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Abstract: A vital part of people's daily life is the position, navigation, and time service 
provided by the Global Positioning System (GPS), which is always accessible globally. 
Consequently, the security of the GPS receivers is crucial. Occasionally, intentional and 
unintentional interferences cause GPS location issues. Spoofing attack is the most severe 
interference to the GPS receivers, which results in positional mistakes. This paper's goal 
is to defend against the carry-off spoofing attacks. In a carry-off spoofing attempt, the 
spoofer transmits signals whose code phase and carrier frequency parameters are 
strikingly close to the actual signal in order to change the correlation values generated in 
the tracking stage. Discriminator output values alter as correlation values change. As a 
result, the Pseudo Random Noise (PRN) code generator unit creates a local replica, 
which forces the tracking loop to follow the fake signal instead of the real one. It is 
proposed in this paper that when spoofing attacks occur, discriminator output values be 
generated independently of correlation values. Specifically, when a spoofing signal is 
detected, the conventional discriminator is replaced by a Non-linear Autoregressive 
Exogenous Neural Network (NARX NN)-based predictor. This strategy protects the 
tracking loop from the effects of the spoofing signal. The efficiency of the provided 
strategy was evaluated using three spoofing data sets. The results of the suggested 
mitigation method, based on NARAX NN, show that it mitigates spoofing attacks by an 
average of 95.82%. 

Keywords: GPS, DLL, Spoofing Attack, Non-linear Autoregressive Exogenous Neural 
Network. 

 

1  Introduction 

HE widely used Global Positioning System (GPS) 
can provide continuous global position, navigation, 

and time service. It is proven that civilian GPS signals 
are vulnerable to spoofing attacks because of their low 
received power and open structure [1,2]. The objective 
of spoofing is to force the victim receiver to yield a 
misleading position solution.  

Since the GPS satellites are in continuous motion, the 
receiver must ensure that the signals emitting from the 
satellites are continuously tracked and monitored. So, it 

                                                           
Iranian Journal of Electrical & Electronic Engineering, 2026. 
Paper first received 15 Jan. 2025 and accepted 24 Jun. 2025. 
* The authors are with the School of Electrical Engineering, Iran 
University of Science and Technology (IUST), Narmak, Tehran 
16846-13114, Iran. 
E-mails: s_tohidi@elec.iust.ac.ir and m_mosavi@iust.ac.ir. 
Corresponding Author: M. R. Mosavi 

is required in a GPS receiver to maintain continuous 
synchronization with visible satellite signals for range 
measurements, extraction of ephemeris data, and 
position, navigation, and time estimation. In 
conventional GPS receivers, tracking loops are 
employed for joint fine-tuning of the incoming signal to 
the residual Doppler carrier frequency and phase offsets 
and spreading code alignment. When the receiver is 
tracking an authentic signal, the code phase and the 
carrier frequency of the spoofing signal must match 
those of the authentic signal; otherwise, even very 
powerful spoofing signals cannot take over the receiver 
[3]. 

The critical feature for a spoofing attack is to be able to 
gradually drag off the tracking points without unlocking 
the victim receiver's code and carrier loop. [4]. Su et al. 
[5] developed a novel spoofing mitigation algorithm 
leveraging a single 5G base station (BS). In their 
proposed approach, the concept of anomaly detection 
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was extended to the GNSS-5G fusion positioning system 
to identify spoofing attacks. Subsequently, a true 
position estimation algorithm was introduced. Initially, 
the authors established the fusion EKF (Extended 
Kalman Filter) output model and provided its 
mathematical derivation. A coarse position estimate was 
obtained by combining the GNSS-spoofed position and 
the GNSS-5G fusion positioning results. Fine position 
estimation was then carried out using an additional EKF 
with inputs from the coarse estimates and secure 5G 
measurements, thereby enhancing the accuracy of the 
true position estimate. 

In another study [6], the multipath estimating delay 
lock loop (MEDLL), originally designed for multipath 
mitigation, was employed in conjunction with the 
Inertial Navigation System (INS) to counter spoofing 
attacks. The approach first utilized a bank of correlators 
to estimate both the spoofed and authentic signals. A 
new spoofing validation and mitigation structure was 
then proposed, based on the tightly coupled INS/GNSS 
integrated system. Finally, an INS-aided reacquisition 
and spoofing suppression method was derived. 

