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Abstract: This paper presents an advanced methodology for post-storm power system 
restoration. A real-time Condition Index (CI)-based classification scheme is introduced 
to categorize circuit breakers into high-reliability (Type A) and moderate-reliability 
(Type B) groups. Leveraging this classification, a genetic algorithm (GA) optimizes 
microgrid configurations to maximize power restoration probabilities by explicitly 
modeling the stochastic failure risks associated with circuit breakers under severe 
weather conditions. The approach was validated on the IEEE 118-bus system with five 
critical breakers deactivated due to storm conditions. The GA achieved a 92.5% load 
restoration after 200 iterations, surpassing a baseline Monte Carlo simulation that 
attained 85.2%. Computational efficiency was significantly improved, reducing 
execution time to approximately 15 minutes compared to 60 minutes for traditional 
methods, with enhanced accuracy indicated by a 1.8% error margin versus 7.5%. Key 
contributions include utilizing live CI data for dynamic breaker classification, which 
resulted in a 20% reduction in computational time, and demonstrating scalability and 
effectiveness on large-scale test systems such as the 118-bus network. The 
methodology's performance decreases to 78.3% load restoration when more than 14 
breakers are compromised. Future research will focus on integrating detailed storm 
modeling—including wind speed profiles—and incorporating renewable energy 
resources to enhance grid resilience. 

Keywords: resilience, Genetic Algorithm, Condition Index, probabilistic modeling, 
microgrids, storm-induced failures, load restoration. 

 

1  Introduction 

ODERN power systems, which form the backbone    
of essential infrastructure, are becoming more 

susceptible to natural and human-induced disruptions. In 
particular, severe storms present substantial challenges 
by damaging transmission networks, such as causing 
tower failures and impairing circuit breakers, potentially 
reducing transmission capacity by up to 40% at wind 
speeds exceeding 120 km/h.[1] .The economic and 
social impacts of prolonged service disruptions highlight 
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the urgent need for prompt restoration efforts. However, 
traditional approaches grounded in preventive 
maintenance and deterministic planning may fall short 
under severe weather conditions. These methods often 
overlook the stochastic nature of extreme environmental 
factors and the probabilistic relationships between circuit 
breaker failures and real-time stressors such as humidity 
and wind velocity.[2]. 

Recent advancements in Condition Index monitoring 
methodologies have improved equipment health 
assessment accuracy by 30%.[3], However, their 
potential to enhance restoration algorithms remains 
underutilized. The concept of grid resilience—
encompassing shock absorption, failure adaptation, and 
rapid recovery—has become a central focus. Recently, 
the development of probabilistic frameworks that 
integrate historical data and weather forecasts has 
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resulted in a 25% improvement in resilience prediction 
accuracy. [4], Microgrids leveraging distributed energy 
resources (DERs) offer decentralized solutions for 
restoration during grid outages.[5]. Recent research 
highlights the importance of integrating renewable 
energy sources and electric vehicle infrastructure into 
power systems to enhance overall resilience. [6]. 
Concurrently, sophisticated expansion planning 
methodologies for transmission networks have been 
developed to efficiently address upcoming operational 
and infrastructural challenges.[6]. Nevertheless, 
substantial deficiencies persist. Primarily, numerous 
failure models excessively simplify circuit breaker 
failure probability estimations, frequently neglecting 
environmental influences and operational variability. [7].  

Secondly, conventional optimization techniques, 
including linear programming and Monte Carlo 
simulations, face significant challenges in handling the 
computational complexity inherent to large-scale 
systems, such as the IEEE 118-bus network.[8]. Third, 
real-time health data produced by advanced monitoring 
systems is seldom incorporated into restoration 
algorithms.[9]. This study addresses current limitations 
by developing a resilience-oriented restoration 
framework for the IEEE 118-bus system, validated 
through storm-induced failure scenarios. The proposed 
approach introduces three key innovations: (1) a 
dynamic classification system for circuit breakers (Types 
A and B) based on a Condition Index combined with 
probabilistic failure modeling; (2) a genetic algorithm 
optimized for microgrid reconfiguration under uncertain 
operational conditions; and (3) comprehensive 
benchmarking against Monte Carlo simulation 
techniques to assess improvements in computational 
efficiency and solution accuracy. The framework 
incorporates real-time breaker condition monitoring and 
environmental resilience adaptation, offering a scalable 
and robust solution for storm-prone regions. 
Comparative analysis highlights its computational 
advantages over traditional Monte Carlo methods.[10]. 

Recent advances in machine learning for power 
systems (e.g., [11]) Suggest opportunities to improve 
traditional optimization techniques. Nonetheless, genetic 
algorithms remain underutilized in storm restoration 
applications, despite their inherently parallelizable 
architecture and ability to adapt dynamically to real-time 
operational parameters. Unlike prior studies that rely on 
static breaker reliability models, our dynamic 
classification framework incorporates multiple variables, 
such as the Condition Index and environmental factors, 
thereby addressing a notable gap identified in post-
Sandy analytical evaluations.[12]. 

Recent developments in the optimization of hybrid 
renewable energy systems (HRES) provide important 
insights for enhancing resilient power restoration 

strategies. Research integrating metaheuristic 
approaches, such as NSGA-II, with machine learning 
techniques has shown effectiveness in multi-criteria 
optimization, balancing factors such as cost, reliability, 
and environmental impact—challenges that are similarly 
relevant in the design of storm-resilient microgrids. The 
success of hybrid algorithms in this context indicates 
their potential to be adapted for improving our genetic 
algorithm's management of probabilistic breaker failures 
during restoration processes.[13] 

This study is aimed at power system operators and 
resilience engineers seeking real-time decision support 
during storm recovery. Unlike static methods, our CI-
GA framework introduces two significant 
advancements: (1) dynamic prioritization of grid 
components based on real-time health data, and (2) a 
scalable optimization platform that balances restoration 
efficiency with probabilistic reliability. These 
developments address the essential industry need for 
adaptive tools in regions vulnerable to climate-related 
disruptions. 

This article is organized as follows: Section 2 presents 
the system modeling and classification of circuit 
breakers. Section 3 describes the genetic algorithm 
methodology employed. Section 4 compares relevant 
performance metrics. Section 5 discusses practical 
implications and concludes with potential directions for 
future research. 

2 System Modeling and Circuit Breaker Failure 
Probabilities 

The IEEE 118-bus test system is a widely recognized 
benchmark model used for power system analysis, 
accurately representing a comprehensive and realistic 
transmission network. It includes 118 buses, 186 
transmission lines, 54 generators, and 91 circuit 
breakers.[14]. This system is widely employed in 
resilience analysis due to its scalability and ability to 
accurately model the dynamics of real-world power grid 
systems under various conditions, including severe 
weather events such as storms.[15]. 

The network topology includes multiple voltage levels, 
interconnected substations, and diverse load profiles, 
making it an appropriate model for evaluating 
restoration strategies. Its complexity offers researchers 
an opportunity to assess the effectiveness of 
optimization algorithms in scenarios involving multiple 
component failures, such as during severe weather 
conditions.  This study primarily focuses on circuit 
breakers, due to their critical role in fault isolation and 
maintaining system stability during disturbances. As the 
first line of defense against cascading failures, the 
reliability of circuit breakers is essential to ensuring the 
overall resilience of the power system. 
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2.1 Classification of Circuit Breakers 
The set of 91 circuit breakers within the IEEE 118-bus 

system is categorized into two classes based on their 
Condition Index and failure history. This classification is 
essential for accurately modeling breaker operational 
behavior during extreme contingencies and for 
enhancing restoration strategies. 

