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Abstract:  An adaptive online flux-linkage estimation method for the sensorless control of 

switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is 

achieved through a binary observer based algorithm. In order to avoid using the look up 

tables of motor characteristics, which makes the system, depends on motor parameters, an 

adaptive identification algorithm is used to estimate of the nonlinear flux-linkage 

parameters. This method makes position and speed estimation more accurate and robust 

towards any model uncertainty, also it is suitable replacement for a priori knowledge of 

motor characteristics. 
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1 Introduction 1 

Switched reluctance motors (SRMs) have been the focus 

of many researches over the past decades. The simple 

mechanical construction is one of the main attractive 

features because it has no windings or permanent 

magnets on the rotor so its manufacturing cost appears 

to be lower compared to other motor types. Also it has 

the advantages of simple structure, low cost and high 

efficiency. However, the rotor position sensing 

requirement is a disadvantage for SRM. Using the 

position sensors occupy extra space and add to the total 

cost of drive, they also reduce the reliability of the 

drive. So replacing such sensors by suitable estimation 

methods seems better. A large number of papers of 

sensorless control methods have been published in the 

last decade, and all of the indirect rotor position sensing 

methods is based on measurements of the periodically 

varying phase inductance or phase flux [1].  

In this paper an online estimation of flux linkage 

characteristics method is proposed to achieve sensorless 

velocity control of the SRM. In this method actual flux 
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linkage can be computed directly from terminal 

measurements: voltage and current of the phases and 

estimated flux linkage is obtained by the adaptive 

estimating algorithm. Actual and estimated flux linkages 

are used by a binary observer to estimate the velocity 

and rotor position. We must notice that all these   

processes   are   done online. The algorithm is tested on 

simulation of a real 6/4 motor that we manufactured and 

the relevant test results are presented. Although we did 

not actually construct the electronic drive to implement 

the proposed method experimentally as well, the 

validity of the simulation models for the electromotor 

under consideration has been extensively studied via 

both FE calculations and laboratory experimentation as 

reported in [24, 25] and its references. The method is 

suitable for velocity control applications, such as drill 

machines, washing machines and banknote counting 

machines. 

The paper is organized as follows:  

Section 2 is a short review of the existing sensorless 

methods. Section 3 introduces the dynamic model of 

SRM and system differential equations. Section 4 

proposes an online flux-linkage estimation method. 

Section 5 represents the binary observer. Section 6 

represents the complete block diagram of the system. 

Section 7 tests the proposed method by simulation on a 

6/4 SRM and reports the most important results. Section 

8 concludes the paper. 
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2   A Short Review of Existing Sensorless Methods 

Several indirect position sensing methods have been 

suggested and published for sensorless control of SRM 

drives. They can be divided into two groups, 

1.     Non-intrusive methods, where position information 

is obtained from terminal measurements of voltages 

and currents and associated computation. These 

methods rely on the machine characteristics for 

estimating the rotor position and the terminal 

measurements of phase voltage or mutual voltage and 

current are used as inputs for an estimator to obtain 

the rotor position. The wave form detection 

techniques [2], model-based or observer-based 

estimator techniques [3]-[7], the flux-current method 

[8] and the mutual voltage method [9, 10] are 

examples of methods that fall under this category. 

Observer based methods and flux-current methods are 

examples of schemes that could be used for high 

resolution position sensing. These methods are also 

suitable for position sensing at high speeds, but high 

speed computational requirements tend to increase the 

cost of these types of indirect sensors even more.  

2.     Intrusive methods, where low level, high 

frequency signals are injected into an idle phase to 

determine the position dependent, unsaturated phase 

inductance characteristics. Methods based on 

monitoring current waveforms or passive waveform 

detection [11, 12], modulation based techniques [13] 

and flux sensing techniques [14] are examples of 

methods belonging to this family. The simplicity of 

these methods is a define advantage, although 

inherent speed limitation and generation of negative 

torque in the sensing phases could be a drawback in 

some cases. 

 

3   System Differential Equation and Dynamic Model 

of SRM 

The dynamic characteristics of SRM consist of its 

electromagnetic, torque and mechanical equations. By 

neglecting the mutual effect of the phases, the voltage 

applied to one phase of SRM can be expressed as 

follows: 
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 Voltage of the phase j 
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 Current of the phase j 
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Flux linkage of the phase j 

:n  Number of phases. 

In the SRM, flux is a function of both the current 

and the rotor position, 
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where, 

:θ  Rotor position 

So the phase current can be expressed as follows, 
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When each phase of the SRM is exited, it produces 

an instantaneous torque. The instantaneous torque of 

each phase can be shown as below: 

di
θ
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and the total torque of the motor can be found by adding 

the instantaneous torques of the phases, as follow, 

( )∑=
=

n

1j
jjjm
θ,iΤΤ  (5) 

Mechanical equations can be expressed as below: 

ωB
dt

dω
JΤΤ

Lm
⋅+⋅=−  (6) 

where, 

:Τ
L

 Load torque 

:ω   Rotor speed 

:J   Moment of inertia  

:B   Coefficient of friction. 