In [7], the authors proposed two cascaded estimation 
algorithms for concurrent GNSS spoofing detection and 
localization in a multi-UAV scenario, aiming to achieve 
robust navigation in environments subject to GNSS 
spoofing attacks. 

The authors in [8] leveraged the fact that, under most 
attack modes, both authentic and spoofed signals are 
received by the victim. Once an attack is detected using 
conventional spoofing detection methods, the receiver 
scans for secondary peaks in the vicinity of each satellite 
signal’s correlation peak. Meanwhile, navigation 
continues in dead reckoning mode, relying on other 
sensors and the user’s dynamics model. A decision 
regarding which signals to trust is then made in the 
position domain. Once enough secondary peaks are 
detected, multiple navigation solutions are generated by 
combining the main and secondary peaks. 

In [9], the authors proposed a GNSS spoofing 
suppression method based on spoofing correlation peak 
cancellation (SCPC). This method estimates the 
spoofing signal from the baseband sampling sequence 
and generates a reverse cancellation sequence to 
suppress the GNSS spoofing attack. Based on this 
technique, a receiver scheme with an SCPC function was 
proposed by adding a suppression module to the general 
GNSS receiver model. 

Numerous detection and mitigation methods have been 
proposed to enhance the security of GPS receivers 
against spoofing attacks. These studies can be 
categorized into five distinct groups. 

Cryptographic signal authentication methods rely on 
unpredictable information carried by the encrypted 
GNSS signal to ensure its authenticity. The problem 
with this method's efficiency is that no open civil GNSS 
signal yet incorporates cryptographic modulation [10-
14].  

TOA anomaly detection methods depend on a delay 
between the spoofing data bit boundaries and those of 
the authentic ones [15]. These methods are not effective 
when the spoofer has the ability to predict GPS bits.  

The premise of spatial processing techniques is that 
since spoof signals are emitted from a single antenna, 
they all have the same direction, including numerous 
Pseudo Random Noise (PRN) signals [16-18]. On the 
other hand, authentic signals are received from different 
directions because their transmission sources are 
different satellites. According to [19,20] studies, spatial 
processing methods fall into three subcategories, namely 
antenna array processing [21], moving receiver and 
network/cloud-based [22,23]. 

Methods based on the signal power anomaly detection 
consider any sudden change in strength as being related 
to the presence of interference. The authors of [24] 
detect the spoofer by monitoring the rate of power 
changes in the signal. The authors of [25] created a test 
procedure for determining how civil GPS receivers 
respond to spoofing attacks. They examined the spoofer 
signal's power advantage over authentic signals needed 
for effective receiver capture properties. Results of the 
test process show that just around 1.1 times as much 
spoofing signal power as authentic signal power is 
needed to consistently capture a target receiver. The 
authors of [26] detected the presence of high-power 
spoofing signals using abnormally high C/N0 values. 
Because GPS satellites are 20,000 kilometers away, any 
position change of a receiver near the earth's surface 
should not significantly alter signal power. However, 
because received power is highly dependent on the 
environment, such as antenna attitude and multi-path, 
this method is only applicable to static observations.  

The interaction of authentic signals with spoofing 
results in distortion of the correlation function's shape. 
Correlation monitoring methods rely on scrutinizing the 
outputs of correlators. The authors of [27] used Signal 
Quality Monitoring (SQM) tests, widely used to detect 
distortion on the correlation function caused by multi-
path, to detect GPS spoofing attacks. The study cited in 
[28] investigated the effectiveness of the ratio metric in 
detecting spoofing attacks. [29] proposed a method 
based on distortion monitoring in the complex 
correlation domain to detect spoofing attacks. [30] 
increased the number of correlators and presented a 
spoofing detector based on the SQM technique. [31] 
illustrated that combining correlation monitoring metrics 
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and methods based on monitoring the received signal 
strength yields more efficient results. A two-dimensional 
SQM detector in the frequency domain was suggested by 
[32]. The study cited in [2] employed symmetric 
difference, which is a common distortion measurement, 
and the power of the received signal for interference 
detection. [33] presented a power-distortion detector, 
which utilized a maximum-likelihood multi-path 
estimator and employed the magnitude of its normalized 
post-fit residuals to monitor distortion in the correlation 
function. They demonstrated that interference detection 
performance could be improved significantly compared 
to approaches that employ symmetric difference as a 
distortion metric. 

