nega�ve var) 120k var 

   

 Meanwhile, in ESC fault, three-phase fault was inserted 
in the DFIG model. The three-phase fault occurs 
between phase A and the ground [33, 35]. The three-
phase fault resulted in a drop in terminal voltage [35, 
36]. The parameters for the three-phase fault are 
tabulated in Table 4. 

Table 4. Parameters for three phase faults [33]. 

Parameter Value 
Fault resistance, Ron 0.001 Ω 

Ground resistance, Rg 0.01 Ω 

Snubber resistance, RS 1e6 Ω 

The inputs of the developed ANN model are voltage 
and current of stator and rotor based on dq axis (Vqs, Vds, 
Vqr, Vdr, Iqs ,Ids ,Iqr and Idr). The outputs for the 
developed model are stator flux and negative sequence 
current [33]. Table 5 shows the outputs of the ANN 
model to identify the condition of the WT generator. 

Table 5. Parameters for the output value with its condition 
[33]. 

Condi�ons Stator flux (pu) Nega�ve sequence 
current (pu) 

Normal 1.01<flux<1.02 Insignificant <0.05 

LOE fault Flux<0.5 Insignificant <0.05 

ESC fault 0.9<flux<1.08 Large >0.05 

 

The model as shown in Fig. 1 was developed in linear 
and double sigmoid activation function. The parameters 
of double sigmoid activation function are qmin=0.001, 
qmid=0.5, qmax=1.08, a1=a2=2, c1=3 and c2=9. These 
parameters are based on the output values of DFIG 
model in Table 5. Based on the parameters, Eq. (1) for 
this case become Eq. (3): 

 

(-2(x-3)) (-2(x-9))

0.499 0.58DS = 0.001+ +
1+e 1+e

 (3) 

3 Results and discussion 

The results are presented in two parts, which are 
internal and external stator fault. The accuracy and the 
RMSE value of the developed model were calculated 
based on Eq. (4) and Eq. (5) to the determine the 
model’s performance.  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(%) =
𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑥𝑥�)
𝑚𝑚𝐴𝐴𝑥𝑥(𝑥𝑥, 𝑥𝑥�)

× 100 (4) 
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2( )x x
RMSE

n
−

= ∑ 

 
(5) 

 

where 𝑥𝑥 is the actual value, 𝑥𝑥�  is the predicted value, 
and n is the sample size. 

 

3.1 Internal stator fault 
In internal stator fault cases, the model was tested with 

three conditions which are normal condition, inter-turn 
short circuit fault and open circuit fault. Tables 6 to 
Table 8 show the accuracy and the RMSE value of the 
output impedance value (Rs and Ls) of the model. In 
Table 6, the accuracy and RMSE between linear and 
double sigmoid activation functions in normal condition 
for each six networks based on Table 1 was presented. 
The accuracy of Rs in linear activation function was 
higher than 90% except for network 4, which had the 
lowest accuracy of 67.61%. Meanwhile, the accuracy for 

Rs in double sigmoid activation function showed good 
accuracy as the accuracy was higher than 94.51% for all 
networks. In Ls output, both activation functions show 
good accuracy because all the networks have accuracy 
greater than 98%. The RMSE values for all outputs were 
low and nearly zero in all networks. 

  Table 7 demonstrates the results for inter-turn short 
circuit fault. Based on Table 7, the result for double 
sigmoid activation function was more acceptable 
compared to linear activation function. It can be clearly 
seen in the accuracy of Rs and Ls in double sigmoid 
where the accuracy was higher than 96% for both output 
in network 3 and above. Moreover, the RMSE value in 
double sigmoid activation function was low compared to 
linear activation function. In linear activation function, 
the accuracy for Rs was low which is below than 78.69% 
for all networks. However, the accuracy for Ls was high. 

The accuracy and the RMSE for open circuit fault are 
demonstrated in Table 8. The result for this case shows 
good performance as the accuracy in Rs and Ls was high 
for both activation functions. Besides, the RMSE was 
low as near to zero for all networks and all outputs. 

 

Table 6.  The accuracy and RMSE values in normal condition. 

Network 

 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Rs Ls Rs Ls Rs Ls Rs Ls 

1 94.01 98.92 0.00192 0.04325 97.68 99.86 0.00069 0.00555 

2 95.95 99.26 0.00127 0.02938 95.00 99.62 0.00147 0.01456 

3 96.34 99.03 0.00112 0.03992 97.30 99.89 0.00083 0.00415 

4 67.61 99.18 0.01111 0.03160 98.37 99.95 0.00050 0.00195 

5 97.35 99.67 0.00080 0.01925 94.51 99.59 0.00157 0.01555 

6 97.30 99.43 0.00080 0.02324 97.59 99.96 0.00068 0.00163 

 

Table 7.  The accuracy and RMSE values in inter-turn short circuit fault. 