When equation (6) is re-arranged in order to write 

the speed we found the following equation: 

( )ωBΤΤ
J

1

dt

dω
Lm

⋅−−=  (7) 

In this equations the phase flux linkage
j
λ , the rotor 

position θ  and the rotor speed ω  constitute the state 

variables. 

We must notice that, in this modeling λ  and 
m
Τ  are 

the nonlinear parameters and usually they are derived 

using flux-current-angle ( )θiλ −−  and torque-current-

angle ( )θiΤ −−  characteristics data, obtained by finite 

element analysis [15] or by some approximation 

modeling techniques, such as adaptive identification 

methods [16]-[17] and neural networks based or fuzzy 

logic based methods [18]-[22]. The flux linkage 

characteristic of the 6/4 SRM that we manufactured has 

shown in Fig. 1. As shown in Fig.1 the flux linkage 

characteristic is nonlinear because the lines are not the 

equidistance in different angles. 
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4   Online Flux Estimation Method 

In this research, an adaptive self–tuning method is 

proposed to flux-linkage estimation. As shown in Fig. 1 

we can divide the magnetic characteristics of the SRM 

into two main regions, linear and saturated, according to 

the level of current. The linear region is distinguished 

by a current level less than the so-called saturation value 

S
I .The saturated region is located beyond 

S
I . This 

division can be applied to all magnetic characteristics as 

represented in [1], [18], [20] and [23]. We put the 
S

I as 

a constant value in this algorithm. Our assumption of 

fixed 
S

I , despite its obvious shift, for example as seen 

in Fig. 10, can still lead to acceptable control 

performance. We have also studied errors caused by the 

assumption of local models before and after the 

saturation currents else where and found them 

acceptable for our purposes. In this method the flux-

linkage in the j th phase is assumed to be given by, 

( )
( )
( ) ( )
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for n,1,j L=  where 
S

I  is the saturated current as shown 

in Fig. 1 and ( )θK
i

 is a second order function that can 

be expressed as follows: 

( ) 1,2,3i,θcθbaθK 2

iiii
=++=  (9) 

where 
i

a , 
i

b  and 
i

c  are the coefficients that estimated 

online by recursive least square (RLS) method for 

each ( )θK
i

. The RLS algorithms can be expressed as 

below: 
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where, 

:P   Covariance matrix 

:γ   Learning rate          ,     1)γ(0.95 <<  

The initial value of covariance matrix must be grater 

than zero. During the estimation procedure, the 

parameters are converged to values which account for 

the electromagnetic characteristics of the machine 

including the effects of magnetic saturation. This 

method makes the system robust towards any model 

uncertainty and changes in characteristics of the 

switched reluctance machine. 

 

 
Fig. 1.. Flux-linkage characteristics of the SRM. 

 

 

5   Binary Observer for SRM 

In this work, a binary observer is used to provide the 

estimated value of the rotor angle θ and speedω . A 

second order binary observer can be configured as 

below: 

fθekω̂
dt

θ̂d
+=  

fωek
dt

ω̂d
=  

(11) 

 

(12) 

where, 

:θ̂    Estimated rotor position 

:ω̂   Estimated speed 

:e
f

 Error function 

:k,k
ωθ

Constant gains 

The error function defined as follow: 

∑ −=
=

n

1j
jjjf
λ̂λµe  (13) 

with, 

( ))λ̂sgn(λµk
dt

dµ

jjjj

j
−−−=  (14) 

where, 

:λ̂  Estimated flux-linkage 

:k
j

Constant gain 

The constant 
j

k  must be selected suitably. If 
j

k  is 

selected very large, it makes 
j
µ  discontinuous and if  

j
k  

is selected very small, 
j
µ  is continuous but it take a 

long time for the estimation error of the rotor speed to 

converge zero. The more detail and stability analysis of 

the binary observer appear in [6]. 
 

6   Complete Drive System 

The general block diagram of the observer-based 

adaptive estimator for SRM drives has shown in Fig. 2. 

The system has three main parts: 
 

1. SRM drive. 

2. Binary observer. 

3. Flux estimator.  
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Fig. 2.. Block diagram of the observer-based adaptive 

sensorless SRM drive. 

 

 
Fig. 3. Flux-current-angle ( )θiλ −−  characteristics 

 

The terminal measurements of phase current and 

voltages are used to calculate and estimate the flux-

linkage and then the error of the calculated and 

estimated values are used in binary observer to estimate 

the speed and angle. A fuzzy PID controller was used to 

speed controller. 