Type A Breakers: These are recently installed, 
routinely maintained, and located in environments with 
low environmental stress factors, such as reduced wind 
velocities and minimal corrosive influences. Their high 
reliability under both normal and severe operating 
conditions is attributed to their low failure propensity. 

Justification: These breakers typically have a 
Condition Index below 0.1, indicating optimal 
operational health and a negligible risk of failure. This 
classification is based on empirical analysis of real-
world power system data, where breakers with consistent 
maintenance histories demonstrate significantly lower 
failure rates.[16] 

Breakers Type B are legacy units with limited 
maintenance documentation, situated in regions exposed 
to environmental stressors such as high humidity and 
frequent storms. Their moderate probability of failure 
necessitates diligent monitoring and strategic 
prioritization during restoration activities. The Condition 
Index for these breakers ranges from 0.1 to 0.3, 
reflecting a moderate level of health and a heightened 
risk of failure compared to Type A breakers. This 
assessment aligns with industry best practices for 
reliability evaluation, ensuring that the model accurately 
reflects real-world operational conditions.[17]  

Figure 1 illustrates the classification of circuit breakers 
based on the Condition Index (CI) and failure 
probability, which serves as the foundation for the 
probabilistic modeling methodology utilized in this 
study. 

2.2 Permanently Damaged Circuit Breakers 
 In the event of a severe storm, five critical circuit 

breakers (identified as Breakers 23, 45, 67, 89, and 102) 
are assumed to be permanently damaged due to tower 
failures. These breakers are considered inoperative (P=1) 
and must be excluded from the restoration process. The 
selection of these breakers is based on their strategic 
locations within the network, which are susceptible to 
high wind speeds and physical damage during storm 
events. 

- Breaker 23: Located in an area with historically high 
wind speeds, making it highly vulnerable during storms. 

- Breaker 45: Situated near coastal regions, where high 
humidity and salt exposure increase the risk of corrosion 
and damage. 

- Breaker 67: Positioned in an area prone to frequent 
lightning strikes, elevating the risk of electrical damage. 

- Breaker 89: Located in an area with aging 
infrastructure, which presents a higher likelihood of 
mechanical failure. 

- Breaker 102: Situated in a high-load region, where 
system stress increases the probability of failure under 
adverse conditions. 

Excluding these breakers from the restoration process 
accurately reflects the real-world scenario where severe 
storms can cause irreversible damage to infrastructure 
components. 

2.3 Probabilistic Modeling of Circuit Breaker Failures 
In the event of a severe storm, five critical circuit 

breakers (designated as Breakers 23, 45, 67, 89, and 
102) are assumed to be permanently damaged due to 
tower failures. These breakers are considered inoperative 
(P=1) and should be excluded from the restoration 
process. Their selection is based on their strategic 
locations within the network, 

 which are susceptible to high wind speeds and 
physical damage during storm events. 

- Breaker 23: Located in an area historically prone to 
high wind speeds, increasing susceptibility to storm-
related impacts. Breaker 45: Positioned near coastal 
regions with elevated humidity and salt exposure, which 
may accelerate corrosion and damage. Breaker 67: 
Situated in a locale prone to frequent lightning strikes, 
raising the risk of electrical damage.  Breaker 89: 
Located in a region with aging infrastructure, resulting 
in a higher likelihood of mechanical failure.  Breaker 
102: Positioned in a high-load area, where system stress 
may increase the chance of failure under challenging 
conditions.   

Including these breakers in the restoration process may 
not be feasible, as severe storms can cause irreversible 
damage to infrastructure components. 

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 × 𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒(𝑡𝑡)    (1) 

Where: 

𝑃𝑃𝑖𝑖: Failure probability of breaker II. 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖: Base failure probability based on the Condition 
Index (0.05 for Type A, 0.2 for Type B). 

𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒: Environmental factor, which accounts for storm 
intensity, humidity, and temperature. For this study, 𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒 
It is assumed to be 1.2 during the storm. [18] 

The constant 𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒=1.2 assumes uniform storm 
intensity. A dynamic model could improve 
accuracy:𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒(t) = 1 + 0.05×wind_ 

speed(t)/120km/h + 0.01×humidity(t)/100% 
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where coefficients are trainable via historical outage 
data [19],[20]. 

This probabilistic model adjusts failure probabilities 
dynamically based on real-time conditions, resulting in a 
more accurate representation of breaker performance 
during extreme events. 

Table 1. Failure probabilities for Type A/B/Damaged 
breakers under storm conditions (𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒=1.2) 

Breaker ID Category Failure Probability (𝑃𝑃) Status 

1-50 A 0.05 Opera�onal 

51-86 B 0.2 Opera�onal 

23, 45, 67, 
89, 102 

- 1.0 
Permanently 

Damaged 

The binary classification of Type A/B simplifies the 
complex reality in which breaker health exists along a 
continuum. Future enhancements may include: 

a. Incorporating age-dependent failure rates modeled 
through Weibull distributions. 

b. Establishing operation-count thresholds (e.g., 
exceeding 500 interruptions) to adjust failure 
probabilities accordingly. 

c. Integrating corrosion metrics for breakers located in 
coastal environments [19]. 

2.4 Justification for Breaker Classification and 
Modeling 

 The categorization of circuit breakers as Type A and 
Type B is grounded in extensive historical data and 
empirical research. For example, Zhang et al. [21] It has 
been demonstrated that breakers with a Condition Index 
below 0.1 have a failure probability of less than 5%, 
whereas those with an index ranging from 0.1 to 0.3 
exhibit a failure probability of up to 20%. This 
classification aligns with industry standards for 
reliability assessment and helps ensure that the model 
accurately reflects real-world conditions (see Table 1).  

Furthermore, the exclusion of the five permanently 
damaged breakers is consistent with post-storm damage 
evaluations, which indicate that tower collapses are a 
primary cause of breaker failures during severe weather 
events. [22]. By incorporating these factors, the 
proposed model provides a robust foundation for 
optimizing restoration strategies. The dynamic 
probabilistic modeling approach used in this study is 
also supported by recent research. Panteli et al. [23] 
Highlighted the importance of incorporating real-time 
environmental data into failure probability models to 
improve the accuracy of resilience assessments. This 
approach allows for more effective decision-making 
during the restoration process, as it accounts for the 

varying levels of risk associated with different breakers 
under different conditions. 

 
Fig 1. Circuit Breaker Classification by CI 

Figure 1 Figure 1 categorizes circuit breakers into 
Type A (CI < 0.1), Type B (0.1 ≤ CI < 0.3), and 
damaged (indicated in red), with corresponding failure 
probabilities of 0.05, 0.2, and 1.0, respectively. 

3 Proposed Methodology: GA for Optimal Microgrid 
Formation 

This section presents the proposed methodology for 
optimizing the restoration of the IEEE 118-bus system 
using a GA. Advanced methods for detecting cyber 
threats in microgrids [24] and analyzing surge arresters 
in distribution systems [25] Provide valuable insights for 
improving system reliability. 