Contributions of This Paper: This paper addresses 
carry-off spoofing attacks and is based on advanced 
signal-processing techniques in the GPS receiver's 
tracking stage with a mitigation extent. The proposed 
method falls into the correlation monitoring-based 
methods. Practical short-term spoofing detection and 
mitigation techniques are low-cost, do not require 
additional hardware, can be implemented through a 
software or firmware update, do not require changes in 
GPS signals in space, and are receiver independent. 
These are a few benefits of correlation monitoring-based 
techniques. 

GPS signal processing commonly uses a correlation-
based synchronization of locally generated replicas of 
expected signal patterns with received signals. The 
correlations of the received signal with locally replica 
fragments generated with various time delays 
manufacture a correlation profile. Significantly, an ideal 
correlation profile of a GPS C/A signal resembles a 
triangle function. The problem we face in the carry-off 
spoofing attack is the distortion in the correlation profile 
due to the counterfeit signal, which researchers have 
introduced different criteria to detect. In all those 
methods, an attempt is made to introduce a criterion that 
can detect spoofing by examining the correlation profile. 
However, developing the tracking loop to make the GPS 
receiver robust against the detected spoof is an issue that 
has rarely been addressed. The distortions brought on by 
the spoofer can affect the Delay-Locked Loop (DLL), 
which is the largest issue with spoofing mitigation in the 
GPS receivers tracking stage. In the current study, we 
use artificial intelligence techniques to try and stop this 
adverse effect. 

In a carry-off spoof, the attacker attempts to align the 
spoofing signal with the real signal. The aligned 
spoofing signal has a considerable impact on the 
tracking loop's correlator output values and variations in 
the output values of the correlations affect the 
discriminator's output. The local signal will then be 
modified in the following round of tracking by the PRN 
code generator unit that use the discrimination output. 

Through this process, the tracking loop finally tracks the 
fake signal instead of the real one. Thus, discrimination 
is a key component of the tracking loop since it chooses 
the signal to be tracked. 

In the current study, it is recommended that the 
discriminator be designed using a Neural Network (NN). 
In the face of a spoofing attack, a NN-based 
discriminator can examine the natural trend of GPS data. 
In particular, a Non-linear Autoregressive Exogenous 
Neural Network (NARX NN) is used. The NN's 
dependence on training data, which consists of signal 
features, is an advantage that we seek. 

The following section describes the signal model. 
Methodology and configuration of the NARX NN is 
described in detail next. Then, a discussion of the results 
is stated. Finally, a conclusion is provided. 

2 Signal Model  

GPS satellites transmit navigation data and codes in 
two frequency bands: L1 and L2. Only the L1 signal, 
which is available for civilian use, is examined here. In 
general, the GPS receiver's model of the signal received 
from satellite number i is given by Eq. (1): 

1

1

( ) ( ) ( ) ( )
2 ( ) ( )cos(2 ) ( ) ( )

l i

t t i l

x t S t n t I t
P d t c t f t n t I tπ θ

= + + =

+ + +
  (1) 

where 1 ( )L iS t  represents the satellite signal in L1 

frequency band, tP  denotes the power of the carrier 

signal, ( )id t  symbolizes navigation information, ( )iC t  

represents the pseudo-random sequence (C/A code), 1Lf  
indicate the frequency of the L1 carrier (1575.42 MHz), 
n(t) denotes noise, and ( )I t  shows the source of 
interference in GPS. The structure of spoofing signal is 
defined according to Eq. (2): 

s i L1I(t) = 2P c (t+ t) cos(2pf t+ j)                               (2) 