 

7   Simulation Results 

In this section we represent the simulation results 

that obtained from the SRM drive. A 4KW, 3 phases, 

6/4 SRM was used to test the online flux-linkage 

estimation technique though simulation. This motor was 

manufactured and we use the real parameters. Table 1. 

shows the parameters of SRM. 
 

 

 

Table 1. The parameters of SRM 

Unaligned inductance 6.5mHL
u

=  

Aligned inductance 126.3mHL
a

=  

Phase winding 

resistance 
0.5ohmsR =  

Coefficient of friction 0.004B =  

Moment of inertia 20.005kgmJ =  

Nominal load torque 13.5NmΤ
L

=  

Nominal rotor speed 3000rpmN
n

=  

 

The magnetic characteristic of this motor has shown 

in Fig.3. In this simulation the motor current was 

limited to 30A and the motor was simulated at the 

nominal speed 3000rpm and nominal load torque 

13.5Nm. The initial value of all estimated parameters a, 

b and c was chosen 0.0001 and the initial value of 

covariance matrix was chosen 
33

I(50.1)P(0) ×⋅= . The 

sampling time of simulation is 15µ5 . The saturation 

current level is 4.8AI
S

= . To obtain the better 

performance at the different speed level and different 

load torque conditions, especially in robustness test, the 

observer gains
ω

k  and
θ

k  were readjusted automatically.  

 

7.1   Work at Nominal Condition 

Fig. 4 shows the actual and estimated flux-linkage 

for each phase. Fig. 5 shows the speed and position 

estimation at 3000rpm with initial value for speed at 

500rpm. Estimation error for speed ( )ω̂ωe
ω

−=  and 

position ( )θ̂θe
θ

−=  is shown at Fig. 6. 

Fig. 7 shows convergence dynamics of the estimated 

parameters for each phase.  

 

 
Fig. 4. Actual and estimated flux-linkage for each phase 
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Fig. 5. Speed and position estimation at 3000 rpm  

 

 
Fig. 6. Estimation error for speed and position 

 

As we said before the method is suitable for velocity 

control applications, such as drill machines, washing 

machines and banknote counting machines and it is not 

suitable for position control applications, for which the 

robustness of our proposed method seems doubtful and 

already in fig. 6 steady state error seems to be much. 

 

7.2   Robustness Test 

This method is robust towards any disturbance and 

model uncertainty. Fig. 8 shows the speed tracking 

capability of the estimated speed in tracking the actual 

speed and disturbance rejection when occurs a step 

change in load torque from 10Nm to 15Nm at t=0.4sec 

in close loop system. Increasing the load torque forces 

the actual speed to drop, but the speed controller and 

binary observer can follows the change and rejects the 

disturbance finely. The binary observer gains were 

adjusted to obtain better performance. Fig. 9 shows the 

speed tracking of the close loop system by changing the 

command speed from 300rad/sec to 280rad/sec at 

t=0.4sec. As shown in Fig. 9 the estimated speed can 

follow this change. 

 
 

 
 

 
Fig. 7. Convergence dynamics of estimated parameters for 

each phase. 

 

In order to show the effect of model uncertainty we 

change some of the SRM modeling parameters. Fig. 10 

shows effect of changing the unaligned inductance and 
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aligned inductance in the flux-linkage characteristics of 

the SRM. The new values are 3mHL
u

=  and 40mHL
a

= . 

Fig. 11 shows the actual and estimated speed and 

position under this condition. As shown in Fig. 11 the 

system works finely in this condition. 
 

 
Fig. 8. The estimated and actual speeds when the load torque 

varied from 10Nm to 15Nm at t=0.4sec in close loop system. 

 

 
Fig. 9. The estimated and actual speeds under command speed 

variation from 300rad/sec to 280rad/sec at t=0.4sec in close 

loop system. 

 

 
Fig. 10. Flux-current-angle ( )θiλ −−  characteristics of the 

SRM when Lu = 3 mH and La = 40 mH 

 
Fig. 11. The estimated and actual speed and position when 

Lu= 3 mH and La = 40 mH 

 

8   Conclusions 

An online adaptive flux-linkage estimation method 

is represented in this paper, in order to achieve 

sensorless speed control of the SRM. RLS algorithm 

and a second order binary observer are used to 

estimation and sensorless operation. The method is 

applied on the simulation of real 3 phases, 6/4 SRM that 

we manufactured and modeled by Miller model. 

Although, there is steady state error on angle estimation, 

the simulation results show that it works well for 

velocity estimation and control. 

Furthermore, the robustness of this method is tested 

towards any disturbance and model uncertainty by 

changing the load torque, command speed and aligned 

and unaligned inductance in the flux-linkage 

characteristics separately and satisfactory results are 

obtained and algorithm could estimate the velocity 

without any steady state error. 
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