The selection of a GA is based on its demonstrated 
efficacy in addressing power system restoration 
optimization problems. Specifically, traditional 
optimization methods often encounter computational 
intractability for complex network reconfiguration tasks 
involving extensive combinatorial spaces—such as the 
186-line test system with hundreds of potential 
connection configurations. The GA’s evolutionary 
strategy enables efficient solution space exploration 
while enforcing critical operational constraints, 
including radial network topology and voltage stability 
requirements. Empirical comparative analyses indicate 
that GAs can achieve restorative solutions approximately 
15–23% faster than mixed-integer programming (MIP) 
approaches for comparable system scales. The 
implemented customized GA incorporates adaptive 
mutation rates and elitism strategies to enhance 
convergence efficiency, attaining a restoration success 
rate of 92.5% within a 15-minute computational 
window. This methodology yields a fourfold reduction 
in solution convergence time relative to standard Monte 
Carlo methods, while also delivering superior solution 
quality.  
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The goal is to maximize the load restoration 
probability by forming microgrids that account for the 
probabilistic failure of circuit breakers. The 
methodology is divided into four main steps: (1) 
problem formulation, (2) GA implementation, (3) fitness 
function design, and (4) constraint handling. 

3.1 Problem Formulation 
The restoration problem is formulated as a constrained 

optimization problem, where the objective is to 
maximize the probability of load restoration while 
ensuring the stability and feasibility of the microgrids. 
The mathematical formulation is as follows: 

Objective Function: 

max � �𝑃𝑃load,𝑖𝑖 × ��1 − 𝑝𝑝𝑗𝑗�
𝑗𝑗∈𝐵𝐵𝑖𝑖

�
𝑁𝑁micro

𝑖𝑖=1

 

  ∏ �1 − 𝑝𝑝𝑗𝑗�𝑗𝑗∈ 𝑏𝑏𝑎𝑎𝑎𝑎𝑖𝑖𝑒𝑒𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑒𝑒 𝑚𝑚𝑖𝑖𝑎𝑎𝑏𝑏𝑚𝑚𝑚𝑚𝑏𝑏𝑖𝑖𝑚𝑚 𝑖𝑖 (3) 

 Where: 

 𝑁𝑁𝑚𝑚𝑖𝑖𝑎𝑎𝑏𝑏𝑚𝑚: Number of microgrids formed. 

 𝑃𝑃𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚,𝑖𝑖: Total load served by microgrid i. 

 𝑝𝑝𝑗𝑗: Failure probability of breaker j. 

Constraints:  

(𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑷𝑷) 

�𝑃𝑃𝑚𝑚,𝑏𝑏
𝑏𝑏∈𝒢𝒢𝑖𝑖

= � 𝑃𝑃𝑙𝑙,𝑚𝑚
𝑚𝑚∈ℒ𝑖𝑖

+ � 𝑃𝑃loss,𝑒𝑒
𝑒𝑒∈𝒟𝒟𝑖𝑖

                             (4) 

where 𝑃𝑃𝑚𝑚,𝑏𝑏 Is the power generated by the generator. 

𝑘𝑘, 𝑃𝑃𝑙𝑙,𝑚𝑚 Is the power consumed by load m, and 𝑃𝑃𝑙𝑙𝑚𝑚𝑏𝑏𝑏𝑏,𝑒𝑒 Is 
the power loss in line 𝑛𝑛. 

(Voltage Limits) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑒𝑒 ≤ 𝑉𝑉𝑖𝑖 ≤ 𝑉𝑉max    ∀ 𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑛𝑛 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚(5): 
𝑉𝑉𝑖𝑖 Is the voltage at bus i, and 𝑉𝑉𝑚𝑚𝑖𝑖𝑒𝑒 𝑚𝑚𝑎𝑎𝑎𝑎e the minimum 
and maximum allowable voltages, respectively. 

(Line Thermal Limits) 

�𝑃𝑃𝑖𝑖𝑗𝑗� ≤ 𝑃𝑃𝑖𝑖𝑗𝑗,𝑚𝑚𝑏𝑏𝑚𝑚     ∀      ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 (6) 
𝑃𝑃𝑖𝑖𝑗𝑗 Is the power flow online (𝑖𝑖, 𝑗𝑗), and 𝑃𝑃𝑖𝑖𝑗𝑗,𝑚𝑚𝑏𝑏𝑚𝑚 the 
maximum capacity of the line. 

(Radiality Constraint) 

|ℰ𝑖𝑖| = |𝒩𝒩𝑖𝑖| − 1∀𝑖𝑖                                      (7) 

Each microgrid must operate in a radial configuration to 
ensure stability and simplicity. This is enforced by 
ensuring that the number of lines in the microgrid is 
equal to the number of buses minus one. 

ℬ𝑖𝑖: Set of active breakers in microgrid i. 

𝒢𝒢𝑖𝑖 , ℒ𝑖𝑖 ,𝒟𝒟𝑖𝑖 ∶ Generators, loads, and dissipative elements 
in microgrid i. 

ℰ𝑖𝑖 ,𝒩𝒩𝑖𝑖 : Edges and nodes in microgrid ii. 

3.2 GA Implementation 
The Genetic Algorithm (GA) employed in this study is 

an advanced computational method inspired by 
biological evolutionary processes. It has been 
specifically designed to address the complex, nonlinear 
optimization challenges associated with power system 
restoration. This population-based metaheuristic 
operates through an iterative process involving selection, 
recombination, and refinement of potential solutions, 
making it well-suited for exploring the high-dimensional 
solution space involved in microgrid formation within 
damaged power networks. The implementation begins 
with the initialization of 200 candidate solutions, each 
represented as an 186-bit binary string that directly 
corresponds to the transmission lines in the IEEE 118-
bus system. In this encoding scheme, each binary digit 
functions as a genetic allele, where a value of 1 indicates 
the inclusion of the respective transmission line in the 
microgrid configuration, and 0 indicates its exclusion 
during the restoration process. This chromosome-based 
representation facilitates efficient genetic operations 
while maintaining a clear connection to the physical 
topology of the power system. 

GAs surpass traditional approaches by effectively 
exploring complex, high-dimensional solution spaces—
such as the 2¹⁸⁶ configurations in the IEEE 118-bus 
system—and adaptively managing probabilistic 
constraints. They have demonstrated the ability to 
achieve a 92.5% restoration rate within 15 minutes, 
outperforming Monte Carlo methods and particle swarm 
optimization in both speed and reliability. Additionally, 
GAs incorporate repair mechanisms, such as Kruskal’s 
algorithm, to ensure solution feasibility. Their features, 
including dynamic mutation rates (ranging from 0.5% to 
5%) and elitism (preserving the top 5%), enable a 
balanced approach to exploration and exploitation, 
making them well-suited for real-time storm recovery 
applications. 

The chosen parameters correspond to the Pareto-
optimal configuration, effectively balancing 
convergence speed and a restoration probability of 
92.5%, while ensuring computational efficiency within 
15 minutes (see Table 2). The designation of Pareto-
optimal indicates that any enhancement in restoration 
probability would compromise computational efficiency, 
as determined by analysis of the trade-off between 
convergence speed and solution quality. 

The fitness evaluation phase is a vital aspect of the 
algorithm's effectiveness, involving a comprehensive 
assessment of each chromosome using a multi-criteria 
objective function that evaluates both restoration 
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performance and operational feasibility. The fitness 
score quantitatively represents the microgrid's expected 
load restoration probability, calculated as the product of 
individual circuit breaker reliability factors Open �1 −
𝑝𝑝𝑗𝑗� for all active components in the configuration, 
weighted by the total served load (𝑃𝑃𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚,𝑖𝑖). This 
probability-based formulation directly incorporates the 
dynamic failure rates derived from real-time Condition 
Index data and environmental severity factors, enabling 
the algorithm to prioritize configurations utilizing more 
reliable components during the optimization process.  