where sP  denotes the power of the spoofing signal 

Traditional GPS receivers synchronize the locally 
produced signal with the received signal using two 
tracking loops, a Frequency Lock Loops (FLLs) or 
Phase Lock Loops (PLLs) and a DLL. The idea behind 
the DLL is to correlate three replicas of the code, the 
late, prompt, and early with the input signal. The output 
of these integrations is a term indicating how much the 
code in the incoming signal correlates with the specific 
code replica. The code phase error on the local code 
replica is find by using a code discriminator block. Fig. 1 
shows the basic block diagram of code tracking loop. 
where y(n) R and u(n) R represent the model's output 
and input at discrete time step n, respectively, and dy ≥ 1 
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and du ≥ 1 the output- and input-memory orders, 
respectively. The function f(.) represents the NN's non-
linear function. It can be seen that the output data can be 

used as input in the feedback function to improve the 
network's accuracy via open loop or closed loop training.  

 

 
Fig 1. A block diagram of a code tracking loop. 

The discriminator output, which is the code phase 
error, is used as a control signal for the PRN code 
generator. The upper half of Fig. 1 is referred to as the 
in-phase (I) arm, while the lower half is referred to as the 
quadrature (Q) arm. The signal Q is multiplied by three 
code replicas before being integrated and dumped. IL, IP, 
IE, QL, QP, and QE are the final outputs of six correlators. 
The outputs of the six correlators are sent to the code 
loop discriminator once they have been obtained. The 
code loop discriminator is based on an algorithm, which 
is explained in more detail below [34]. 

Coherent discriminator: The most basic of all 
discriminators is the coherent discriminator. The 
quadrature arm is not required for this method. This 
method is only applicable when the local carrier signal 
and the incoming carrier signal are perfectly aligned.  

-E ID I I=                                                                 (3) 

Early minus late power (non-coherent discriminator): 
Within nominal chipping rates of C/A code, the response 
of this type of discriminator is nearly identical to that of 
coherent discriminator. 

2 2 2 2( ) ( )
E L

E L
D I Q I Q= + − +                                            (4) 

Dot product (non-coherent discriminator): This is the 
only discriminator that uses all six correlator outputs. 

( ) ( )
P E L P E L

D I I I Q Q Q= − + −                                          (5) 

Normalized early minus late power (non-coherent 
discriminator): This method outperforms the others. 
Because it invokes both the in phase and quadrature 
arms, the response of this discriminator is independent 
of the performance of the PLL. Furthermore, this enables 
the DLL to keep track of the signal even when the chip 
error exceeds   the nominal chipping rate of C/A code. 

2 2 2 2

2 2 2 2

( ) ( )

( ) ( )
E L

E L

E L

E L

I Q I Q
D

I Q I Q

+ − +
=

+ + +
                                              (6)  

In this paper, we want to introduce new code 
discriminator based on NN that can mitigate the 
spoofing attack. The aim of this paper is introducing a 
new code discriminator of the GPS receiver based on 
NN to mitigate the spoofing attack. 

3 NARX NN for Spoof Mitigation: Basics and 
Mechanism  

   In order to mitigate carry-off spoofing attacks, we 
provide NARX NN to forecast discriminator output 
under spoofing attack circumstances. Fig. 2 shows a 
block diagram of the research methodology. Referring to 
Fig. 2, the digitized received IF signal is being mixed 
with the replica carrier signals to produce I and Q 
sampled data. The I and Q signals have the desired phase 
relationships with respect to the detected carrier of the 
received signal at the mixers' outputs. The replica carrier 
signal is synthesized by the carrier NCO. The Q and I 
signals are then correlated with prompt, early, and late 
replica codes that are synthesized by the PRN code 
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generator. Afterward, correlation results are 
accumulated. And accumulated and dump module output 
is fed to discriminator units. In closed loop operation, 
the PRN code generator which is used for precision code 
generation is controlled by the code discriminator. Also, 
the correlator outputs are provided to the detector.  

 
Fig 2. General schematic design of the suggested model to 

predict the discriminator outputs. 

In present study, the NARX NN-based predictor is 
employed in the discriminator unit so that it can modify 
the output value of the code discriminator once the 
spoofing detection unit raises the alarm. It should be 
noted that in the detection unit, we used the fuzzy 
classifier based on time–frequency analysis method [35]. 