Network 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Rs Ls Rs Ls Rs Ls Rs Ls 

1 57.263 79.26 0.00220 0.08523 98.27 0.75 0.00006 0.30570 

2 63.60 87.26 0.00139 0.05017 77.30 80.05 0.00122 0.08439 

3 60.64 86.86 0.00176 0.05343 99.91 98.77 0.00000 0.00503 

4 13.57 85.15 0.01508 0.05621 99.49 98.91 0.00001 0.00404 

5 74.35 94.85 0.00082 0.02035 99.59 96.56 0.00001 0.01382 

6 78.69 93.59 0.00083 0.02441 99.66 98.98 0.00001 0.00333 
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Table 8.  The accuracy and RMSE values in open circuit fault. 

Network 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Rs Ls Rs Ls Rs Ls Rs Ls 

1 99.28 99.84 0.00194 0.06164 99.52 99.99 0.00139 0.00119 

2 99.64 99.88 0.00100 0.04687 98.82 99.95 0.00347 0.01548 

3 99.52 99.85 0.00137 0.05791 99.61 99.99 0.00113 0.00025 

4 93.52 99.87 0.01599 0.05078 99.63 99.99 0.00105 0.00019 

5 99.75 99.95 0.00075 0.02064 98.99 99.99 0.00299 0.00065 

6 99.77 99.93 0.00069 0.02832 98.70 99.99 0.00310 0.00004 

 
Based on these results, double sigmoid activation 

function was more acceptable compared to linear 
activation function in internal stator fault detection. 
Moreover, network 4, which has 200 neurons at layer 1 
and 200 neurons at layer 2, exhibits higher accuracy and 
the lowest RMSE. Therefore, the output response of the 
model was presented based on network 4. Fig. 4 to Fig. 6 
show the output response for internal stator fault case. 
The response was illustrated in three responses, which 
are the actual response and the predicted response (linear 
and double sigmoid activation function). The actual 
response was the response obtained from MATLAB 
Simulink, while the predicted response was obtained 
from the developed ANN model. Based on the figure, all 
the responses from the developed model in double 
sigmoid activation function matched the actual response. 
Thus, it shows that the developed model with double 
sigmoid activation function can detect the fault in DFIG 
model accurately.  

 
Fig 4.  The output response for Rs in normal condition. 

Fig. 5 The output response for Ls in normal condition. 

 

 

 
Fig. 6 The output response for Rs in inter-turn short circuit 

fault. 
 

3.2 External stator fault 
For external stator fault cases, the model was tested 

with three conditions which are normal condition, LOE 
and ESC faults. Table 9 to Table 11 show the accuracy 
and the RMSE of output value (stator flux and negative 
sequence current) of the ANN model. Table 9 depicts the 
result for normal condition, while Table 10 presents the 
result for LOE fault. Based on both tables, the accuracy 
for negative sequence current in linear activation 
function showed lowest accuracy compared to double 
sigmoid activation function. Meanwhile, the accuracy 
for flux shows high accuracy (99%) for all networks in 
linear and double sigmoid activation functions. 

The results for accuracy and RMSE values in ESC 
fault are illustrated in Table 11. In this case, the result 
shows good performance as the accuracies for both 
activation functions were higher than 96% for all 
networks and all outputs. Moreover, the RMSE value 
was low, close to zero. 
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Table 9. The accuracy and RMSE in normal condition. 

Network 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 
sequence 
current 

1 99.76 3.59 0.00301 0.00315 99.61 59.23 0.00522 0.00557 

2 99.77 13.70 0.00299 0.00373 99.44 80.09 0.00690 0.00075 

3 99.32 22.19 0.00759 0.00362 99.50 80.29 0.00656 0.00070 

4 99.74 13.30 0.00319 0.00237 99.74 84.97 0.00315 0.00023 

5 99.60 8.15 0.00486 0.00214 99.53 84.64 0.00590 0.00026 

6 99.71 17.40 0.00342 0.00161 99.56 84.18 0.00490 0.00033 

 

Table 10.  The accuracy and RMSE in LOE fault. 

Network 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 

sequence 
current 

Stator flux 
Negative 
sequence 
current 

1 99.57 8.24 0.00255 0.00247 99.41 11.12 0.00353 0.00730 

2 99.74 4.95 0.00160 0.00210 99.51 78.59 0.00283 0.00032 

3 99.45 9.92 0.00317 0.00330 99.64 57.52 0.00224 0.00075 

4 99.58 25.85 0.00234 0.00201 99.72 82.39 0.00162 0.00023 

5 99.10 3.07 0.00448 0.00144 99.81 81.32 0.00115 0.00024 

6 99.57 14.06 0.00228 0.00157 99.77 77.99 0.00139 0.00028 

 

Table 11.  The accuracy and RMSE in ESC fault. 