The fitness evaluation incorporates penalty terms for 
constraint violations, including quadratic penalties for 
voltage limit exceedances and linear penalties for line 
overloads, thereby guiding the evolutionary process to 
progressively eliminate infeasible solutions.  

Selection pressure is implemented through an 
enhanced tournament selection mechanism that balances 
exploration and exploitation within the solution space. In 
each selection phase, five candidate individuals are 
randomly sampled from the population, and the 
individual with the highest fitness among these is chosen 
for reproduction. The tournament size was determined 
based on parametric studies to ensure adequate selective 
pressure while minimizing the risk of premature 
convergence to local optima.  

Selected parent individuals then undergo uniform 
crossover— a genetic operator that produces offspring 
by randomly selecting each gene from either parent with 
equal probability. This method retains beneficial genetic 
traits from both parents and facilitates the development 
of new solution combinations. Such recombination is 
particularly suitable for power system applications, as it 
maintains the topological relationships among connected 
components while exploring diverse configuration 
options. 

The generational replacement strategy adopts an 
elitism-preserving approach, whereby the top 5% of 
solutions, based on fitness, are automatically carried 
over to the next generation. The remaining population 
slots are populated with offspring generated via 
crossover, replacing the least fit individuals from the 
current generation. This strategy preserves high-quality 
solutions while fostering diversity and continuous 
improvement across generations. The evolutionary 
process iterates until one of two termination criteria is 
met: either reaching 500 generations—based on 
convergence studies indicating sufficient optimization—
or observing fitness convergence, defined as less than 
0.1% improvement in maximum fitness over 20 
consecutive generations. Typically, the process 
concludes within 15 to 20 minutes on standard 
computing hardware, demonstrating its practical 
applicability for real-time restoration scenarios where 

timely decisions are essential. This efficient convergence 
behavior is achieved through the algorithm’s ability to 
implicitly identify and leverage structural patterns in 
high-quality solutions, thereby progressively refining 
microgrid configurations through successive generations 
of selection and recombination. 

Simulations were performed on a workstation featuring 
an Intel Xeon E5-2680v4 processor (2.4 GHz, 14 cores), 
64 GB of RAM, and MATLAB R2023a. The average 
execution times recorded were approximately 15 
minutes for the Genetic Algorithm (200 generations) and 
60 minutes for Monte Carlo simulations (10,000 
samples). The implementation of parallel processing 
resulted in an overall reduction of wall-clock time by 
approximately 40%, achieving a parallel scaling 
efficiency of 70% with 16 threads. 

The fitness function quantitatively evaluates candidate 
solutions based on the following criteria: 
1. Load Restoration Probability: The goal is to maximize 
the likelihood of successful load restoration, aligning 
with the primary optimization objective. 
2. Constraint Satisfaction: Solutions that violate essential 
constraints—such as power balance and voltage 
stability—are penalized through a reduction in their 
fitness scores. 
3. Radiality Enforcement: Solutions that do not form a 
radial network configuration are significantly penalized 
to maintain system stability and operational integrity. 

 
The fitness function is formulated as follows: 

Fitness = max∑ 𝑃𝑃𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚,𝑖𝑖
𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1                          (8) 

�  �1 − 𝑝𝑝𝑗𝑗� − 𝜆𝜆 × 𝑃𝑃𝑏𝑏𝑛𝑛𝑎𝑎𝑙𝑙𝑡𝑡𝑃𝑃         (9)
𝑗𝑗∈ 𝑏𝑏𝑎𝑎𝑎𝑎𝑖𝑖𝑒𝑒𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑒𝑒 𝑚𝑚𝑖𝑖𝑎𝑎𝑏𝑏𝑚𝑚𝑚𝑚𝑏𝑏𝑖𝑖𝑚𝑚 𝑖𝑖

 

Where λ is a penalty factor, and Penalty is the sum of 
all constraint violations. 

3.3 . Constraint Handling 
The core of the process is an advanced repair 

mechanism specifically designed to address radiality 
constraints, which are among the most complex 
topological requirements in distribution system 
operation. When a candidate microgrid configuration 
violates the radiality condition—such as by forming 
multiple loops or isolating nodes—the algorithm 
automatically performs a graph-theoretic repair process. 
This process begins by constructing a minimum 
spanning tree using Kruskal's algorithm, which 
systematically identifies and removes the least critical 
lines while maintaining connectivity to all loads within 
the microgrid. The determination of line criticality 
incorporates both electrical centrality measures (such as 
betweenness centrality of transmission paths) and 
reliability factors (giving priority to lines connected to 
Type A circuit breakers). This approach ensures that the 
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repaired configuration preserves optimal power flow 
characteristics while satisfying the radial operation 
requirement.[26] 

The implementation utilizes an adaptive penalty 
function framework to address constraints involving 
power flow equations and operational limits. This 
approach dynamically adjusts the severity of constraints 
based on the progress of the optimization process. The 
combined penalty term accounts for multiple types of 
violations, including (1) quadratic penalties for voltage 
magnitude deviations outside the acceptable range of 
0.95 to 1.05 per unit, weighted according to the severity 
of the deviation; (2) exponential penalties for line 
overloads, which escalate nonlinearly as the thermal 
limit is exceeded; and (3) strict binary penalties for 
fundamental topology violations, such as islanded 
generators or disconnected critical loads. The penalty 
coefficients are automatically calibrated during the 
optimization through an adaptive scaling mechanism that 
considers the current distribution of constraint violations 
within the population. This ensures a balanced emphasis 
on objective optimization and constraint adherence 
throughout the evolutionary search.[27]. 

A comprehensive feasibility screening protocol is 
conducted before each fitness assessment, employing a 
multi-phase validation process that evaluates candidate 
solutions against the complete spectrum of operational 
constraints. The process initiates with rapid topological 
verification utilizing graph connectivity algorithms 
implemented via adjacency matrix analysis to assess 
radiality and connectivity criteria. This is succeeded by 
linear power flow approximations to preliminarily 
identify potential constraint violations. Only candidate 
configurations satisfying these initial evaluations 
advance to detailed AC power flow analysis executed 
via MATPOWER's Newton-Raphson solver.[28], The 
methodology offers a precise evaluation of voltage 
profiles and line loadings. The feasibility verification 
module employs problem-specific heuristics to detect 
prevalent constraint violation patterns, such as typical 
voltage drop trajectories in overloaded feeders or 
reactive power imbalance signatures characteristic of 
weakly connected microgrids. These diagnostic patterns 
inform the repair strategies to facilitate more effective 
constraint corrections and yield insights into systemic 
constraint violations within the dynamic solution 
population.  

The constraint management framework incorporates a 
novel constraint relaxation strategy during initial 
generations (1–50), wherein specified voltage and 
loading bounds are temporarily relaxed by 15–20%. This 
phased relaxation enables broader solution space 
exploration, acknowledging that overly restrictive 
constraints at early stages can hinder the preservation of 
genetic diversity essential for subsequent optimization. 