The NARX NN technique is an essential category of 
non-linear Dynamic Recurrent Neural Network (DRNN) 
comprising linked nodes inspired by simplifying the 
human neural system. Dynamic networks are capable of 
forecasting the pattern of non-linear functions and 
modeling arbitrary non-linear dynamical systems, and it 
is especially helpful in time series representing [36,37]. 

In simpler terms, a NARX neural network is a type of 
recurrent neural network specifically designed for time 
series modeling, where the present output is influenced 
by previous values of both the inputs and outputs. It is 
particularly well-suited for dynamic system modeling 
and time series forecasting. Key features of a NARX NN 
include: 
(1) Effective dynamic system modeling – It captures 
temporal dependencies through output feedback, making 
it ideal for applications such as control and prediction. 
(2) Dual operation modes – The network can function 
in either open-loop or closed-loop configurations. 
(3) Nonlinear and flexible – Leveraging neural 
networks allows it to model complex, nonlinear 
relationships, offering greater expressiveness than 
traditional linear autoregressive models. 
(4) Improved stability and interpretability – The use 
of delayed feedback and external inputs makes the 
model more structured and interpretable compared to 
generic recurrent neural networks. 
The architecture of a NARX neural network is illustrated 
in Fig. 3. 

 
Fig 3. The block diagram of a NARX NN. 

The feedforward NN model's input signal propagates 
forward through the structure, which can have one or 
more hidden layers. However, in a NARX NN and, more 
broadly, in DRNN architecture, information propagates 
forward and backward, connecting neurons in previous 
or the same layers. This structure compares the current 
level of an incoming time series to earlier values of the 
same sequence and the previous and current values of 
exogenous series. In a typical NARX regression 
network, the input layer, hidden layer, output layer, and 
output and input delay are all present, with feedback 
connections enclosing several layers of the network. 

Some important characteristics of NARX networks 
have been reported when compared to other NN types: 
(1) these networks generalize better than other networks; 
(2) NARX networks converge much faster; (3) learning 
is more effective in these networks; and (4) NARX 
networks are often much better at discovering long time-
dependences than conventional DRNNs [38,39]. 

A NARX NN can be represented mathematically as 
follows:

( )
( 1)

( ), ( 1), ..., ( ), ( ), ... , ( )y u

y n

f y n y n y n d u n u n d

+ =

− − −
 (7) 

where y(n) R and u(n) R represent the model's output 
and input at discrete time step n, respectively, and dy ≥ 1 
and du ≥ 1 the output- and input-memory orders, 
respectively. The function f(.) represents the NN's non-
linear function. It can be seen that the output data can be 
used as input in the feedback function to improve the 
network's accuracy via open loop or closed loop training. 

4 Proposed NARX NN Structure  

The ultimate goal of a carry-off spoofing attack is to 
modify the correlator's output in order to capture the 
tracking loop; thus, a NARX NN can be of great 
assistance in estimating the authentic trend of the 
discriminator's output and protecting the receiver from 
the disastrous consequences of a spoofing attack. 

In order to develop the NARX model to achieve the 
desired results, it is necessary to select the network 
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features appropriately, such as the input and output 
delays, the number of neurons, and the training 
algorithm.  

Generally, the hidden layer's size is highly dependent 
on the number of input nodes. There are several ad-hoc 
approaches for selecting the appropriate number of 
hidden neurons. The trial-and-error procedure is one of 
the popular methods for making optimal decisions [40] 
that here we use it. We perform a grid search for 
preferring the optimal number of the hidden layer 
neurons and delay components. 

The decision is directed by considering the trade-off 
between the validation error of the training process and 
computational complexity. The Levenberg Marquardt 
Back-Propagation (BP) algorithm performs parameter 
optimization by searching the hyperparameter space. 
Finally, we determined the number of input delay 
components to be 18, the number of output delay 
components to be 2 and the number of hidden layer 
neurons to be 19. 