Network 

Linear Activation Function Double Sigmoid Activation Function 

Accuracy (%) RMSE Accuracy (%) RMSE 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 
sequence 
current 

Stator flux 
Negative 

sequence 
current 

Stator flux 
Negative 
sequence 
current 

1 99.26 98.62 0.00870 0.00523 99.01 96.00 0.01195 0.01466 

2 99.35 98.60 0.00763 0.00500 99.22 98.85 0.00983 0.00377 

3 99.55 98.96 0.00574 0.00398 99.29 98.14 0.00850 0.00623 

4 99.51 99.33 0.00609 0.00271 99.04 99.61 0.01091 0.00214 

5 99.56 99.12 0.00552 0.00316 99.40 99.38 0.00741 0.00315 

6 99.54 99.13 0.00570 0.00299 99.47 99.17 0.00657 0.00253 
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Based on these results, the double sigmoid activation 
function was selected as the best activation function 
compared to linear activation function. It is due to the 
capability of the developed model with double sigmoid 
activation function to produce highest accuracy in 
negative sequence current output compared to linear 
activation function which produces lowest value of 
accuracy. Moreover, the accuracy in ESC fault with 
double sigmoid activation function obtained the highest 
accuracy of above 96% in all networks. Network 4 
(200/200) was selected as the best model because of the 
high accuracy and low RMSE value. Due to this, 
network 4 was chosen to produce the output response. 
Fig. 7 to Fig. 9 show the output responses for external 
stator fault. Based on the figure, the output response 
from double sigmoid activation function was able to 
capture the actual response accurately. Therefore, it 
shows that the ANN model with double sigmoid 
activation was able to detect external stator fault in 
DFIG WT precisely. 

Fig. 7 The output response for stator flux in normal 
condition. 

 
Fig. 8 The output response for negative sequence current in 

normal condition. 

Fig. 9 The output response for stator flux in LOE fault. 

4 Conclusions 

 This work presents double sigmoid activation 
function for fault detection in DFIG model-based WT 
using ANN algorithm. The proposed double sigmoid 
activation function's effectiveness was tested and 

evaluated using the internal and external stator fault. 
An ANN model using Keras tool was used to create the 
fault detection model. This model was developed in 
linear and double sigmoid activation functions to 
evaluate the performance of the proposed activation 
function. The ANN model needs to be tested and 
trained using a variety of data sets. Thus, the training 
and testing data used in this study comes from the 
simulated WT system - based DFIG responses in 
MATLAB Simulink. The ANN model was eventually 
developed in Python. Stator and rotor currents are 
employed as the input and impedance values as the 
output in the internal stator failure model. The 
impedance values classified the condition of WT i.e. 
normal, an inter-turn short circuit fault, and open circuit 
fault. Meanwhile, in external stator fault the stator and 
rotor currents and voltage are used as the input and 
stator flux and negative sequence current as the output. 
The stator flux and negative sequence current values 
indicate the conditions of the DFIG, either normal, 
LOE or ESC fault. Using the accuracy and RMSE 
value, the model's performance can be assessed. The 
outcomes clearly show that the accuracy in double 
sigmoid activation function was higher than linear 
activation function. The accuracy for double sigmoid 
was more than 82% for all cases. Moreover, the RMSE 
value also was low in double sigmoid activation 
function. Even while linear activation functions are 
straightforward and simple to solve, their complexity is 
constrained, and they are unable to learn and recognise 
complex mappings from data [5]. It was shown in the 
output response of model with linear activation 
function that was not able to capture the actual 
response accurately. Moreover, the accuracy for 
negative sequence current in external stator fault cases 
was low for certain network in linear activation 
function. Therefore, linear activation functions are ideal 
where interpretability is required and for simple tasks 
[5]. Besides, the best configuration model for both 
cases is hidden layer 1=200 nodes and hidden layer 
2=200 nodes. It has been demonstrated that higher 
depth does appear to improve generalisation for a wide 
range of activities [37]. The output response for the 
double sigmoid action function can accurately represent 
the actual response and has the lowest RMSE and 
highest accuracy. Thus, it is proven that the proposed 
double sigmoid activation function can precisely 
recognise the internal and external stator faults in the 
DFIG WT system. Additionally, the constructed ANN 
model was quite simple because it simply predicted the 
model output using stator and rotor currents and 
voltage. 
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