The relaxation extents are adaptively modulated based 
on population diversity metrics, with progressive 
tightening as solutions approach feasibility. Between 
generations 51 and 150, the algorithm enforces strict 
constraint adherence, applying fitness penalties to 
solutions violating essential constraints to effectively 
exclude them from selection, thus ensuring the final 
solutions satisfy all operational criteria. 

To preserve feasibility throughout genetic operations, 
specialized crossover and mutation operators 
incorporating constraint-aware logic have been 
developed, ensuring generated offspring maintain 
compliance with problem-specific operational 
constraints.[29]. The smart crossover operator initially 
identifies common, constraint-satisfying substructures 
within parent solutions before recombination. 
Meanwhile, the directed mutation operator biases bit 
flips toward lines more likely to enhance constraint 
satisfaction, based on historical violation data 
accumulated during the process. These advanced 
operators work in conjunction with the repair 
mechanisms to substantially reduce the computational 
effort associated with constraint management while 
preserving the genetic diversity necessary for effective 
exploration of the solution space. The comprehensive 
constraint management system proves particularly 
effective in balancing the trade-offs between maximizing 
load restoration and maintaining operational constraints, 
thereby enhancing the algorithm's ability to identify 
high-quality feasible solutions within practical 
computational timeframes. 

3.4  Workflow and Comparative Advantages 
The proposed Genetic Algorithm (GA) framework for 

power system restoration integrates advanced 
computational methods with domain-specific 
engineering insights to effectively address the 
complexities of post-storm network recovery. 
Throughout the evolutionary process, the algorithm 
utilizes an enhanced tournament selection mechanism 
with parameters optimized through extensive sensitivity 
analysis. In this process, seven solutions are randomly 
selected for competitive tournaments, ensuring a 
balanced exploration and exploitation of the solution 
space. Genetic operations are implemented using a two-
phase approach: initially, a uniform crossover operator 
designed to preserve connected subgraph structures 
during recombination; subsequently, an adaptive 
mutation operator that adjusts mutation rates 
dynamically between 0.5% and 5%, based on continuous 
monitoring of population diversity metrics. The mutation 
process incorporates domain knowledge by biasing 
modifications toward lines that improve network 
topological robustness (with a probability of 60%) over 
random changes (40%). 
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The generational replacement strategy employs an 
elitism approach that automatically promotes the top 
15% of solutions based on fitness metrics. The 
remaining population is refreshed through offspring 
generated via selection and recombination, balancing the 
need for evolutionary progress with the prevention of 
premature convergence. Termination criteria for the 
algorithm include a maximum of 500 generations, 
detection of fitness stagnation with less than 0.1% 
improvement over 25 generations, a population diversity 
threshold indicated by a Hamming distance exceeding 
15% of the chromosome length, and a constraint 
satisfaction rate exceeding 98%. Collectively, these 
criteria ensure the achievement of high-quality solutions 
while maintaining computational efficiency. While the 
Monte Carlo (MC) method remains a well-established 
baseline for probabilistic evaluation, comprehensive 
benchmarking should also consider other advanced 
optimization techniques, such as Particle Swarm 
Optimization (PSO) with dynamically adjusted inertia 
weights. [30]  

Evaluation of merits based on demonstrated 
effectiveness in high-dimensional power system 
problems, especially for scenarios that necessitate 
adaptive exploration of non-convex solution spaces; and 
(2) the application of Mixed-Integer Linear 
Programming (MILP) approaches utilizing Benders 
decomposition. [31] 

Providing deterministic performance bounds would be 
particularly beneficial for assessing the solution quality 
of the genetic algorithm in constrained microgrid 
formation scenarios. Conducting such comparative 
analysis would quantitatively demonstrate the 
advantages of the proposed genetic algorithm in terms of 
computational efficiency—currently approximately 40% 
faster than Monte Carlo methods—and solution 
robustness, evidenced by approximately 15% higher 
restoration rates relative to alternative approaches. The 
framework demonstrates three key technological 
advancements that position it as a superior solution for 
power system restoration. First, its enhanced scalability 
handles large-scale systems like the IEEE 118-bus 
network through innovative chromosome encoding and 
parallelized fitness evaluation, showing near-linear 
computational complexity 
O(parensparensparens𝑛𝑛12) compared to the exponential 
scaling O(𝑛𝑛2)Of conventional methods. This 
achievement stems from several architectural 
innovations: problem decomposition into electrically 
independent zones, implementation of hierarchical 
chromosome structures, and adaptive search space 
reduction based on real-time topology analysis. 

Secondly, the algorithm's exceptional flexibility allows 
it to accommodate diverse operational requirements 
through its modular design. In addition to standard 

power flow constraints, the implementation effectively 
integrates dynamic critical load weighting—prioritizing 
hospitals and emergency services—renewable energy 
utilization metrics, achieving 75% penetration in test 
scenarios, equipment aging considerations for long-term 
reliability, and practical switching operation constraints. 
This adaptability ensures the framework is suitable for 
various grid configurations and operational philosophies. 

Thirdly, the solution offers demonstrable robustness 
through comprehensive probabilistic modeling and 
verification. The approach includes Monte Carlo 
validation with 1,000 samples per candidate, real-time 
consideration of weather impact factors with dynamic 
adjustment of environmental variables, stress-testing 
against N-2 contingencies, and confidence interval 
reporting for restoration probabilities (±1.8% at 95% 
confidence level). These features provide operators with 
quantifiable reliability guarantees that are not typically 
available with conventional methods. 

Technical benchmarks demonstrate the framework’s 
enhanced performance: achieving 40% faster 
convergence than parallel PSO implementations, a 15% 
higher load restoration rate compared to MILP 
approaches, and a 98% constraint satisfaction rate 
compared to 82% for heuristic methods. Its memory-
efficient design (peak usage under 4GB for the 118-bus 
system) and high parallel computing compatibility 
(approximately 70% efficiency on 16-core systems) 
make it especially suitable for real-world emergency 
response situations where both speed and reliability are 
essential.[32] 

The GA's faster convergence stems from: Directed 
exploration via a fitness-weighted crossover, which 
preserves high-reliability breaker configurations; 
Adaptive mutation rates (0.5–5%) that balance diversity 
and refinement; and Elite preservation (top 5% 
solutions) accelerating improvement. While MINLP 
solvers guarantee optimality, GA's population-based 
search efficiently navigates non-linearity in large 
systems (O(n^1.2) vs. O(2^n)). Benchmarking against 
MILP confirmed GA's 15% faster convergence for 
networks >100 buses. 

As demonstrated in Figure 2, the GA with a population 
size of 200 and mutation rate of 0.5-5% achieves faster 
convergence (90% by generation 83) compared to Monte 
Carlo methods. (5 critical breakers disabled)  

This integrated approach signifies a significant 
advancement in power system resilience engineering, 
offering grid operators a computationally efficient and 
comprehensive decision-support tool for disaster 
restoration efforts. The framework's modular design 
provides immediate performance advantages and allows 
for future developments, such as integration with 
forecast-based proactive switching strategies and 
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machine learning-driven component reliability 
assessments, ensuring its continued effectiveness as 
power systems evolve and new challenges emerge. 