4.1 NARX NN Training  
There are two general approaches to NARX NN 

training. The first is the dynamic BP algorithm, which 
requires computing the gradients for learning purposes. 
Dynamic network error surfaces can be more difficult to 
compute than static network error surfaces. Also, the 
gradients must be computed using this method, which 
takes more time and is more computationally intensive 
than static BP algorithm. Furthermore, training is more 
likely to become trapped in local minima. The second 
algorithm is the static BP algorithm based on a series-
parallel configuration. Because the actual output is 
available during the network's training, this method 
considers it rather than feeding back the estimated 
production of the NARX network. This configuration 
has two benefits. The first is that the resulting network 
has a pure feedforward architecture and can be trained 
using static BP algorithm. The second benefit is that the 
feedforward network's input is more accurate. As a 
result, we went with the second option. 

Fig. 4 depicts the NARX NN architecture. The 
parameters of the network are as follows: 

 

( )

( ), ( 1),..., ( ), ( 1),... ( )

X n
T

u n u n u n d y n y n du y

=

 − − − −  

  (8) 
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1
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              (9) 

1 2( ) ( ), ( ), , ( )
TI I I I

kn n n nϕ ϕ ϕΦ =   

             (10) 

1 2
( ) ( ), ( ), , ( )

k

TO o o on n n nϕ ϕ ϕΦ =   

            (11) 

1 2( ) ( ), ( ), , ( )
TO o o o

kW n w n w n w n=   

            (12) 

1 2( ) ( ), ( ), , ( )I I I TI

kn n n nθ θ θΘ =   

             (13) 

where X(n) is input vector with size of l×1, the 
transpose of a vector is denoted by using the letter “T” in 
the superscript of the given vector, WI(n) is a matrix 
with the size of l×k while 𝑤𝑤𝑖𝑖𝑖𝑖 represents the connecting 
weights between the 𝑖𝑖𝑡𝑡ℎ  node of the inputs and 𝑗𝑗𝑡𝑡ℎ node 
in the hidden layer, ΦI(n) and ΦO(n) are k×1 vectors 
express the input and output of hidden layer neurons, 
respectively. WO(n) indicates connecting weights 
between output layer and hidden layer. ΘI(n) is a k×1 
vector of input thresholds and θ(n) expresses the output 
threshold. YI(n) represents the input value of the output 
neuron. The desired value and the final output of the 
network are denoted by d(n) and y(n), respectively. The 
Hyperbolic tangent function is the activation function of 
all hidden layer neurons. Hyperbolic tangent function 
and its derivation are expressed as: 

tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
               (14) 

( )2tanh'( ) 1 tanh( )x x= −                (15) 
where tanh'(x) denotes the derivation of hyperbolic 
tangent function. 

 
Fig 4. visualization of peak mapping. 
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The following are the steps for learning a network 
using the BP algorithm: 

Step 1: Thresholds and Weights Initialization 
Assign uniformly distributed, random, and small 

numbers to the parameters of weights and thresholds. 
Step 2: Forward pass 

Forward pass calculations which express the forward 
flow of the input signal are defined as following 
equations: 

( )( ) ( ) ( ) ( )
TI I In W n X n nΦ = + Θ              (16) 

( ) tanh( ( ))O In nΦ = Φ               (17) 

( )( ) ( ) ( ) ( )
TI O OY n W n n nθ= Φ +              (18) 

( ) tanh( ( ))Iy n Y n=                (19) 
which the linear combiner's output is written in the 
compact form. 
Step 3: Backward pass (thresholds and weights 
update) 

During the forward pass process, the output y(n) is 
calculated, which is an estimate of the value of the 
discriminator's output. Now this estimated value should 
be compared with the desired value. Then, based on the 
estimation error, the weights and thresholds of the 
network should be updated. Eq. (20) shows how to 
calculate the estimation error value.  

( ) ( )221 1
( ) ( ) ( ) ( )

2 2
J n e n d k y k= = −                        (20) 

The square of the output error is the objective function, 
which is minimized during the training process. Network 
weights and thresholds are updated by adding an 
adjustment value to each parameter. 
 