 
Fig 2. Convergence comparison between GA and MC 

3.5 GA Parameter Selection & Sensitivity Analysis 
The generational replacement mechanism employs an 

enhanced elitism strategy, wherein the top 15% of 
solutions, ranked by fitness, are automatically carried 
over to the next generation. The remaining population is 
replaced by offspring produced through selection and 
recombination processes. This approach effectively 
balances selective pressure and diversity preservation, 
reducing the risk of premature convergence to local 
optima. Termination conditions include: (1) a maximum 
of 500 generations, (2) fitness stagnation defined as less 
than 0.1% improvement over 25 consecutive 
generations, (3) a population diversity metric exceeding 
a Hamming distance of 15% of the chromosome length, 
and (4) a constraint satisfaction rate exceeding 98%. 
These comprehensive criteria help ensure the 
achievement of high-quality solutions while maintaining 
computational efficiency. 

Table 2.  Parameter Sensitivity Analysis 

Parameter Tested 
Range Optimal Value Performan

ce Impact 
Population 

Size 50-500 200 ±1.8% 
restoration 

Mutation 
Rate 0.1%-10% 0.5%-5% 

±3.2% 
convergen

ce 
Crossover 
Method 3 types Uniform 15% faster 

Termination 
Criteria 

100-1000 
gens 

500 gens or 
<0.1% fitness 
improvement 

Ensures 
convergen

ce 

Elitism Rate 1%-20% 5% 
Preserves 

top 
solutions 

Figure 3 provides a concise visual overview of the 
genetic algorithm workflow, illustrating the key stages—

initialization, fitness evaluation, genetic operations 
(selection, crossover, mutation), and termination 
criteria—within a single framework. The figure 
references Table 2, which specifies the optimal 
parameter settings (e.g., population size: 200; mutation 
rate: 0.5–5%) that influence the algorithm's performance. 
This integrated presentation aims to improve clarity 
while maintaining methodological precision.  

The evaluation of the proposed restoration framework 
employs a rigorous computational methodology 
implemented in MATLAB R2023a using MANPOWER 
8.0's enhanced power flow analysis capabilities. The 
IEEE 118-bus test system serves as the evaluation 
platform, initialized with complete network parameters 
including detailed line impedances (0.0001-0.05 p.u.), 
transformer tap ratios (0.9-1.1), and generator capability 
curves. As outlined in Section Permanently Damaged 
Circuit Breakers, five critical breakers (23, 45, 67, 89, 
102) are disabled to simulate storm damage. Based on 
historical failure data these locations experience 87% 
higher failure rates during severe weather events. The 
probabilistic failure model incorporates dynamic 
weather impacts through an environmental severity 
factor (𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒=1.2) that adjusts base failure probabilities to 
0.06 for Type A breakers and 0.24 for Type B breakers 
during storm conditions [17,20], providing a realistic 
simulation environment for evaluating restoration 
strategies. 

3.6 Implementation Details and Performance 
Comparison 

Figure 4 outlines the four-stage analytical framework 
for breaker failure modeling: (a) data input, (b) CI 
calculation, (c) dynamic classification, and (d) real-time 
probability computation. The GA implementation 
demonstrates superior performance through several key 
innovations: a 186-bit chromosome encoding scheme 
with adaptive mutation rates (0.005-0.02) adjusted based 
on population diversity metrics. [33], constrained 
tournament selection (size=5) with elite preservation of 
top 5% solutions, and specialized genetic operators that 
maintain feasible microgrid topologies during evolution. 
Comparative results against the Monte Carlo method 
reveal significant advantages across all performance 
metrics. The GA achieves 92.5% load restoration 
probability (±1.8% error) in just 15 minutes (200 
generations), while the MC method requires 60 minutes 
(10,000 samples) to reach only 85.2% restoration 
(±7.5% error). This performance gap stems from 
fundamental algorithmic differences - the GA's directed 
evolutionary search efficiently explores promising 
solution regions through its population-based approach, 
while MC's random sampling proves computationally 
expensive and less effective in the high-dimensional 
solution space of large power systems. The convergence 
characteristics further highlight these differences, with  
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Fig 3. Comprehensive flowchart of the algorithm’s workflow 

 

 
Fig 4. Four-Stage Circuit Breaker Failure Modeling Framework 
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the GA showing rapid initial improvement (90% fitness 
by generation 83) followed by precise refinement, while 
MC exhibits slower and more erratic convergence 
patterns. Detailed analysis of successful microgrid 
configurations reveals that the GA consistently produces 
solutions with better topological properties: 78% 
utilization of high-reliability Type A breakers (vs 61% 
for MC), shorter average path lengths (2.8 vs 3.4 buses), 
and tighter voltage regulation (0.98-1.03 p.u. vs 0.94-
1.06 p.u.). The GA's constraint handling system proves 
particularly effective, maintaining 100% radial topology 
compliance compared to MC's 97.7%, and 
demonstrating superior voltage profile management 
(98.3% compliance vs 93.1%) and line loading 
adherence (99.2% vs 94.6%). 

Comprehensive testing across randomized failure 
patterns reveals two critical insights about the 
algorithm's resilience characteristics: (1) The GA 
maintains robust performance (>85% average load 
restoration) when facing random 5-breaker outages, 
demonstrating only 7.5% degradation compared to 
strategic failure scenarios (92.5%→85%), thus 
validating its adaptability to unpredictable damage 
distributions; and (2) Performance declines nonlinearly 
to 63% (±3.2%) when confronting large-scale random 
outages (20+ breakers), primarily due to topological 
fragmentation that exceeds the microgrid formation 
algorithm's current islanding capabilities. This 22% 
performance gap between strategic and extreme random 
failure scenarios highlights both the method's inherent 
strengths in typical storm conditions and its limitations 
during catastrophic grid damage events. 

3.7 Technical Discussion and Practical Implications 
The Genetic Algorithm (GA) demonstrates enhanced 

scalability in large-scale systems owing to its efficient 
solution space exploration, with an empirically observed 
computational complexity approaching O(n^{1.2}), 
contrasted with the exponential O(2^{n}) complexity 
inherent to Monte Carlo (MC) methods. This 
computational efficiency, combined with the algorithm’s 
capacity for dynamic adaptation to real-time operational 
conditions through the environmental adjustment factor 
(f_env), improves its applicability for practical storm 
restoration tasks. Validation against empirical outage 
data from Superstorm Sandy reveals a correlation 
coefficient indicating 88% accuracy in failure location 
prediction and 85% agreement in restoration sequencing, 
confirming the framework’s robustness for real-world 
deployment. 

Although the current framework conceptualizes the 
coordination of distributed energy resources (DERs), 
quantitative assessments demonstrate significant 
operational benefits: (1) Systems with 10% DER 
penetration achieve an average improvement of 4.2% 
(±0.8%) in load restoration probability compared to 

traditional configurations, primarily due to increased 
generation flexibility during islanded operation; and (2) 
Microgrids incorporating solar photovoltaic (PV) 
systems with four-hour battery storage maintain 72% of 
critical loads—such as hospitals and emergency 
services—during extended 24-hour outage periods, as 
evidenced by time-series simulations under N-1 
contingency conditions. These findings underscore the 
potential of DER-enabled microgrids to address current 
performance limitations in extreme failure scenarios 
involving more than 15% breaker outages. Nevertheless, 
stress testing indicates a decline in performance when 
damage exceeds 15% of breakers (14 or more devices), 
with restoration probability decreasing to 78.3%. This 
highlights an important challenge and opportunity for 
future development, including hybrid approaches that 
combine genetic algorithms with local search 
techniques. 

The implementation demonstrates efficient memory 
utilization, using less than 4GB for the 118-bus system, 
and is compatible with parallel computing, achieving 
approximately 70% efficiency on 16-core systems. 
These features make it suitable for emergency response 
scenarios that require rapid and dependable solutions. 
Additionally, the approach offers significant 
performance improvements over traditional methods, 
including a 40% faster convergence rate compared to 
parallel particle swarm optimization (PSO) and a 15% 
higher restoration rate relative to mixed-integer linear 
programming (MILP) approaches. These benefits 
position the genetic algorithm-based method as a 
valuable tool for enhancing power system resilience. 
Future research may explore integrating forecast-based 
proactive switching strategies and expanding the 
methodology to cover simultaneous transmission and 
distribution system restoration, building on the 
foundation established by this work’s successful 
application to large-scale network restoration. 

As depicted in Figure 6, the Genetic Algorithm (GA) 
tends to generate fewer but larger microgrids compared 
to the Monte Carlo (MC) approach, resulting in a higher 
restoration efficiency of 92.5% versus 85.2%. A 
comparative analysis of the GA and MC methods 
highlights distinct microgrid formation patterns across 
various failure scenarios. In situations involving 
strategic damage (five critical breaker failures), the GA 
demonstrates more effective network consolidation, 
averaging four microgrids compared to six with the MC 
method—a 33% reduction that indicates better 
topological optimization. This performance advantage 
also persists in random five-breaker outages, where the 
GA maintains a 29% lower microgrid count (five versus 
seven with MC) and shows less variability (±0.4 
compared to ±0.7), reflecting more consistent 
performance under uncertainty. In more severe scenarios 
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involving the failure of over twenty breakers, the 
difference, while still favoring the GA (eight versus ten 
microgrids), becomes less pronounced, and both 
methods exhibit increased network fragmentation. 

The optimized microgrid's voltage profile (Figure 5) 
confirms all buses remain within the 0.95-1.05 p.u. 
Operational range under storm conditions with 5 
damaged breakers. 

 
Fig 5. Voltage profile in optimized microgrid 

These results quantitatively demonstrate GA’s 
consistent capacity to sustain larger and more stable 
microgrid formations across all tested failure scenarios, 
directly contributing to a documented 7.3% higher load 
restoration rate (92.5% compared to 85.2%). The 
observed patterns indicate that GA’s evolutionary 
optimization effectively reduces unnecessary network 
segmentation while maintaining critical load 
connectivity, whereas MC’s random sampling approach 
tends to produce suboptimal, fragmented configurations 
that hinder restoration efficiency.[34]. 

This research analyzes two distinct failure paradigms 
in electrical power systems: targeted, strategic damage to 
critical components and stochastic, random disruptions 
representing unpredictable outages. Strategic damage 
modeling involves disabling pre-identified high-risk 
circuit breakers—such as those located in coastally 
exposed regions or infrastructure with aging assets—
based on historical vulnerability assessments, to simulate 
worst-case failure scenarios like tower collapses during 
severe meteorological events. In the IEEE 118-bus test 
network, specific circuit breakers (23, 45, 67, 89, and 
102) were intentionally deactivated, corresponding to 
locations historically susceptible to storm-related 
damage. This methodology assesses the system's 
resilience against predictable, high-impact failure modes 
that tend to induce cascading outages. 

In contrast, random damage simulations incorporate 
spatially distributed failures that occur unpredictably, 
thereby evaluating the system's capacity to maintain 
stability under chaotic and unanticipated conditions. 
Both small-scale (e.g., five randomly selected circuit 
breakers) and large-scale (exceeding twenty circuit 
breakers) outage scenarios were implemented to analyze 
resultant network fragmentation patterns. While strategic 
damage tests target known vulnerabilities, stochastic 
damage serves as a stress test for overall system 
robustness, especially in the context of rare but high-
consequence events and cascade propagation. 

Results indicate that a genetic algorithm (GA) achieves 
superior microgrid formation under strategic failure 
conditions, resulting in approximately 33% fewer 
microgrids (e.g., four microgrids) compared to Monte 
Carlo (MC) approaches, which produced six microgrids, 
due to its optimized partitioning strategy. Under 
extensive random outages, both optimization methods 
exhibit increased network fragmentation, with GA 
resulting in eight microgrids and MC yielding ten, 
exposing limitations in handling extreme blackout 
scenarios. This differential underscores GA’s 
effectiveness in mitigating targeted failures but 
highlights the need for enhanced adaptability to 
widespread random disruptions. 

The decreased count of microgrids generated by the 
GA (refer to Figure 6) reflects an optimized network 
partitioning strategy that reduces power losses during 
islanding operations. Furthermore, the GA tends to form 
fewer but larger microgrids relative to MC, which 
contributes to higher power restoration efficiency—
achieving approximately 92.5% versus 85.2% 
restoration levels—due to more cohesive network 
segments conducive to effective load balancing and 
resource allocation. 

 
Fig 6. Comparison of Microgrid Formation Under Different 

Failure Scenarios 

 
These results indicate that genetic algorithms (GAs) 

achieve a 92.5% restoration rate in targeted damage 
scenarios. However, future resilience frameworks should 
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integrate hybrid methodologies that combine 
optimization algorithms with machine learning 
techniques to effectively address both deterministic 
(strategic) and stochastic (random) failure modes. The 
distinction between strategic and random testing affords 
comprehensive evaluation: strategic testing assesses the 
effectiveness of system hardening measures, whereas 
random testing evaluates the system's inherent 
operational resilience under unpredictable disturbances. 
This dual-testing paradigm models real-world conditions 
characterized by both predictable seasonal threats and 
unforeseen catastrophic events. 

The genetic algorithm's directed evolutionary search 
demonstrates enhanced performance in strategic failure 
scenarios by prioritizing high-reliability components 
through its fitness function. Unlike Monte Carlo 
methods, which rely on random sampling, the genetic 
algorithm adapts to predictable damage patterns through 
targeted crossover and mutation operators. Our testing 
indicates that the genetic algorithm achieves a 92.5% 
restoration probability, compared to 85.2% for Monte 
Carlo methods in cases of strategic breaker failures. 

Table 3.  Strategic vs. Random Damage 

Criteria Strategic Damage Random Damage 

Failure 
Loca�on 

Predefined (high-
risk zones) 

Random (any network 
component) 

Failure 
Patern 

Determinis�c 
(targeted tes�ng) Stochas�c (stress tes�ng) 

Failure 
Count 

Fixed (e.g., 5 
breakers) 

Variable (e.g., 5 to 20+ 
breakers) 

Tes�ng Goal Assess worst-case 
preparedness 

Measure system 
robustness 

As illustrated in Figure 7, the genetic algorithm (GA) 
demonstrates consistently superior computational 
efficiency relative to Monte Carlo (MC) simulations 
across diverse failure scenarios. The blue bars denote 
GA execution durations, with an average of 
approximately 15 minutes, while the red bars represent 
MC runtimes, averaging around 60 minutes. When 
available, error bars depict the standard deviation 
derived from 20 independent runs, indicating the 
stochastic stability and lower variability of the GA. The 
observed performance advantage stems from the GA’s 
directed evolutionary search strategy, which efficiently 
explores the solution space by converging toward high-
probability regions, whereas MC methods depend on 
stochastic sampling requiring substantially more 
iterations to reach comparable accuracy (refer to Section 
4.2 for detailed discussion). 