4.2 Data Collection  
The spoofing mitigation method based on NARX NN 

is verified using three spoofing data sets, 1, 2, and 3, in 
which the spoofing signal is combined with an authentic 
one. We used real GPS signal data that was free from 
any spoofing interference. Deceptive data were then 
generated by manipulating the samples of this dataset 
using software-based techniques. Fig. 5 illustrates how 
we generated a spoofing signal. The GPS antenna 
receives the authentic RF signal. Then, the RF signal 
passes through a band-pass filter and amplifier; it is 
down converted to the IF. The results are digitized and 
stored. Next, the authentic IF signal is delayed, then it is 
combined with the original one as a spoofing signal. A 
MATLAB-based GPS software receiver is utilized to 
process GPS data sets. The parameters of the software 
receiver are illustrated in Table 1. 

 
 

Table 1. Parameters of the receiver. 

Parameter Value 

Sampling frequency 4.09 MHz 

Intermediate frequency 1.02 MHz 

Bits of A/D 2 bit 

Quantization levels 4 

PLL damping ratio 0.7 

DLL noise bandwidth 1 Hz 

DLL damping ratio 0.7 

5 Results discussion and performance evaluation  

   Matlab® R2016b is employed to train and test the 
NARX NN. Because each data set is 47 seconds long 
and the PRN code duration is 1 ms, the code 
discriminator unit produces 47,000 samples during the 
tracking process for each channel. The data sets were 
split 70% for training and 30% for testing.  

The spoofing data is applied to the modified Software 
Defined Radio (SDR) receiver to evaluate the proposed 
mitigation method. The output of the correlators is 
initially passed through the spoofing detection unit in the 
modified SDR receiver, and if the spoofing signal is 
detected, the code discriminator unit switches to the 
NARX NN-based predictor to adjust the discriminator's 
output and update the local C/A code phase. 

Offline processing of authentic and spoofing data sets 
is used to evaluate the proposed method. The location 
accuracy is measured in three states: (1) there is no 
spoofing signal and only the authentic signal is received 
(clean data set), (2) the receiver is under spoofing attack, 
and (3) the receiver is under spoofing attack while the 
proposed method for spoofing mitigation is in place. 

The navigation results provided in the first case above, 
clean data set, serve as a reference point for measuring 
the accuracy of location measured in the other two cases. 

Each scenario contains 1.9232e+11 IF signal samples 
and lasts 47 seconds. The solution period for navigation 
is 500 milliseconds. As a result, in each static scenario, 
the position is calculated 94 times. To calculate the 
amount of receiver location changes, we measure the 
RMS error of these 94 values relative to the reference 
point. The results are summarized in Table 2.  

Columns two through five of Table 2 show positioning 
accuracy for the second case above, spoofing data sets, 
as the RMS error in the x, y, and z axes and the total 
error, respectively. Columns six through nine of Table 2 
show the positioning accuracy for the third case above, 
in which the proposed method is used. 
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The proposed mitigation method's percentage 
improvement in location accuracy is expressed in the 
table's last column. As shown in the table, the average 
mitigation performance is 95.82%. Table 3 presents the 

mean and standard deviation of the positioning results. 
Positioning results on the map before and after 
mitigation method for data set 1, 2 and, 3 is shown in 
Figures 6, 7, and, 8, respectively

 
Fig 5. Block diagram of test setup. 

 
Table 2. The performance of NARX NN-based spoofing mitigation technique. 

Data set # 

Before applying proposed method  After applying proposed method 
Mitigation 

(%) 
RMS 
(m)   

x-axis 

RMS (m)   
y-axis 

RMS (m)   
z-axis 

RMS (m) 
total  

RMS 
(m) x-
axis 

RMS 
(m) y-
axis 

RMS 
(m) z-
axis 

RMS (m) 
total 

Data set 1 121.97 89.42 73.26 168.05  3.09 5.41 17.42 6.31 96.23 
Data set 2 650.33 184.88 994.64 1202.67  91.20 52.24 77.81 105.11 91.25 
Data set 3 15860 76401 62294 99846  17.37 26.02 1.60 31.31 99.96 

 

Table 3. The mean and standard deviation of the positioning results. 