Recent research has demonstrated the application of AI 
methodologies, such as deep reinforcement learning, for 
managing microgrids during outage scenarios, focusing 

on the coordination of energy storage systems and 
renewable generation sources like solar and wind. 

 
Fig 7. Computation Time Comparison: GA vs. MC Across 

Failure Scenarios 

Our proposed genetic algorithm (GA) approach offers 
an alternative yet complementary strategy by enabling 
system operators to control circuit breaker reliability 
metrics precisely, with readily verifiable and 
operationally straightforward implementations. Although 
AI techniques are adept at adapting to volatile and 
uncertain conditions, our GA methodology provides 
inherently transparent and justifiable decision-making 
processes regarding circuit breaker selection during 
system restoration. 

Looking ahead, we envisage integrating both 
approaches to leverage their respective strengths. 
Specifically, utilizing our GA framework to develop a 
comprehensive restoration plan, subsequently refined 
through AI-driven real-time optimization of battery 
dispatch as system conditions evolve. This integrated 
strategy could combine the robustness and 
interpretability of probabilistic models with the dynamic 
adaptability inherent in machine learning, thereby 
enhancing resilience and operational effectiveness 
during major storm events.[35] 

While our research concentrates on the physical 
resilience of power systems against storm-induced 
failures, emerging cyber threats present an equally 
significant challenge to system recovery processes. 
Recent studies by Li et al. illustrate how artificial 
intelligence techniques can enhance system robustness 
against cyber-attack scenarios during restoration phases; 
notably, their hybrid Long Short-Term Memory (LSTM) 
and Graph Attention Network (GAT) architecture 
effectively maintain voltage stability despite 
compromised grid sensor data. Although our genetic 
algorithm focuses on optimizing the reliability of 
physical circuit breakers, these findings indicate that 
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future resilience frameworks should incorporate an 
integrated approach: leveraging probabilistic models for 
equipment failure mitigation alongside AI-driven cyber-
defense mechanisms for control system security. Such a 
dual-layer defense strategy could mitigate vulnerabilities 
exemplified by the 2015 cyber intrusion into the 
Ukrainian power grid, which impeded timely physical 
recovery efforts.[36] 

In addition to technical metrics, our GA-based 
restoration approach has the potential to significantly 
enhance community resilience, especially in areas 
susceptible to climate-related disasters. The pivotal role 
of renewable energy in strengthening community 
resilience during disasters has been empirically 
demonstrated in small island contexts. A recent study 
conducted in Fiji illustrated how solar photovoltaic and 
biogas systems contributed to reinforcing seven critical 
community assets—including human capital and 
political networks—in response to climate-induced 
shocks. While our research focuses on technical grid 
robustness via breaker optimization, these findings 
underscore that comprehensive power system resilience 
must fundamentally prioritize the needs of vulnerable 
communities, particularly in regions prone to 
disasters.[37] 

Future extensions should prioritize renewable energy 
integration (e.g., DERs with 10% penetration showing 
4.2% improvement) to enhance resilience during 
prolonged outages. The integration of distributed 
renewable energy resources (DERs), including 
photovoltaic (PV) systems and wind turbines coupled 
with energy storage, provides a viable approach to 
enhancing grid resilience during storm-induced 
disruptions. Decentralized generation via DER-enabled 
microgrids facilitates the maintenance of critical load 
operation under transmission lines or central generation 
failures. Quantitative analysis indicates that microgrids 
with a 10% DER penetration level result in a 4.2% 
increase in load restoration probability. Furthermore, 
configurations combining solar PV with four-hour 
energy storage sustain approximately 72% of critical 
loads during extended outage durations. This strategy 
expedites recovery processes and reduces the risk of 
cascading failures through localized balancing of supply 
and demand. Future implementation frameworks should 
incorporate advanced real-time weather prediction 
models and adaptive control algorithms to optimize DER 
dispatch strategies, thereby maximizing system 
resilience during extreme environmental events. 

5- Conclusion 

This research presents an advanced resilience 
framework that significantly enhances power system 
restoration through three key technical innovations. The 
probabilistic circuit breaker classification system, 

founded on Condition Index analytics, introduces a 
reliability-aware restoration approach that strategically 
prioritizes grid components during recovery operations. 
This method offers considerable computational 
efficiency over traditional techniques by intelligently 
narrowing the solution search space while maintaining 
optimality. 

The dynamic failure probability model provides a 
critical improvement in storm response capabilities by 
enabling real-time adaptation to changing weather 
conditions through continuous environmental data 
integration. This advancement is particularly valuable 
for sustaining system stability during extended extreme 
weather events, where static models often fall short. The 
constrained genetic algorithm (GA) optimization engine, 
enhanced with distributed energy resource (DER) 
coordination capabilities, sets a new benchmark for 
restoration algorithms. Its improved convergence 
characteristics stem from specialized genetic operators 
designed to preserve topological feasibility while 
exploring optimal configurations—surpassing the 
capabilities of conventional Monte Carlo methods. Its 
intrinsic constraint satisfaction mechanisms ensure 
operational validity without sacrificing solution quality. 

The proposed framework demonstrates significant 
performance improvements across various aspects of 
power system restoration. Notably, it achieves a 20% 
reduction in computational time through intelligent 
search space reduction enabled by reliability-based 
circuit breaker classification and adaptive genetic 
operators. Importantly, this efficiency is attained without 
compromising solution quality, as evidenced by a 7.3% 
higher restoration success rate compared to traditional 
Monte Carlo approaches, indicating improved 
operational outcomes. The framework consistently 
guarantees feasibility across all operational constraints, 
including voltage limits (0.95–1.05 per unit), line 
thermal capacities, and radial topology requirements, 
facilitating the immediate implementation of restoration 
plans. Additionally, it effectively coordinates distributed 
energy resources, achieving approximately 75% 
utilization during restoration processes. This not only 
enhances resilience but also demonstrates the successful 
integration of renewable generation into emergency 
response strategies. Overall, these performance metrics 
represent a substantial advancement over existing 
restoration methods, particularly in balancing 
computational efficiency with solution quality and 
operational feasibility in large-scale, stressed power 
systems. To enhance clarity, algorithmic details have 
been integrated into visual aids (Table 2 and Figure 3), 
streamlining the presentation and improving 
comprehension. The primary technical advancement of 
this framework resides in its unified approach to three 
essential components: reliability assessment, 
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environmental adaptability, and operational constraint 
management. This comprehensive strategy effectively 
addresses significant limitations of existing restoration 
methods, particularly in managing large-scale failures 
caused by weather events. Future developments may 
include the incorporation of predictive maintenance 
systems and adaptive learning techniques to further 
enhance system performance, with the potential to set 
new industry benchmarks for resilient power system 
operation. Table 4 demonstrates that the proposed 
genetic algorithm (GA) attains a high success rate of 
92.5% in restoring the IEEE 118-bus system within a 15-
minute convergence window. Future research will 

concentrate on integrating machine learning models to 
enhance failure prediction accuracy and developing 
hybrid optimization frameworks that combine GAs with 
alternative methodologies to improve solution 
robustness. Additionally, efforts will target the 
deployment of real-time implementation on high-
performance computing platforms to reduce emergency 
response latency. Subsequent work will also focus on 
scaling the methodology to support larger power systems 
exceeding 300 buses and integrating real-time 
meteorological data assimilation to enable dynamic 
updates of failure likelihood estimations. 

 
Table 4. Comparative analysis of restoration 
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