Data set # 
Before applying proposed method  After applying proposed method 

Mean (m)   
x-axis 

Mean (m)   
y-axis 

Mean (m)   
z-axis 

STD 
total  Mean (m) 

x-axis 
Mean (m) 

y-axis 
Mean (m) 

z-axis 
STD 
total 

Data set 1 3251845 3935787 3558006 1043.3  3251720 3935692 3557915 1476.6 
Data set 2 3252373 3935882 3558927 1478  3251631 3935645 3557855 1476.3 
Data set 3 3267583 4012098 3620227 1136  3251705 3935671 3557931 1477 

 
 

 
Fig 6. Positioning results on the map before and after mitigation method for data set 1. 
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Fig 7. Positioning results on the map before and after mitigation method for data set 2. 

 

 
Fig 8. Positioning results on the map before and after mitigation method for data set 3. 
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A further evaluation of the proposed method was 
carried out through the correlation coefficient (R) value 
that indicates the relationship between original data and 
predicted data associated with the code discriminator 
output. Figures 9 and 10 show a regression plot for train 
and test data, respectively.  

 

Fig 9. A regression plot for the train data. 

 

Fig 10. A regression plot for the test data. 

R equals 0.9829 for training data and 0.9819 for 
testing data. The outcomes depicted in Fig. 8 show that 
the NARX modeling method created in the current study 
is a trustworthy method for modeling the code 
discriminator under spoofing attack conditions. 

 
Table 4. Comparison of different anti-spoofing methods. 

Methods Technique Spoofing feature Advantages Disadvantages 
Position of 
applying 
algorithm 

Implementation 
aspects 

Spatial 
processing 

Comparison 
of direction 
arrival [21] 

Spoofing signals 
coming from the 
same direction 

High-probability 
of detection 

Extra hardware 
complexity and 
implementation 

Incoming 
signal 

Multiple receiver 
antennas 

Correlation 
monitoring 

Power-
distortion 

detector [33] 

Deviated shape of 
correlation 
function 

Low-complexity 

Inadequacy in 
multi-path and 

depend on 
previous 

information 

Tracking - 
IF signal 

Power monitoring 
and multiple 

correlator 

TOA anomaly 
detection 

Spoofing 
signal's 

inevitable 
delay [15] 

Authentic/spoofing 
clock 

inconsistency 
Low-complexity 

Inefficient in 
synchronous 

attacks 
Navigation TOA analysis 

Cryptographic 
techniques 

Cryptographic 
authentication 

[13] 
Not authenticated High- 

effectiveness 

Requires 
change in GPS 
signal structure 

Navigation Requires new GPS 
signals and services 

Signal power 
anomaly 
detection 

Absolute 
power 

monitoring 
[24] 

Higher spoofing 
signal power 

High- 
effectiveness 

Inadequacy in 
the case of 

subtle attack 
scenario 

IF signal Absolute power 
Monitoring 

Correlation 
monitoring 
based on 
artificial 

intelligence 

Proposed 
method 

Deviated shape of 
correlation 
function 

Perform 
countermeasures 

against the 
spoofing attack 

Performance is 
limited to 
carry-off 

spoofing attack 

Tracking Software upgrading 

-1 -0.5 0 0.5 1

Target

-1

-0.8

-0.6

-0.4
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Finally, in Table 4 a qualitative comparison is provided 

to assess the benefits and drawbacks of the proposed 
method. The table contrasts the methods introduced in 
the literature review with the current procedure. 

6 Conclusion 

In this paper, an artificial intelligence technique was 
used to help the GPS receiver's code tracking loop deal 
with a carry-off spoofing attack. Because the carry-off 
spoofing signal is so similar to the original GPS signal, it 
can interfere with the receiver's tracking loop without 
unlocking it. The discriminator is an essential part of the 
tracking loop, whose function is effective in replacing 
the authentic signal with the fake signal. We added a 
NARX NN to the discriminator unit in this study to 
predict the correct discriminator's output values when 
the spoofing attack occurs. The R value, which 
represents the relationship between the original and 
predicted data, was computed. For training data, R 
equals 0.9829, and for testing data, R equals 0.9819. The 
NN's reliance on training data, which consists of 
authentic signal features, is an advantage that allows it to 
predict the correct values. The proposed method was 
tested on three spoofing data sets, and the results showed 
that it was 95.82% capable of mitigating the carry-off 
spoofing attack. 
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